// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: RunAction.cc,v 1.5 2006/06/29 16:47:13 gunter Exp $ // GEANT4 tag $Name: geant4-09-04-beta-01 $ // //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... #include "RunAction.hh" #include "DetectorConstruction.hh" #include "PrimaryGeneratorAction.hh" #include "HistoManager.hh" #include "G4Run.hh" #include "G4RunManager.hh" #include "G4UnitsTable.hh" #include "G4EmCalculator.hh" #include "Randomize.hh" #include //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... RunAction::RunAction(DetectorConstruction* det, PrimaryGeneratorAction* prim, HistoManager* histo) : detector(det), primary(prim), ProcCounter(0), histoManager(histo) { } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... RunAction::~RunAction() { } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... void RunAction::BeginOfRunAction(const G4Run* aRun) { G4cout << "### Run " << aRun->GetRunID() << " start." << G4endl; // save Rndm status G4RunManager::GetRunManager()->SetRandomNumberStore(false); CLHEP::HepRandom::showEngineStatus(); ProcCounter = new ProcessesCount; totalCount = 0; truePL = truePL2 = geomPL = geomPL2 = 0.; lDispl = lDispl2 = psiSpa = psiSpa2 = 0.; tetPrj = tetPrj2 = 0.; phiCor = phiCor2 = 0.; histoManager->book(); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... void RunAction::CountProcesses(G4String procName) { //does the process already encounted ? size_t nbProc = ProcCounter->size(); size_t i = 0; while ((iGetName()!=procName)) i++; if (i == nbProc) ProcCounter->push_back( new OneProcessCount(procName)); (*ProcCounter)[i]->Count(); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... void RunAction::EndOfRunAction(const G4Run* aRun) { G4int NbOfEvents = aRun->GetNumberOfEvent(); if (NbOfEvents == 0) return; G4int prec = G4cout.precision(5); G4Material* material = detector->GetMaterial(); G4double density = material->GetDensity(); G4ParticleDefinition* particle = primary->GetParticleGun()->GetParticleDefinition(); G4String Particle = particle->GetParticleName(); G4double energy = primary->GetParticleGun()->GetParticleEnergy(); G4cout << "\n The run consists of " << NbOfEvents << " "<< Particle << " of " << G4BestUnit(energy,"Energy") << " through " << G4BestUnit(detector->GetBoxSize(),"Length") << " of " << material->GetName() << " (density: " << G4BestUnit(density,"Volumic Mass") << ")" << G4endl; //frequency of processes G4cout << "\n Process calls frequency --->"; for (size_t i=0; i< ProcCounter->size();i++) { G4String procName = (*ProcCounter)[i]->GetName(); G4int count = (*ProcCounter)[i]->GetCounter(); G4cout << "\t" << procName << " = " << count; } if (totalCount == 0) return; //compute path length and related quantities // G4double MeanTPL = truePL /totalCount; G4double MeanTPL2 = truePL2/totalCount; G4double rmsTPL = std::sqrt(std::fabs(MeanTPL2 - MeanTPL*MeanTPL)); G4double MeanGPL = geomPL /totalCount; G4double MeanGPL2 = geomPL2/totalCount; G4double rmsGPL = std::sqrt(std::fabs(MeanGPL2 - MeanGPL*MeanGPL)); G4double MeanLaD = lDispl /totalCount; G4double MeanLaD2 = lDispl2/totalCount; G4double rmsLaD = std::sqrt(std::fabs(MeanLaD2 - MeanLaD*MeanLaD)); G4double MeanPsi = psiSpa /(totalCount); G4double MeanPsi2 = psiSpa2/(totalCount); G4double rmsPsi = std::sqrt(std::fabs(MeanPsi2 - MeanPsi*MeanPsi)); G4double MeanTeta = tetPrj /(2*totalCount); G4double MeanTeta2 = tetPrj2/(2*totalCount); G4double rmsTeta = std::sqrt(std::fabs(MeanTeta2 - MeanTeta*MeanTeta)); G4double MeanCorrel = phiCor /(totalCount); G4double MeanCorrel2 = phiCor2/(totalCount); G4double rmsCorrel = std::sqrt(std::fabs(MeanCorrel2-MeanCorrel*MeanCorrel)); G4cout << "\n\n truePathLength :\t" << G4BestUnit(MeanTPL,"Length") << " +- " << G4BestUnit( rmsTPL,"Length") << "\n geomPathLength :\t" << G4BestUnit(MeanGPL,"Length") << " +- " << G4BestUnit( rmsGPL,"Length") << "\n lateralDisplac :\t" << G4BestUnit(MeanLaD,"Length") << " +- " << G4BestUnit( rmsLaD,"Length") << "\n Psi :\t" << MeanPsi/mrad << " mrad" << " +- " << rmsPsi /mrad << " mrad" << " (" << MeanPsi/deg << " deg" << " +- " << rmsPsi /deg << " deg)" << G4endl; G4cout << "\n Theta_plane :\t" << rmsTeta/mrad << " mrad" << " (" << rmsTeta/deg << " deg)" << "\n phi correlation:\t" << MeanCorrel << " +- " << rmsCorrel << " (std::cos(phi_pos - phi_dir))" << G4endl; //cross check from G4EmCalculator // G4cout << "\n Verification from G4EmCalculator. \n"; G4EmCalculator emCal; //get transport mean free path (for multiple scattering) G4double MSmfp = emCal.GetMeanFreePath(energy,particle,"msc",material); //get range from restricted dedx G4double range = emCal.GetRangeFromRestricteDEDX(energy,particle,material); //effective facRange G4double efFacrange = MeanTPL/std::max(MSmfp, range); if (MeanTPL/range >= 0.99) efFacrange = 1.; G4cout << "\n transport mean free path :\t" << G4BestUnit(MSmfp,"Length") << "\n range from restrict dE/dx:\t" << G4BestUnit(range,"Length") << "\n ---> effective facRange :\t" << efFacrange << G4endl; G4cout << "\n compute theta0 from Highland :\t" << ComputeMscHighland(MeanTPL)/mrad << " mrad" << " (" << ComputeMscHighland(MeanTPL)/deg << " deg)" << G4endl; //restore default format G4cout.precision(prec); // delete and remove all contents in ProcCounter while (ProcCounter->size()>0){ OneProcessCount* aProcCount=ProcCounter->back(); ProcCounter->pop_back(); delete aProcCount; } delete ProcCounter; histoManager->save(); // show Rndm status CLHEP::HepRandom::showEngineStatus(); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double RunAction::ComputeMscHighland(G4double pathLength) { //compute the width of the Gaussian central part of the MultipleScattering //projected angular distribution. //Eur. Phys. Jour. C15 (2000) page 166, formule 23.9 G4double t = pathLength/(detector->GetMaterial()->GetRadlen()); if (t < DBL_MIN) return 0.; G4ParticleGun* particle = primary->GetParticleGun(); G4double T = particle->GetParticleEnergy(); G4double M = particle->GetParticleDefinition()->GetPDGMass(); G4double z = std::abs(particle->GetParticleDefinition()->GetPDGCharge()/eplus); G4double bpc = T*(T+2*M)/(T+M); G4double teta0 = 13.6*MeV*z*std::sqrt(t)*(1.+0.038*std::log(t))/bpc; return teta0; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......