// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // G4ScreenedNuclearRecoil.hh,v 1.24 2008/05/01 19:58:59 marcus Exp // GEANT4 tag // // // // Class Description // Process for screened electromagnetic nuclear elastic scattering; // Physics comes from: // Marcus H. Mendenhall and Robert A. Weller, // "Algorithms for the rapid computation of classical cross sections // for screened Coulomb collisions " // Nuclear Instruments and Methods in Physics Research B58 (1991) 11-17 // The only input required is a screening function phi(r/a) which is the ratio // of the actual interatomic potential for two atoms with atomic numbers Z1 and Z2, // to the unscreened potential Z1*Z2*e^2/r where e^2 is elm_coupling in Geant4 units // the actual screening tables are computed externally in a python module "screened_scattering.py" // to allow very specific screening functions to be added if desired, without messing // with the insides of this code. // // First version, April 2004, Marcus H. Mendenhall, Vanderbilt University // May 1, 2008 -- Added code to allow process to have zero cross section above max energy, to coordinate with G4MSC. -- mhm // // Class Description - End #ifndef G4ScreenedNuclearRecoil_h #define G4ScreenedNuclearRecoil_h 1 #include "globals.hh" #include "G4VDiscreteProcess.hh" #include "G4ParticleChange.hh" #include "c2_function.hh" #include #include class G4VNIELPartition; typedef c2_const_ptr G4_c2_const_ptr; typedef c2_ptr G4_c2_ptr; typedef c2_function G4_c2_function; typedef struct G4ScreeningTables { G4double z1, z2, m1, m2, au, emin; G4_c2_const_ptr EMphiData; } G4ScreeningTables; // A class for loading ScreenedCoulombCrossSections class G4ScreenedCoulombCrossSectionInfo { public: G4ScreenedCoulombCrossSectionInfo() { } ~G4ScreenedCoulombCrossSectionInfo() { } static const char* CVSHeaderVers() { return "G4ScreenedNuclearRecoil.hh,v 1.24 2008/05/01 19:58:59 marcus Exp GEANT4 tag "; } static const char* CVSFileVers(); }; // A class for loading ScreenedCoulombCrossSections class G4ScreenedCoulombCrossSection : public G4ScreenedCoulombCrossSectionInfo { public: G4ScreenedCoulombCrossSection() : verbosity(1) { } G4ScreenedCoulombCrossSection(const G4ScreenedCoulombCrossSection &src) : G4ScreenedCoulombCrossSectionInfo(),verbosity(src.verbosity) { } virtual ~G4ScreenedCoulombCrossSection(); typedef std::map ScreeningMap; // a local, fast-access mapping of a particle's Z to its full definition typedef std::map ParticleCache; // LoadData is called by G4ScreenedNuclearRecoil::GetMeanFreePath // It loads the data tables, builds the elemental cross-section tables. virtual void LoadData(G4String screeningKey, G4int z1, G4double m1, G4double recoilCutoff) = 0; // BuildMFPTables is called by G4ScreenedNuclearRecoil::GetMeanFreePath to build the MFP tables for each material void BuildMFPTables(void); // scan the MaterialsTable and construct MFP tables virtual G4ScreenedCoulombCrossSection *create() = 0; // a 'virtual constructor' which clones the class const G4ScreeningTables *GetScreening(G4int Z) { return &(screeningData[Z]); } void SetVerbosity(G4int v) { verbosity=v; } // this process needs element selection weighted only by number density G4ParticleDefinition* SelectRandomUnweightedTarget(const G4MaterialCutsCouple* couple); enum { nMassMapElements=116 }; G4double standardmass(G4int z1) { return z1 <= nMassMapElements ? massmap[z1] : 2.5*z1; } // get the mean-free-path table for the indexed material const G4_c2_function * operator [] (G4int materialIndex) { return MFPTables.find(materialIndex)!=MFPTables.end() ? &(MFPTables[materialIndex].get()) : (G4_c2_function *)0; } protected: ScreeningMap screeningData; // screening tables for each element ParticleCache targetMap; G4int verbosity; std::map sigmaMap; // total cross section for each element std::map MFPTables; // MFP for each material private: static const G4double massmap[nMassMapElements+1]; }; typedef struct G4CoulombKinematicsInfo { G4double impactParameter; G4ScreenedCoulombCrossSection *crossSection; G4double a1, a2, sinTheta, cosTheta, sinZeta, cosZeta, eRecoil; G4ParticleDefinition *recoilIon; const G4Material *targetMaterial; } G4CoulombKinematicsInfo; class G4ScreenedCollisionStage { public: virtual void DoCollisionStep(class G4ScreenedNuclearRecoil *master, const class G4Track& aTrack, const class G4Step& aStep)=0; virtual ~G4ScreenedCollisionStage() {} }; class G4ScreenedCoulombClassicalKinematics: public G4ScreenedCoulombCrossSectionInfo, public G4ScreenedCollisionStage { public: G4ScreenedCoulombClassicalKinematics(); virtual void DoCollisionStep(class G4ScreenedNuclearRecoil *master, const class G4Track& aTrack, const class G4Step& aStep); G4bool DoScreeningComputation(class G4ScreenedNuclearRecoil *master, const G4ScreeningTables *screen, G4double eps, G4double beta); virtual ~G4ScreenedCoulombClassicalKinematics() { } protected: // the c2_functions we need to do the work. c2_const_plugin_function_p &phifunc; c2_linear_p &xovereps; G4_c2_ptr diff; }; class G4SingleScatter: public G4ScreenedCoulombCrossSectionInfo, public G4ScreenedCollisionStage { public: G4SingleScatter() { } virtual void DoCollisionStep(class G4ScreenedNuclearRecoil *master, const class G4Track& aTrack, const class G4Step& aStep); virtual ~G4SingleScatter() {} }; /** \brief A process which handles screened Coulomb collisions between nuclei */ class G4ScreenedNuclearRecoil : public G4ScreenedCoulombCrossSectionInfo, public G4VDiscreteProcess { public: friend class G4ScreenedCollisionStage; /// \brief Construct the process and set some physics parameters for it. /// \param processName the name to assign the process /// \param ScreeningKey the name of a screening function to use. /// The default functions are "zbl" (recommended for soft scattering), /// "lj" (recommended for backscattering) and "mol" (Moliere potential) /// \param GenerateRecoils if frue, ions struck by primary are converted into new moving particles. /// If false, energy is deposited, but no new moving ions are created. /// \param RecoilCutoff energy below which no new moving particles will be created, /// even if \a GenerateRecoils is true. /// Also, a moving primary particle will be stopped if its energy falls below this limit. /// \param PhysicsCutoff the energy transfer to which screening tables are calucalted. /// There is no really /// compelling reason to change it from the 10.0 eV default. However, see the paper on running this /// in thin targets for further discussion, and its interaction with SetMFPScaling() G4ScreenedNuclearRecoil(const G4String& processName = "ScreenedElastic", const G4String &ScreeningKey="zbl", G4bool GenerateRecoils=1, G4double RecoilCutoff=100.0*eV, G4double PhysicsCutoff=10.0*eV); /// \brief destructor virtual ~G4ScreenedNuclearRecoil(); /// \brief used internally by Geant4 machinery virtual G4double GetMeanFreePath(const G4Track&, G4double, G4ForceCondition* ); /// \brief used internally by Geant4 machinery virtual G4VParticleChange* PostStepDoIt(const G4Track& aTrack, const G4Step& aStep); /// \brief test if a prticle of type \a aParticleType can use this process /// \param aParticleType the particle to test virtual G4bool IsApplicable(const G4ParticleDefinition& aParticleType); /// \brief Build physics tables in advance. Not Implemented. /// \param aParticleType the type of particle to build tables for virtual void BuildPhysicsTable(const G4ParticleDefinition&) { } /// \brief Export physics tables for persistency. Not Implemented. /// \param aParticleType the type of particle to build tables for virtual void DumpPhysicsTable(const G4ParticleDefinition& aParticleType); /// \brief deterine if the moving particle is within the strong force range of the selected nucleus /// \param A the nucleon number of the beam /// \param A1 the nucleon number of the target /// \param apsis the distance of closest approach virtual G4bool CheckNuclearCollision(G4double A, G4double A1, G4double apsis); // return true if hard collision virtual G4ScreenedCoulombCrossSection *GetNewCrossSectionHandler(void); /// \brief Get non-ionizing energy loss for last step G4double GetNIEL() const { return NIEL; } /// \brief clear precomputed screening tables void ResetTables(); // clear all data tables to allow changing energy cutoff, materials, etc. /// \brief set the upper energy beyond which this process has no cross section /// /// This funciton is used to coordinate this process with G4MSC. Typically, G4MSC should /// not be allowed to operate in a range which overlaps that of this process. The criterion which is most reasonable /// is that the transition should be somewhere in the modestly relativistic regime (500 MeV/u for example). /// \param energy energy per nucleon for the cutoff void SetMaxEnergyForScattering(G4double energy) { processMaxEnergy=energy; } /// \brief find out what screening funciton we are using std::string GetScreeningKey() const { return screeningKey; } /// \brief enable or disable all energy deposition by this process /// \param flag if true, enable deposition of energy (the default). If false, disable deposition. void AllowEnergyDeposition(G4bool flag) { registerDepositedEnergy=flag; } /// \brief get flag indicating whether deposition is enabled G4bool GetAllowEnergyDeposition() const { return registerDepositedEnergy; } /// \brief enable or disable the generation of recoils. /// If recoils are disabled, the energy they would have received is just deposited. /// \param flag if true, create recoil ions in cases in which the energy is above the recoilCutoff. /// If false, just deposit the energy. void EnableRecoils(G4bool flag) { generateRecoils=flag; } /// \brief find out if generation of recoils is enabled. G4bool GetEnableRecoils() const { return generateRecoils; } /// \brief set the mean free path scaling as specified /// \param scale the factor by which the default MFP will be scaled. /// Set to less than 1 for very thin films, typically, to sample multiple scattering, /// or to greater than 1 for quick simulaitons with a very long flight path. void SetMFPScaling(G4double scale) { MFPScale=scale; } /// \brief get the MFPScaling parameter G4double GetMFPScaling() const { return MFPScale; } /// \brief enable or disable whether this process will skip collisions /// which are close enough they need hadronic phsyics. Default is true (skip close collisions). /// Disabling this results in excess nuclear stopping power. /// \param flag true results in hard collisions being skipped. false allows hard collisions. void AvoidNuclearReactions(G4bool flag) { avoidReactions=flag; } /// \brief get the flag indicating whether hadronic collisions are ignored. G4bool GetAvoidNuclearReactions() const { return avoidReactions; } /// \brief set the minimum energy (per nucleon) at which recoils can be generated, /// and the energy (per nucleon) below which all ions are stopped. /// \param energy energy per nucleon void SetRecoilCutoff(G4double energy) { recoilCutoff=energy; } /// \brief get the recoil cutoff G4double GetRecoilCutoff() const { return recoilCutoff; } /// \brief set the energy to which screening tables are computed. Typically, this is 10 eV or so, and not often changed. /// \param energy the cutoff energy void SetPhysicsCutoff(G4double energy) { physicsCutoff=energy; ResetTables(); } /// \brief get the physics cutoff energy. G4double GetPhysicsCutoff() const { return physicsCutoff; } /// \brief set the pointer to a class for paritioning energy into NIEL /// \brief part the pointer to the class. void SetNIELPartitionFunction(const G4VNIELPartition *part); /// \brief set the cross section boost to provide faster computation of backscattering /// \param fraction the fraction of particles to have their cross section boosted. /// \param HardeningFactor the factor by which to boost the scattering cross section. void SetCrossSectionHardening(G4double fraction, G4double HardeningFactor) { hardeningFraction=fraction; hardeningFactor=HardeningFactor; } /// \brief get the fraction of particles which will have boosted scattering G4double GetHardeningFraction() const { return hardeningFraction; } /// \brief get the boost factor in use. G4double GetHardeningFactor() const { return hardeningFactor; } /// \brief the the interaciton length used in the last scattering. G4double GetCurrentInteractionLength() const { return currentInteractionLength; } /// \brief set a function to compute screening tables, if the user needs non-standard behavior. /// \param cs a class which constructs the screening tables. void SetExternalCrossSectionHandler(G4ScreenedCoulombCrossSection *cs) { externalCrossSectionConstructor=cs; } /// \brief get the verbosity. G4int GetVerboseLevel() const { return verboseLevel; } std::map &GetCrossSectionHandlers() { return crossSectionHandlers; } void ClearStages(void); void AddStage(G4ScreenedCollisionStage *stage) { collisionStages.push_back(stage); } G4CoulombKinematicsInfo &GetKinematics() { return kinematics; } void SetValidCollision(G4bool flag) { validCollision=flag; } G4bool GetValidCollision() const { return validCollision; } /// \brief get the pointer to our ParticleChange object. for internal use, primarily. class G4ParticleChange &GetParticleChange() { return static_cast(*pParticleChange); } /// \brief take the given energy, and use the material information to partition it into NIEL and ionizing energy. void DepositEnergy(G4int z1, G4double a1, const G4Material *material, G4double energy); protected: /// \brief the energy per nucleon above which the MFP is constant G4double highEnergyLimit; /// \brief the energy per nucleon below which the MFP is zero G4double lowEnergyLimit; /// \brief the energy per nucleon beyond which the cross section is zero, to cross over to G4MSC G4double processMaxEnergy; G4String screeningKey; G4bool generateRecoils, avoidReactions; G4double recoilCutoff, physicsCutoff; G4bool registerDepositedEnergy; G4double IonizingLoss, NIEL; G4double MFPScale; G4double hardeningFraction, hardeningFactor; G4ScreenedCoulombCrossSection *externalCrossSectionConstructor; std::vector collisionStages; std::map crossSectionHandlers; G4bool validCollision; G4CoulombKinematicsInfo kinematics; const G4VNIELPartition *NIELPartitionFunction; }; // A customized G4CrossSectionHandler which gets its data from an external program class G4NativeScreenedCoulombCrossSection: public G4ScreenedCoulombCrossSection { public: G4NativeScreenedCoulombCrossSection(); G4NativeScreenedCoulombCrossSection(const G4NativeScreenedCoulombCrossSection &src) : G4ScreenedCoulombCrossSection(src), phiMap(src.phiMap) { } G4NativeScreenedCoulombCrossSection(const G4ScreenedCoulombCrossSection &src) : G4ScreenedCoulombCrossSection(src) { } virtual ~G4NativeScreenedCoulombCrossSection(); virtual void LoadData(G4String screeningKey, G4int z1, G4double m1, G4double recoilCutoff); virtual G4ScreenedCoulombCrossSection *create() { return new G4NativeScreenedCoulombCrossSection(*this); } // get a list of available keys std::vector GetScreeningKeys() const; typedef G4_c2_function &(*ScreeningFunc)(G4int z1, G4int z2, size_t nPoints, G4double rMax, G4double *au); void AddScreeningFunction(G4String name, ScreeningFunc fn) { phiMap[name]=fn; } private: // this is a map used to look up screening function generators std::map phiMap; }; G4_c2_function &ZBLScreening(G4int z1, G4int z2, size_t npoints, G4double rMax, G4double *auval); G4_c2_function &MoliereScreening(G4int z1, G4int z2, size_t npoints, G4double rMax, G4double *auval); G4_c2_function &LJScreening(G4int z1, G4int z2, size_t npoints, G4double rMax, G4double *auval); G4_c2_function &LJZBLScreening(G4int z1, G4int z2, size_t npoints, G4double rMax, G4double *auval); #endif