source: trunk/examples/extended/electromagnetic/TestEm5/src/DetectorConstruction.cc@ 1303

Last change on this file since 1303 was 1230, checked in by garnier, 16 years ago

update to geant4.9.3

File size: 15.7 KB
RevLine 
[807]1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
[1230]26// $Id: DetectorConstruction.cc,v 1.15 2009/01/22 17:41:43 vnivanch Exp $
27// GEANT4 tag $Name: geant4-09-03-cand-01 $
[807]28//
29//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
30//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
31
32#include "DetectorConstruction.hh"
33#include "DetectorMessenger.hh"
34
35#include "G4Material.hh"
36#include "G4Box.hh"
37#include "G4LogicalVolume.hh"
38#include "G4PVPlacement.hh"
39#include "G4UniformMagField.hh"
40
41#include "G4GeometryManager.hh"
42#include "G4PhysicalVolumeStore.hh"
43#include "G4LogicalVolumeStore.hh"
44#include "G4SolidStore.hh"
45
46#include "G4UnitsTable.hh"
47#include "G4NistManager.hh"
[1230]48#include "G4RunManager.hh"
[807]49
50//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
51
52DetectorConstruction::DetectorConstruction()
53:AbsorberMaterial(0),WorldMaterial(0),defaultWorld(true),
54 solidWorld(0),logicWorld(0),physiWorld(0),
55 solidAbsorber(0),logicAbsorber(0),physiAbsorber(0),
56 magField(0)
57{
58 // default parameter values of the calorimeter
59 AbsorberThickness = 1.*cm;
60 AbsorberSizeYZ = 2.*cm;
61 XposAbs = 0.*cm;
62 ComputeCalorParameters();
63
64 // materials
65 DefineMaterials();
66 SetWorldMaterial ("Galactic");
67 SetAbsorberMaterial("Silicon");
68
69 // create commands for interactive definition of the calorimeter
70 detectorMessenger = new DetectorMessenger(this);
71}
72
73//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
74
75DetectorConstruction::~DetectorConstruction()
76{
77 delete detectorMessenger;
78}
79
80//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
81
82G4VPhysicalVolume* DetectorConstruction::Construct()
83{
84 return ConstructCalorimeter();
85}
86
87//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
88
89void DetectorConstruction::DefineMaterials()
90{
[1230]91 //This function illustrates the possible ways to define materials
[807]92
[1230]93 G4String symbol; //a=mass of a mole;
94 G4double a, z, density; //z=mean number of protons;
[807]95
[1230]96 G4int ncomponents, natoms;
97 G4double fractionmass;
98 G4double temperature, pressure;
99
100 //
101 // define Elements
102 //
[807]103
[1230]104 G4Element* H = new G4Element("Hydrogen",symbol="H", z= 1, a= 1.01*g/mole);
105 G4Element* C = new G4Element("Carbon", symbol="C", z= 6, a= 12.01*g/mole);
106 G4Element* N = new G4Element("Nitrogen",symbol="N", z= 7, a= 14.01*g/mole);
107 G4Element* O = new G4Element("Oxygen", symbol="O", z= 8, a= 16.00*g/mole);
108 G4Element* Na = new G4Element("Sodium", symbol="Na", z=11, a= 22.99*g/mole);
109 G4Element* Ar = new G4Element("Argon", symbol="Ar", z=18, a= 39.95*g/mole);
110 G4Element* I = new G4Element("Iodine", symbol="I" , z=53, a= 126.90*g/mole);
111 G4Element* Xe = new G4Element("Xenon", symbol="Xe", z=54, a= 131.29*g/mole);
[807]112
[1230]113 //
114 // define simple materials
115 //
[807]116
[1230]117 new G4Material("H2Liq" , z= 1, a= 1.01*g/mole, density= 70.8*mg/cm3);
118 new G4Material("Beryllium", z= 4, a= 9.01*g/mole, density= 1.848*g/cm3);
119 new G4Material("Aluminium", z=13, a=26.98*g/mole, density= 2.700*g/cm3);
120 new G4Material("Silicon" , z=14, a=28.09*g/mole, density= 2.330*g/cm3);
[807]121
[1230]122 G4Material* lAr =
123 new G4Material("liquidArgon", density= 1.390*g/cm3, ncomponents=1);
124 lAr->AddElement(Ar, natoms=1);
[807]125
[1230]126 new G4Material("Iron", z=26, a= 55.85*g/mole, density= 7.870*g/cm3);
127 new G4Material("Copper", z=29, a= 63.55*g/mole, density= 8.960*g/cm3);
128 new G4Material("Germanium",z=32, a= 72.61*g/mole, density= 5.323*g/cm3);
129 new G4Material("Silver", z=47, a=107.87*g/mole, density= 10.50*g/cm3);
130 new G4Material("Tungsten", z=74, a=183.85*g/mole, density= 19.30*g/cm3);
131 new G4Material("Gold", z=79, a=196.97*g/mole, density= 19.32*g/cm3);
132 new G4Material("Lead", z=82, a=207.19*g/mole, density= 11.35*g/cm3);
[807]133
[1230]134 //
135 // define a material from elements. case 1: chemical molecule
136 //
[807]137
[1230]138 G4Material* H2O = new G4Material("Water", density= 1.000*g/cm3, ncomponents=2);
139 H2O->AddElement(H, natoms=2);
140 H2O->AddElement(O, natoms=1);
141 H2O->GetIonisation()->SetMeanExcitationEnergy(75*eV);
[807]142
[1230]143 G4Material* CH = new G4Material("Plastic", density= 1.04*g/cm3, ncomponents=2);
144 CH->AddElement(C, natoms=1);
145 CH->AddElement(H, natoms=1);
[807]146
[1230]147 G4Material* NaI = new G4Material("NaI", density= 3.67*g/cm3, ncomponents=2);
148 NaI->AddElement(Na, natoms=1);
149 NaI->AddElement(I , natoms=1);
150 NaI->GetIonisation()->SetMeanExcitationEnergy(452*eV);
[807]151
[1230]152 //
153 // define a material from elements. case 2: mixture by fractional mass
154 //
[807]155
[1230]156 G4Material* Air = new G4Material("Air", density= 1.290*mg/cm3, ncomponents=2);
157 Air->AddElement(N, fractionmass=0.7);
158 Air->AddElement(O, fractionmass=0.3);
[807]159
[1230]160 G4Material* Air20 =
161 new G4Material("Air20", density= 1.205*mg/cm3, ncomponents=2,
162 kStateGas, 293.*kelvin, 1.*atmosphere);
163 Air20->AddElement(N, fractionmass=0.7);
164 Air20->AddElement(O, fractionmass=0.3);
[807]165
[1230]166 //Graphite
167 //
168 G4Material* Graphite =
169 new G4Material("Graphite", density= 1.7*g/cm3, ncomponents=1);
170 Graphite->AddElement(C, fractionmass=1.);
[807]171
[1230]172 //Havar
173 //
174 G4Element* Cr = new G4Element("Chrome", "Cr", z=25, a= 51.996*g/mole);
175 G4Element* Fe = new G4Element("Iron" , "Fe", z=26, a= 55.845*g/mole);
176 G4Element* Co = new G4Element("Cobalt", "Co", z=27, a= 58.933*g/mole);
177 G4Element* Ni = new G4Element("Nickel", "Ni", z=28, a= 58.693*g/mole);
178 G4Element* W = new G4Element("Tungsten","W", z=74, a= 183.850*g/mole);
[807]179
[1230]180 G4Material* Havar =
181 new G4Material("Havar", density= 8.3*g/cm3, ncomponents=5);
182 Havar->AddElement(Cr, fractionmass=0.1785);
183 Havar->AddElement(Fe, fractionmass=0.1822);
184 Havar->AddElement(Co, fractionmass=0.4452);
185 Havar->AddElement(Ni, fractionmass=0.1310);
186 Havar->AddElement(W , fractionmass=0.0631);
[807]187
[1230]188 //
189 // examples of gas
190 //
191 new G4Material("ArgonGas", z=18, a=39.948*g/mole, density= 1.782*mg/cm3,
192 kStateGas, 273.15*kelvin, 1*atmosphere);
[807]193
[1230]194 new G4Material("XenonGas", z=54, a=131.29*g/mole, density= 5.458*mg/cm3,
195 kStateGas, 293.15*kelvin, 1*atmosphere);
[807]196
[1230]197 G4Material* CO2 =
198 new G4Material("CarbonicGas", density= 1.977*mg/cm3, ncomponents=2);
199 CO2->AddElement(C, natoms=1);
200 CO2->AddElement(O, natoms=2);
[807]201
[1230]202 G4Material* ArCO2 =
203 new G4Material("ArgonCO2", density= 1.8223*mg/cm3, ncomponents=2);
204 ArCO2->AddElement (Ar, fractionmass=0.7844);
205 ArCO2->AddMaterial(CO2, fractionmass=0.2156);
[807]206
[1230]207 //another way to define mixture of gas per volume
208 G4Material* NewArCO2 =
209 new G4Material("NewArgonCO2", density= 1.8223*mg/cm3, ncomponents=3);
210 NewArCO2->AddElement (Ar, natoms=8);
211 NewArCO2->AddElement (C, natoms=2);
212 NewArCO2->AddElement (O, natoms=4);
[807]213
[1230]214 G4Material* ArCH4 =
215 new G4Material("ArgonCH4", density= 1.709*mg/cm3, ncomponents=3);
216 ArCH4->AddElement (Ar, natoms=93);
217 ArCH4->AddElement (C, natoms=7);
218 ArCH4->AddElement (H, natoms=28);
[807]219
[1230]220 G4Material* XeCH =
221 new G4Material("XenonMethanePropane", density= 4.9196*mg/cm3, ncomponents=3,
222 kStateGas, 293.15*kelvin, 1*atmosphere);
223 XeCH->AddElement (Xe, natoms=875);
224 XeCH->AddElement (C, natoms=225);
225 XeCH->AddElement (H, natoms=700);
[807]226
[1230]227 G4Material* steam =
228 new G4Material("WaterSteam", density= 1.0*mg/cm3, ncomponents=1);
229 steam->AddMaterial(H2O, fractionmass=1.);
230 steam->GetIonisation()->SetMeanExcitationEnergy(71.6*eV);
[807]231
[1230]232 //
233 // example of vacuum
234 //
[807]235
[1230]236 density = universe_mean_density; //from PhysicalConstants.h
237 pressure = 3.e-18*pascal;
238 temperature = 2.73*kelvin;
239 new G4Material("Galactic", z=1, a=1.01*g/mole,density,
240 kStateGas,temperature,pressure);
[807]241}
242
243//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
244
245void DetectorConstruction::ComputeCalorParameters()
246{
247 // Compute derived parameters of the calorimeter
248 xstartAbs = XposAbs-0.5*AbsorberThickness;
249 xendAbs = XposAbs+0.5*AbsorberThickness;
250
251 if (defaultWorld) {
252 WorldSizeX = 1.5*AbsorberThickness; WorldSizeYZ= 1.2*AbsorberSizeYZ;
253 }
254}
255
256//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
257
258G4VPhysicalVolume* DetectorConstruction::ConstructCalorimeter()
259{
260 // Cleanup old geometry
261 //
262 G4GeometryManager::GetInstance()->OpenGeometry();
263 G4PhysicalVolumeStore::GetInstance()->Clean();
264 G4LogicalVolumeStore::GetInstance()->Clean();
265 G4SolidStore::GetInstance()->Clean();
266
267 // complete the Calor parameters definition
268 ComputeCalorParameters();
269
270 // World
271 //
272 solidWorld = new G4Box("World", //its name
273 WorldSizeX/2,WorldSizeYZ/2,WorldSizeYZ/2); //its size
274
275 logicWorld = new G4LogicalVolume(solidWorld, //its solid
276 WorldMaterial, //its material
277 "World"); //its name
278
279 physiWorld = new G4PVPlacement(0, //no rotation
280 G4ThreeVector(), //at (0,0,0)
281 logicWorld, //its logical volume
282 "World", //its name
283 0, //its mother volume
284 false, //no boolean operation
285 0); //copy number
286
287 // Absorber
288 //
289 solidAbsorber = new G4Box("Absorber",
290 AbsorberThickness/2,AbsorberSizeYZ/2,AbsorberSizeYZ/2);
291
292 logicAbsorber = new G4LogicalVolume(solidAbsorber, //its solid
293 AbsorberMaterial, //its material
294 "Absorber"); //its name
295
296 physiAbsorber = new G4PVPlacement(0, //no rotation
297 G4ThreeVector(XposAbs,0.,0.), //its position
298 logicAbsorber, //its logical volume
299 "Absorber", //its name
300 logicWorld, //its mother
301 false, //no boulean operat
302 0); //copy number
303
[1230]304 PrintCalorParameters();
[807]305
306 //always return the physical World
307 //
308 return physiWorld;
309}
310
311//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
312
313void DetectorConstruction::PrintCalorParameters()
314{
315 G4cout << "\n" << WorldMaterial << G4endl;
316 G4cout << "\n" << AbsorberMaterial << G4endl;
317
318 G4cout << "\n The WORLD is made of " << G4BestUnit(WorldSizeX,"Length")
319 << " of " << WorldMaterial->GetName();
320 G4cout << ". The transverse size (YZ) of the world is "
321 << G4BestUnit(WorldSizeYZ,"Length") << G4endl;
322 G4cout << " The ABSORBER is made of "
323 <<G4BestUnit(AbsorberThickness,"Length")
324 << " of " << AbsorberMaterial->GetName();
325 G4cout << ". The transverse size (YZ) is "
326 << G4BestUnit(AbsorberSizeYZ,"Length") << G4endl;
327 G4cout << " X position of the middle of the absorber "
328 << G4BestUnit(XposAbs,"Length");
329 G4cout << G4endl;
330}
331
332//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
333
334void DetectorConstruction::SetAbsorberMaterial(G4String materialChoice)
335{
336 // search the material by its name
337 G4Material* pttoMaterial =
338 G4NistManager::Instance()->FindOrBuildMaterial(materialChoice);
339
[1230]340 if (pttoMaterial && AbsorberMaterial != pttoMaterial) {
341 AbsorberMaterial = pttoMaterial;
342 if(logicAbsorber) logicAbsorber->SetMaterial(AbsorberMaterial);
343 G4RunManager::GetRunManager()->PhysicsHasBeenModified();
344 }
[807]345}
346
347//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
348
349void DetectorConstruction::SetWorldMaterial(G4String materialChoice)
350{
351 // search the material by its name
352 G4Material* pttoMaterial =
353 G4NistManager::Instance()->FindOrBuildMaterial(materialChoice);
354
[1230]355 if (pttoMaterial && WorldMaterial != pttoMaterial) {
356 WorldMaterial = pttoMaterial;
357 if(logicWorld) logicWorld->SetMaterial(WorldMaterial);
358 G4RunManager::GetRunManager()->PhysicsHasBeenModified();
359 }
[807]360}
361
362//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
363
364void DetectorConstruction::SetAbsorberThickness(G4double val)
365{
366 AbsorberThickness = val;
[1230]367 G4RunManager::GetRunManager()->GeometryHasBeenModified();
[807]368}
369
370//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
371
372void DetectorConstruction::SetAbsorberSizeYZ(G4double val)
373{
374 AbsorberSizeYZ = val;
[1230]375 G4RunManager::GetRunManager()->GeometryHasBeenModified();
[807]376}
377
378//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
379
380void DetectorConstruction::SetWorldSizeX(G4double val)
381{
382 WorldSizeX = val;
383 defaultWorld = false;
[1230]384 G4RunManager::GetRunManager()->GeometryHasBeenModified();
[807]385}
386
387//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
388
389void DetectorConstruction::SetWorldSizeYZ(G4double val)
390{
391 WorldSizeYZ = val;
392 defaultWorld = false;
[1230]393 G4RunManager::GetRunManager()->GeometryHasBeenModified();
[807]394}
395
396//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
397
398void DetectorConstruction::SetAbsorberXpos(G4double val)
399{
400 XposAbs = val;
[1230]401 G4RunManager::GetRunManager()->GeometryHasBeenModified();
[807]402}
403
404//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
405
406#include "G4FieldManager.hh"
407#include "G4TransportationManager.hh"
408
409void DetectorConstruction::SetMagField(G4double fieldValue)
410{
411 //apply a global uniform magnetic field along Z axis
412 G4FieldManager* fieldMgr
413 = G4TransportationManager::GetTransportationManager()->GetFieldManager();
414
415 if(magField) delete magField; //delete the existing magn field
416
417 if(fieldValue!=0.) // create a new one if non nul
418 { magField = new G4UniformMagField(G4ThreeVector(0.,0.,fieldValue));
419 fieldMgr->SetDetectorField(magField);
420 fieldMgr->CreateChordFinder(magField);
421 } else {
422 magField = NULL;
423 fieldMgr->SetDetectorField(magField);
424 }
425}
426
427//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.....
428
429void DetectorConstruction::UpdateGeometry()
430{
[1230]431 G4RunManager::GetRunManager()->PhysicsHasBeenModified();
[807]432 G4RunManager::GetRunManager()->DefineWorldVolume(ConstructCalorimeter());
433}
434
435//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
436
Note: See TracBrowser for help on using the repository browser.