| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // G4ScreenedNuclearRecoil.hh,v 1.24 2008/05/01 19:58:59 marcus Exp
|
|---|
| 28 | // GEANT4 tag
|
|---|
| 29 | //
|
|---|
| 30 | //
|
|---|
| 31 | //
|
|---|
| 32 | // Class Description
|
|---|
| 33 | // Process for screened electromagnetic nuclear elastic scattering;
|
|---|
| 34 | // Physics comes from:
|
|---|
| 35 | // Marcus H. Mendenhall and Robert A. Weller,
|
|---|
| 36 | // "Algorithms for the rapid computation of classical cross sections
|
|---|
| 37 | // for screened Coulomb collisions "
|
|---|
| 38 | // Nuclear Instruments and Methods in Physics Research B58 (1991) 11-17
|
|---|
| 39 | // The only input required is a screening function phi(r/a) which is the ratio
|
|---|
| 40 | // of the actual interatomic potential for two atoms with atomic numbers Z1 and Z2,
|
|---|
| 41 | // to the unscreened potential Z1*Z2*e^2/r where e^2 is elm_coupling in Geant4 units
|
|---|
| 42 | // the actual screening tables are computed externally in a python module "screened_scattering.py"
|
|---|
| 43 | // to allow very specific screening functions to be added if desired, without messing
|
|---|
| 44 | // with the insides of this code.
|
|---|
| 45 | //
|
|---|
| 46 | // First version, April 2004, Marcus H. Mendenhall, Vanderbilt University
|
|---|
| 47 | // May 1, 2008 -- Added code to allow process to have zero cross section above max energy, to coordinate with G4MSC. -- mhm
|
|---|
| 48 | //
|
|---|
| 49 | // Class Description - End
|
|---|
| 50 |
|
|---|
| 51 |
|
|---|
| 52 | #ifndef G4ScreenedNuclearRecoil_h
|
|---|
| 53 | #define G4ScreenedNuclearRecoil_h 1
|
|---|
| 54 |
|
|---|
| 55 | #include "globals.hh"
|
|---|
| 56 | #include "G4VDiscreteProcess.hh"
|
|---|
| 57 | #include "G4ParticleChange.hh"
|
|---|
| 58 | #include "c2_function.hh"
|
|---|
| 59 |
|
|---|
| 60 | #include <map>
|
|---|
| 61 | #include <vector>
|
|---|
| 62 |
|
|---|
| 63 | class G4VNIELPartition;
|
|---|
| 64 |
|
|---|
| 65 | typedef c2_const_ptr<G4double> G4_c2_const_ptr;
|
|---|
| 66 | typedef c2_ptr<G4double> G4_c2_ptr;
|
|---|
| 67 | typedef c2_function<G4double> G4_c2_function;
|
|---|
| 68 |
|
|---|
| 69 | typedef struct G4ScreeningTables {
|
|---|
| 70 | G4double z1, z2, m1, m2, au, emin;
|
|---|
| 71 | G4_c2_const_ptr EMphiData;
|
|---|
| 72 | } G4ScreeningTables;
|
|---|
| 73 |
|
|---|
| 74 | // A class for loading ScreenedCoulombCrossSections
|
|---|
| 75 | class G4ScreenedCoulombCrossSectionInfo
|
|---|
| 76 | {
|
|---|
| 77 | public:
|
|---|
| 78 | G4ScreenedCoulombCrossSectionInfo() { }
|
|---|
| 79 | ~G4ScreenedCoulombCrossSectionInfo() { }
|
|---|
| 80 |
|
|---|
| 81 | static const char* CVSHeaderVers() { return
|
|---|
| 82 | "G4ScreenedNuclearRecoil.hh,v 1.24 2008/05/01 19:58:59 marcus Exp GEANT4 tag ";
|
|---|
| 83 | }
|
|---|
| 84 | static const char* CVSFileVers();
|
|---|
| 85 | };
|
|---|
| 86 |
|
|---|
| 87 | // A class for loading ScreenedCoulombCrossSections
|
|---|
| 88 | class G4ScreenedCoulombCrossSection : public G4ScreenedCoulombCrossSectionInfo
|
|---|
| 89 | {
|
|---|
| 90 | public:
|
|---|
| 91 |
|
|---|
| 92 | G4ScreenedCoulombCrossSection() : verbosity(1) { }
|
|---|
| 93 | G4ScreenedCoulombCrossSection(const G4ScreenedCoulombCrossSection &src) :
|
|---|
| 94 | G4ScreenedCoulombCrossSectionInfo(),verbosity(src.verbosity) { }
|
|---|
| 95 | virtual ~G4ScreenedCoulombCrossSection();
|
|---|
| 96 |
|
|---|
| 97 | typedef std::map<G4int, G4ScreeningTables> ScreeningMap;
|
|---|
| 98 |
|
|---|
| 99 | // a local, fast-access mapping of a particle's Z to its full definition
|
|---|
| 100 | typedef std::map<G4int, class G4ParticleDefinition *> ParticleCache;
|
|---|
| 101 |
|
|---|
| 102 | // LoadData is called by G4ScreenedNuclearRecoil::GetMeanFreePath
|
|---|
| 103 | // It loads the data tables, builds the elemental cross-section tables.
|
|---|
| 104 | virtual void LoadData(G4String screeningKey, G4int z1, G4double m1, G4double recoilCutoff) = 0;
|
|---|
| 105 |
|
|---|
| 106 | // BuildMFPTables is called by G4ScreenedNuclearRecoil::GetMeanFreePath to build the MFP tables for each material
|
|---|
| 107 | void BuildMFPTables(void); // scan the MaterialsTable and construct MFP tables
|
|---|
| 108 |
|
|---|
| 109 | virtual G4ScreenedCoulombCrossSection *create() = 0; // a 'virtual constructor' which clones the class
|
|---|
| 110 | const G4ScreeningTables *GetScreening(G4int Z) { return &(screeningData[Z]); }
|
|---|
| 111 | void SetVerbosity(G4int v) { verbosity=v; }
|
|---|
| 112 |
|
|---|
| 113 | // this process needs element selection weighted only by number density
|
|---|
| 114 | G4ParticleDefinition* SelectRandomUnweightedTarget(const G4MaterialCutsCouple* couple);
|
|---|
| 115 |
|
|---|
| 116 | enum { nMassMapElements=116 };
|
|---|
| 117 |
|
|---|
| 118 | G4double standardmass(G4int z1) { return z1 <= nMassMapElements ? massmap[z1] : 2.5*z1; }
|
|---|
| 119 |
|
|---|
| 120 | // get the mean-free-path table for the indexed material
|
|---|
| 121 | const G4_c2_function * operator [] (G4int materialIndex) {
|
|---|
| 122 | return MFPTables.find(materialIndex)!=MFPTables.end() ? &(MFPTables[materialIndex].get()) : (G4_c2_function *)0;
|
|---|
| 123 | }
|
|---|
| 124 |
|
|---|
| 125 | protected:
|
|---|
| 126 | ScreeningMap screeningData; // screening tables for each element
|
|---|
| 127 | ParticleCache targetMap;
|
|---|
| 128 | G4int verbosity;
|
|---|
| 129 | std::map<G4int, G4_c2_const_ptr > sigmaMap; // total cross section for each element
|
|---|
| 130 | std::map<G4int, G4_c2_const_ptr > MFPTables; // MFP for each material
|
|---|
| 131 |
|
|---|
| 132 | private:
|
|---|
| 133 | static const G4double massmap[nMassMapElements+1];
|
|---|
| 134 |
|
|---|
| 135 | };
|
|---|
| 136 |
|
|---|
| 137 | typedef struct G4CoulombKinematicsInfo {
|
|---|
| 138 | G4double impactParameter;
|
|---|
| 139 | G4ScreenedCoulombCrossSection *crossSection;
|
|---|
| 140 | G4double a1, a2, sinTheta, cosTheta, sinZeta, cosZeta, eRecoil;
|
|---|
| 141 | G4ParticleDefinition *recoilIon;
|
|---|
| 142 | const G4Material *targetMaterial;
|
|---|
| 143 | } G4CoulombKinematicsInfo;
|
|---|
| 144 |
|
|---|
| 145 | class G4ScreenedCollisionStage {
|
|---|
| 146 | public:
|
|---|
| 147 | virtual void DoCollisionStep(class G4ScreenedNuclearRecoil *master,
|
|---|
| 148 | const class G4Track& aTrack, const class G4Step& aStep)=0;
|
|---|
| 149 | virtual ~G4ScreenedCollisionStage() {}
|
|---|
| 150 | };
|
|---|
| 151 |
|
|---|
| 152 | class G4ScreenedCoulombClassicalKinematics: public G4ScreenedCoulombCrossSectionInfo, public G4ScreenedCollisionStage {
|
|---|
| 153 |
|
|---|
| 154 | public:
|
|---|
| 155 | G4ScreenedCoulombClassicalKinematics();
|
|---|
| 156 | virtual void DoCollisionStep(class G4ScreenedNuclearRecoil *master,
|
|---|
| 157 | const class G4Track& aTrack, const class G4Step& aStep);
|
|---|
| 158 |
|
|---|
| 159 | G4bool DoScreeningComputation(class G4ScreenedNuclearRecoil *master,
|
|---|
| 160 | const G4ScreeningTables *screen,
|
|---|
| 161 | G4double eps, G4double beta);
|
|---|
| 162 | virtual ~G4ScreenedCoulombClassicalKinematics() { }
|
|---|
| 163 | protected:
|
|---|
| 164 | // the c2_functions we need to do the work.
|
|---|
| 165 | c2_const_plugin_function_p<G4double> &phifunc;
|
|---|
| 166 | c2_linear_p<G4double> &xovereps;
|
|---|
| 167 | G4_c2_ptr diff;
|
|---|
| 168 |
|
|---|
| 169 | };
|
|---|
| 170 |
|
|---|
| 171 | class G4SingleScatter: public G4ScreenedCoulombCrossSectionInfo, public G4ScreenedCollisionStage {
|
|---|
| 172 |
|
|---|
| 173 | public:
|
|---|
| 174 | G4SingleScatter() { }
|
|---|
| 175 | virtual void DoCollisionStep(class G4ScreenedNuclearRecoil *master,
|
|---|
| 176 | const class G4Track& aTrack, const class G4Step& aStep);
|
|---|
| 177 | virtual ~G4SingleScatter() {}
|
|---|
| 178 | };
|
|---|
| 179 |
|
|---|
| 180 | /**
|
|---|
| 181 | \brief A process which handles screened Coulomb collisions between nuclei
|
|---|
| 182 |
|
|---|
| 183 | */
|
|---|
| 184 |
|
|---|
| 185 | class G4ScreenedNuclearRecoil : public G4ScreenedCoulombCrossSectionInfo, public G4VDiscreteProcess
|
|---|
| 186 | {
|
|---|
| 187 | public:
|
|---|
| 188 |
|
|---|
| 189 | friend class G4ScreenedCollisionStage;
|
|---|
| 190 |
|
|---|
| 191 | /// \brief Construct the process and set some physics parameters for it.
|
|---|
| 192 | /// \param processName the name to assign the process
|
|---|
| 193 | /// \param ScreeningKey the name of a screening function to use.
|
|---|
| 194 | /// The default functions are "zbl" (recommended for soft scattering),
|
|---|
| 195 | /// "lj" (recommended for backscattering) and "mol" (Moliere potential)
|
|---|
| 196 | /// \param GenerateRecoils if frue, ions struck by primary are converted into new moving particles.
|
|---|
| 197 | /// If false, energy is deposited, but no new moving ions are created.
|
|---|
| 198 | /// \param RecoilCutoff energy below which no new moving particles will be created,
|
|---|
| 199 | /// even if \a GenerateRecoils is true.
|
|---|
| 200 | /// Also, a moving primary particle will be stopped if its energy falls below this limit.
|
|---|
| 201 | /// \param PhysicsCutoff the energy transfer to which screening tables are calucalted.
|
|---|
| 202 | /// There is no really
|
|---|
| 203 | /// compelling reason to change it from the 10.0 eV default. However, see the paper on running this
|
|---|
| 204 | /// in thin targets for further discussion, and its interaction with SetMFPScaling()
|
|---|
| 205 | G4ScreenedNuclearRecoil(const G4String& processName = "ScreenedElastic",
|
|---|
| 206 | const G4String &ScreeningKey="zbl", G4bool GenerateRecoils=1,
|
|---|
| 207 | G4double RecoilCutoff=100.0*eV, G4double PhysicsCutoff=10.0*eV);
|
|---|
| 208 | /// \brief destructor
|
|---|
| 209 | virtual ~G4ScreenedNuclearRecoil();
|
|---|
| 210 | /// \brief used internally by Geant4 machinery
|
|---|
| 211 | virtual G4double GetMeanFreePath(const G4Track&, G4double, G4ForceCondition* );
|
|---|
| 212 | /// \brief used internally by Geant4 machinery
|
|---|
| 213 | virtual G4VParticleChange* PostStepDoIt(const G4Track& aTrack, const G4Step& aStep);
|
|---|
| 214 | /// \brief test if a prticle of type \a aParticleType can use this process
|
|---|
| 215 | /// \param aParticleType the particle to test
|
|---|
| 216 | virtual G4bool IsApplicable(const G4ParticleDefinition& aParticleType);
|
|---|
| 217 | /// \brief Build physics tables in advance. Not Implemented.
|
|---|
| 218 | /// \param aParticleType the type of particle to build tables for
|
|---|
| 219 | virtual void BuildPhysicsTable(const G4ParticleDefinition&) { }
|
|---|
| 220 | /// \brief Export physics tables for persistency. Not Implemented.
|
|---|
| 221 | /// \param aParticleType the type of particle to build tables for
|
|---|
| 222 | virtual void DumpPhysicsTable(const G4ParticleDefinition& aParticleType);
|
|---|
| 223 | /// \brief deterine if the moving particle is within the strong force range of the selected nucleus
|
|---|
| 224 | /// \param A the nucleon number of the beam
|
|---|
| 225 | /// \param A1 the nucleon number of the target
|
|---|
| 226 | /// \param apsis the distance of closest approach
|
|---|
| 227 | virtual G4bool CheckNuclearCollision(G4double A, G4double A1, G4double apsis); // return true if hard collision
|
|---|
| 228 |
|
|---|
| 229 | virtual G4ScreenedCoulombCrossSection *GetNewCrossSectionHandler(void);
|
|---|
| 230 |
|
|---|
| 231 | /// \brief Get non-ionizing energy loss for last step
|
|---|
| 232 | G4double GetNIEL() const { return NIEL; }
|
|---|
| 233 |
|
|---|
| 234 | /// \brief clear precomputed screening tables
|
|---|
| 235 | void ResetTables(); // clear all data tables to allow changing energy cutoff, materials, etc.
|
|---|
| 236 |
|
|---|
| 237 | /// \brief set the upper energy beyond which this process has no cross section
|
|---|
| 238 | ///
|
|---|
| 239 | /// This funciton is used to coordinate this process with G4MSC. Typically, G4MSC should
|
|---|
| 240 | /// not be allowed to operate in a range which overlaps that of this process. The criterion which is most reasonable
|
|---|
| 241 | /// is that the transition should be somewhere in the modestly relativistic regime (500 MeV/u for example).
|
|---|
| 242 | /// \param energy energy per nucleon for the cutoff
|
|---|
| 243 | void SetMaxEnergyForScattering(G4double energy) { processMaxEnergy=energy; }
|
|---|
| 244 | /// \brief find out what screening funciton we are using
|
|---|
| 245 | std::string GetScreeningKey() const { return screeningKey; }
|
|---|
| 246 | /// \brief enable or disable all energy deposition by this process
|
|---|
| 247 | /// \param flag if true, enable deposition of energy (the default). If false, disable deposition.
|
|---|
| 248 | void AllowEnergyDeposition(G4bool flag) { registerDepositedEnergy=flag; }
|
|---|
| 249 | /// \brief get flag indicating whether deposition is enabled
|
|---|
| 250 | G4bool GetAllowEnergyDeposition() const { return registerDepositedEnergy; }
|
|---|
| 251 | /// \brief enable or disable the generation of recoils.
|
|---|
| 252 | /// If recoils are disabled, the energy they would have received is just deposited.
|
|---|
| 253 | /// \param flag if true, create recoil ions in cases in which the energy is above the recoilCutoff.
|
|---|
| 254 | /// If false, just deposit the energy.
|
|---|
| 255 | void EnableRecoils(G4bool flag) { generateRecoils=flag; }
|
|---|
| 256 | /// \brief find out if generation of recoils is enabled.
|
|---|
| 257 | G4bool GetEnableRecoils() const { return generateRecoils; }
|
|---|
| 258 | /// \brief set the mean free path scaling as specified
|
|---|
| 259 | /// \param scale the factor by which the default MFP will be scaled.
|
|---|
| 260 | /// Set to less than 1 for very thin films, typically, to sample multiple scattering,
|
|---|
| 261 | /// or to greater than 1 for quick simulaitons with a very long flight path.
|
|---|
| 262 | void SetMFPScaling(G4double scale) { MFPScale=scale; }
|
|---|
| 263 | /// \brief get the MFPScaling parameter
|
|---|
| 264 | G4double GetMFPScaling() const { return MFPScale; }
|
|---|
| 265 | /// \brief enable or disable whether this process will skip collisions
|
|---|
| 266 | /// which are close enough they need hadronic phsyics. Default is true (skip close collisions).
|
|---|
| 267 | /// Disabling this results in excess nuclear stopping power.
|
|---|
| 268 | /// \param flag true results in hard collisions being skipped. false allows hard collisions.
|
|---|
| 269 | void AvoidNuclearReactions(G4bool flag) { avoidReactions=flag; }
|
|---|
| 270 | /// \brief get the flag indicating whether hadronic collisions are ignored.
|
|---|
| 271 | G4bool GetAvoidNuclearReactions() const { return avoidReactions; }
|
|---|
| 272 | /// \brief set the minimum energy (per nucleon) at which recoils can be generated,
|
|---|
| 273 | /// and the energy (per nucleon) below which all ions are stopped.
|
|---|
| 274 | /// \param energy energy per nucleon
|
|---|
| 275 | void SetRecoilCutoff(G4double energy) { recoilCutoff=energy; }
|
|---|
| 276 | /// \brief get the recoil cutoff
|
|---|
| 277 | G4double GetRecoilCutoff() const { return recoilCutoff; }
|
|---|
| 278 | /// \brief set the energy to which screening tables are computed. Typically, this is 10 eV or so, and not often changed.
|
|---|
| 279 | /// \param energy the cutoff energy
|
|---|
| 280 | void SetPhysicsCutoff(G4double energy) { physicsCutoff=energy; ResetTables(); }
|
|---|
| 281 | /// \brief get the physics cutoff energy.
|
|---|
| 282 | G4double GetPhysicsCutoff() const { return physicsCutoff; }
|
|---|
| 283 | /// \brief set the pointer to a class for paritioning energy into NIEL
|
|---|
| 284 | /// \brief part the pointer to the class.
|
|---|
| 285 | void SetNIELPartitionFunction(const G4VNIELPartition *part);
|
|---|
| 286 | /// \brief set the cross section boost to provide faster computation of backscattering
|
|---|
| 287 | /// \param fraction the fraction of particles to have their cross section boosted.
|
|---|
| 288 | /// \param HardeningFactor the factor by which to boost the scattering cross section.
|
|---|
| 289 | void SetCrossSectionHardening(G4double fraction, G4double HardeningFactor) {
|
|---|
| 290 | hardeningFraction=fraction;
|
|---|
| 291 | hardeningFactor=HardeningFactor;
|
|---|
| 292 | }
|
|---|
| 293 | /// \brief get the fraction of particles which will have boosted scattering
|
|---|
| 294 | G4double GetHardeningFraction() const { return hardeningFraction; }
|
|---|
| 295 | /// \brief get the boost factor in use.
|
|---|
| 296 | G4double GetHardeningFactor() const { return hardeningFactor; }
|
|---|
| 297 | /// \brief the the interaciton length used in the last scattering.
|
|---|
| 298 | G4double GetCurrentInteractionLength() const { return currentInteractionLength; }
|
|---|
| 299 | /// \brief set a function to compute screening tables, if the user needs non-standard behavior.
|
|---|
| 300 | /// \param cs a class which constructs the screening tables.
|
|---|
| 301 | void SetExternalCrossSectionHandler(G4ScreenedCoulombCrossSection *cs) {
|
|---|
| 302 | externalCrossSectionConstructor=cs;
|
|---|
| 303 | }
|
|---|
| 304 | /// \brief get the verbosity.
|
|---|
| 305 | G4int GetVerboseLevel() const { return verboseLevel; }
|
|---|
| 306 |
|
|---|
| 307 | std::map<G4int, G4ScreenedCoulombCrossSection*> &GetCrossSectionHandlers()
|
|---|
| 308 | { return crossSectionHandlers; }
|
|---|
| 309 | void ClearStages(void);
|
|---|
| 310 | void AddStage(G4ScreenedCollisionStage *stage) { collisionStages.push_back(stage); }
|
|---|
| 311 | G4CoulombKinematicsInfo &GetKinematics() { return kinematics; }
|
|---|
| 312 | void SetValidCollision(G4bool flag) { validCollision=flag; }
|
|---|
| 313 | G4bool GetValidCollision() const { return validCollision; }
|
|---|
| 314 |
|
|---|
| 315 | /// \brief get the pointer to our ParticleChange object. for internal use, primarily.
|
|---|
| 316 | class G4ParticleChange &GetParticleChange() { return static_cast<G4ParticleChange &>(*pParticleChange); }
|
|---|
| 317 | /// \brief take the given energy, and use the material information to partition it into NIEL and ionizing energy.
|
|---|
| 318 | void DepositEnergy(G4int z1, G4double a1, const G4Material *material, G4double energy);
|
|---|
| 319 |
|
|---|
| 320 | protected:
|
|---|
| 321 | /// \brief the energy per nucleon above which the MFP is constant
|
|---|
| 322 | G4double highEnergyLimit;
|
|---|
| 323 | /// \brief the energy per nucleon below which the MFP is zero
|
|---|
| 324 | G4double lowEnergyLimit;
|
|---|
| 325 | /// \brief the energy per nucleon beyond which the cross section is zero, to cross over to G4MSC
|
|---|
| 326 | G4double processMaxEnergy;
|
|---|
| 327 | G4String screeningKey;
|
|---|
| 328 | G4bool generateRecoils, avoidReactions;
|
|---|
| 329 | G4double recoilCutoff, physicsCutoff;
|
|---|
| 330 | G4bool registerDepositedEnergy;
|
|---|
| 331 | G4double IonizingLoss, NIEL;
|
|---|
| 332 | G4double MFPScale;
|
|---|
| 333 | G4double hardeningFraction, hardeningFactor;
|
|---|
| 334 |
|
|---|
| 335 | G4ScreenedCoulombCrossSection *externalCrossSectionConstructor;
|
|---|
| 336 | std::vector<G4ScreenedCollisionStage *> collisionStages;
|
|---|
| 337 |
|
|---|
| 338 | std::map<G4int, G4ScreenedCoulombCrossSection*> crossSectionHandlers;
|
|---|
| 339 |
|
|---|
| 340 | G4bool validCollision;
|
|---|
| 341 | G4CoulombKinematicsInfo kinematics;
|
|---|
| 342 | const G4VNIELPartition *NIELPartitionFunction;
|
|---|
| 343 | };
|
|---|
| 344 |
|
|---|
| 345 | // A customized G4CrossSectionHandler which gets its data from an external program
|
|---|
| 346 | class G4NativeScreenedCoulombCrossSection: public G4ScreenedCoulombCrossSection
|
|---|
| 347 | {
|
|---|
| 348 | public:
|
|---|
| 349 | G4NativeScreenedCoulombCrossSection();
|
|---|
| 350 |
|
|---|
| 351 | G4NativeScreenedCoulombCrossSection(const G4NativeScreenedCoulombCrossSection &src)
|
|---|
| 352 | : G4ScreenedCoulombCrossSection(src), phiMap(src.phiMap) { }
|
|---|
| 353 |
|
|---|
| 354 | G4NativeScreenedCoulombCrossSection(const G4ScreenedCoulombCrossSection &src) : G4ScreenedCoulombCrossSection(src) { }
|
|---|
| 355 | virtual ~G4NativeScreenedCoulombCrossSection();
|
|---|
| 356 |
|
|---|
| 357 | virtual void LoadData(G4String screeningKey, G4int z1, G4double m1, G4double recoilCutoff);
|
|---|
| 358 | virtual G4ScreenedCoulombCrossSection *create()
|
|---|
| 359 | { return new G4NativeScreenedCoulombCrossSection(*this); }
|
|---|
| 360 | // get a list of available keys
|
|---|
| 361 | std::vector<G4String> GetScreeningKeys() const;
|
|---|
| 362 |
|
|---|
| 363 | typedef G4_c2_function &(*ScreeningFunc)(G4int z1, G4int z2, size_t nPoints, G4double rMax, G4double *au);
|
|---|
| 364 |
|
|---|
| 365 | void AddScreeningFunction(G4String name, ScreeningFunc fn) {
|
|---|
| 366 | phiMap[name]=fn;
|
|---|
| 367 | }
|
|---|
| 368 |
|
|---|
| 369 | private:
|
|---|
| 370 | // this is a map used to look up screening function generators
|
|---|
| 371 | std::map<std::string, ScreeningFunc> phiMap;
|
|---|
| 372 | };
|
|---|
| 373 |
|
|---|
| 374 | G4_c2_function &ZBLScreening(G4int z1, G4int z2, size_t npoints, G4double rMax, G4double *auval);
|
|---|
| 375 | G4_c2_function &MoliereScreening(G4int z1, G4int z2, size_t npoints, G4double rMax, G4double *auval);
|
|---|
| 376 | G4_c2_function &LJScreening(G4int z1, G4int z2, size_t npoints, G4double rMax, G4double *auval);
|
|---|
| 377 | G4_c2_function &LJZBLScreening(G4int z1, G4int z2, size_t npoints, G4double rMax, G4double *auval);
|
|---|
| 378 |
|
|---|
| 379 | #endif
|
|---|