| [807] | 1 | /**
|
|---|
| 2 | * \file
|
|---|
| 3 | * \brief Provides code for the general c2_function algebra which supports
|
|---|
| 4 | * fast, flexible operations on piecewise-twice-differentiable functions
|
|---|
| 5 | *
|
|---|
| 6 | * \author Created by R. A. Weller and Marcus H. Mendenhall on 7/9/05.
|
|---|
| 7 | * \author Copyright 2005 __Vanderbilt University__. All rights reserved.
|
|---|
| 8 | *
|
|---|
| 9 | * \version c2_function.cc,v 1.43 2007/11/12 20:22:54 marcus Exp
|
|---|
| 10 | */
|
|---|
| 11 |
|
|---|
| 12 | #include <iostream>
|
|---|
| 13 | #include <vector>
|
|---|
| 14 | #include <algorithm>
|
|---|
| 15 | #include <cstdlib>
|
|---|
| 16 | #include <numeric>
|
|---|
| 17 | #include <functional>
|
|---|
| 18 | #include <iterator>
|
|---|
| 19 | #include <cmath>
|
|---|
| 20 | #include <limits>
|
|---|
| 21 | #include <sstream>
|
|---|
| 22 |
|
|---|
| 23 | template <typename float_type> const std::string c2_function<float_type>::cvs_file_vers() const
|
|---|
| 24 | { return "c2_function.cc,v 1.43 2007/11/12 20:22:54 marcus Exp"; }
|
|---|
| 25 |
|
|---|
| 26 | // find a pre-bracketed root of a c2_function, which is a MUCH easier job than general root finding
|
|---|
| 27 | // since the derivatives are known exactly, and smoothness is guaranteed.
|
|---|
| 28 | // this searches for f(x)=value, to make life a little easier than always searching for f(x)=0
|
|---|
| 29 | template <typename float_type> float_type c2_function<float_type>::find_root(float_type lower_bracket, float_type upper_bracket,
|
|---|
| 30 | float_type start, float_type value, int *error,
|
|---|
| 31 | float_type *final_yprime, float_type *final_yprime2) const throw(c2_exception)
|
|---|
| 32 | {
|
|---|
| 33 | // find f(x)=value within the brackets, using the guarantees of smoothness associated with a c2_function
|
|---|
| 34 | // can use local f(x)=a*x**2 + b*x + c and solve quadratic to find root, then iterate
|
|---|
| 35 | reset_evaluations();
|
|---|
| 36 |
|
|---|
| 37 | float_type yp, yp2; // we will make unused pointers point here, to save null checks later
|
|---|
| 38 | if (!final_yprime) final_yprime=&yp;
|
|---|
| 39 | if (!final_yprime2) final_yprime2=&yp2;
|
|---|
| 40 |
|
|---|
| 41 | float_type ftol=5*(std::numeric_limits<float_type>::epsilon()*std::abs(value)+std::numeric_limits<float_type>::min());
|
|---|
| 42 | float_type xtol=5*(std::numeric_limits<float_type>::epsilon()*(std::abs(upper_bracket)+std::abs(lower_bracket))+std::numeric_limits<float_type>::min());
|
|---|
| 43 |
|
|---|
| 44 | float_type root=start; // start looking in the middle
|
|---|
| 45 | if(error) *error=0; // start out with error flag set to OK, if it is expected
|
|---|
| 46 |
|
|---|
| 47 | float_type c, b;
|
|---|
| 48 |
|
|---|
| 49 | // this new logic is to keep track of where we were before, and lower the number of
|
|---|
| 50 | // function evaluations if we are searching inside the same bracket as before.
|
|---|
| 51 | // Since this root finder has, very often, the bracket of the entire domain of the function,
|
|---|
| 52 | // this makes a big difference, especially to c2_inverse_function
|
|---|
| 53 | if(!rootInitialized || upper_bracket != lastRootUpperX || lower_bracket != lastRootLowerX) {
|
|---|
| 54 | lastRootUpperY=value_with_derivatives(upper_bracket, final_yprime, final_yprime2);
|
|---|
| 55 | increment_evaluations();
|
|---|
| 56 | lastRootUpperX=upper_bracket;
|
|---|
| 57 |
|
|---|
| 58 | lastRootLowerY=value_with_derivatives(lower_bracket, final_yprime, final_yprime2);
|
|---|
| 59 | increment_evaluations();
|
|---|
| 60 | lastRootLowerX=lower_bracket;
|
|---|
| 61 | rootInitialized=true;
|
|---|
| 62 | }
|
|---|
| 63 |
|
|---|
| 64 | float_type clower=lastRootLowerY-value;
|
|---|
| 65 | float_type cupper=lastRootUpperY-value;
|
|---|
| 66 | if(clower*cupper >0) {
|
|---|
| 67 | // argh, no sign change in here!
|
|---|
| 68 | if(error) { *error=1; return 0.0; }
|
|---|
| 69 | else {
|
|---|
| 70 | std::ostringstream outstr;
|
|---|
| 71 | outstr << "unbracketed root in find_root at xlower= " << lower_bracket << ", xupper= " << upper_bracket;
|
|---|
| 72 | outstr << ", value= " << value << ": bailing";
|
|---|
| 73 | throw c2_exception(outstr.str().c_str());
|
|---|
| 74 | }
|
|---|
| 75 | }
|
|---|
| 76 |
|
|---|
| 77 | float_type delta=upper_bracket-lower_bracket; // first error step
|
|---|
| 78 | c=value_with_derivatives(root, final_yprime, final_yprime2)-value; // compute initial values
|
|---|
| 79 | b=*final_yprime; // make a local copy for readability
|
|---|
| 80 | increment_evaluations();
|
|---|
| 81 |
|
|---|
| 82 | while(
|
|---|
| 83 | std::abs(delta) > xtol && // absolute x step check
|
|---|
| 84 | std::abs(c) > ftol && // absolute y tolerance
|
|---|
| 85 | std::abs(c) > xtol*std::abs(b) // comparison to smallest possible Y step from derivative
|
|---|
| 86 | )
|
|---|
| 87 | {
|
|---|
| 88 | float_type a=(*final_yprime2)/2; // second derivative is 2*a
|
|---|
| 89 | float_type disc=b*b-4*a*c;
|
|---|
| 90 | // std::cout << std::endl << "find_root_debug a,b,c,d " << a << " " << b << " " << c << " " << disc << std::endl;
|
|---|
| 91 |
|
|---|
| 92 | if(disc >= 0) {
|
|---|
| 93 | float_type q=-0.5*((b>=0)?(b+std::sqrt(disc)):(b-std::sqrt(disc)));
|
|---|
| 94 | if(q*q > std::abs(a*c)) delta=c/q; // since x1=q/a, x2=c/q, x1/x2=q^2/ac, this picks smaller step
|
|---|
| 95 | else delta=q/a;
|
|---|
| 96 | root+=delta;
|
|---|
| 97 | }
|
|---|
| 98 |
|
|---|
| 99 | if(disc < 0 || root<lower_bracket || root>upper_bracket ||
|
|---|
| 100 | std::abs(delta) >= 0.5*(upper_bracket-lower_bracket)) {
|
|---|
| 101 | // if we jump out of the bracket, or aren't converging well, bisect
|
|---|
| 102 | root=0.5*(lower_bracket+upper_bracket);
|
|---|
| 103 | delta=upper_bracket-lower_bracket;
|
|---|
| 104 | }
|
|---|
| 105 | c=value_with_derivatives(root, final_yprime, final_yprime2)-value; // compute initial values
|
|---|
| 106 | b=*final_yprime; // make a local copy for readability
|
|---|
| 107 | increment_evaluations();
|
|---|
| 108 |
|
|---|
| 109 | // now, close in bracket on whichever side this still brackets
|
|---|
| 110 | if(c*clower < 0.0) {
|
|---|
| 111 | cupper=c;
|
|---|
| 112 | upper_bracket=root;
|
|---|
| 113 | } else {
|
|---|
| 114 | clower=c;
|
|---|
| 115 | lower_bracket=root;
|
|---|
| 116 | }
|
|---|
| 117 | // std::cout << "find_root_debug x, y, dx " << root << " " << c << " " << delta << std::endl;
|
|---|
| 118 | }
|
|---|
| 119 | return root;
|
|---|
| 120 | }
|
|---|
| 121 |
|
|---|
| 122 | /* def partial_integrals(self, xgrid):
|
|---|
| 123 | Return the integrals of a function between the sampling points xgrid. The sum is the definite integral.
|
|---|
| 124 | This method uses an exact integration of the polynomial which matches the values and derivatives at the
|
|---|
| 125 | endpoints of a segment. Its error scales as h**6, if the input functions really are smooth.
|
|---|
| 126 | This could very well be used as a stepper for adaptive Romberg integration.
|
|---|
| 127 | For InterpolatingFunctions, it is likely that the Simpson's rule integrator is sufficient.
|
|---|
| 128 | #the weights come from an exact mathematica solution to the 5th order polynomial with the given values & derivatives
|
|---|
| 129 | #yint = (y0+y1)*dx/2 + dx^2*(yp0-yp1)/10 + dx^3 * (ypp0+ypp1)/120 )
|
|---|
| 130 | */
|
|---|
| 131 |
|
|---|
| 132 | // the recursive part of the integrator is agressively designed to minimize copying of data... lots of pointers
|
|---|
| 133 | template <typename float_type> float_type c2_function<float_type>::integrate_step(c2_integrate_recur &rb) const
|
|---|
| 134 | {
|
|---|
| 135 | struct c2_integrate_fblock *fbl[3]={rb.f0, rb.f1, rb.f2};
|
|---|
| 136 | struct c2_integrate_fblock f1; // will hold new middle values
|
|---|
| 137 | float_type retvals[2]={0.0,0.0};
|
|---|
| 138 | float_type lr[2];
|
|---|
| 139 |
|
|---|
| 140 | // std::cout << "entering with " << rb.f0->x << " " << rb.f1->x << " " << rb.f2->x << std::endl;
|
|---|
| 141 |
|
|---|
| 142 | int depth=rb.depth; // save this from the recursion block
|
|---|
| 143 | float_type abs_tol=rb.abs_tol; // this is the value we will pass down
|
|---|
| 144 | float_type *rblr=rb.lr; // save pointer to our parent's lr[2] array since it will get trampled in recursion
|
|---|
| 145 |
|
|---|
| 146 | if(!depth) {
|
|---|
| 147 | switch(rb.derivs) {
|
|---|
| 148 | case 0:
|
|---|
| 149 | rb.eps_scale=0.1; rb.extrap_coef=16; break;
|
|---|
| 150 | case 1:
|
|---|
| 151 | rb.eps_scale=0.1; rb.extrap_coef=64; break;
|
|---|
| 152 | case 2:
|
|---|
| 153 | rb.eps_scale=0.02; rb.extrap_coef=1024; break;
|
|---|
| 154 | default:
|
|---|
| 155 | throw c2_exception("derivs must be 0, 1 or 2 in partial_integrals");
|
|---|
| 156 | }
|
|---|
| 157 |
|
|---|
| 158 | rb.extrap2=1.0/(rb.extrap_coef-1.0);
|
|---|
| 159 | }
|
|---|
| 160 |
|
|---|
| 161 | for (int i=0; i<(depth==0?1:2); i++) { // handle left and right intervals, but only left one for depth=0
|
|---|
| 162 | struct c2_integrate_fblock *f0=fbl[i], *f2=fbl[i+1];
|
|---|
| 163 | f1.x=0.5*(f0->x + f2->x); // center of interval
|
|---|
| 164 | float_type dx=f2->x - f0->x;
|
|---|
| 165 | float_type dx2 = 0.5*dx;
|
|---|
| 166 | float_type total;
|
|---|
| 167 |
|
|---|
| 168 | f1.y=value_with_derivatives(f1.x, &(f1.yp), &(f1.ypp));
|
|---|
| 169 | increment_evaluations();
|
|---|
| 170 |
|
|---|
| 171 | // check for underflow on step size, which prevents us from achieving specified accuracy.
|
|---|
| 172 | if(std::abs(dx) < std::abs(f1.x)*rb.rel_tol) {
|
|---|
| 173 | std::ostringstream outstr;
|
|---|
| 174 | outstr << "Step size underflow in adaptive_partial_integrals at depth=" << depth << ", x= " << f1.x;
|
|---|
| 175 | throw c2_exception(outstr.str().c_str());
|
|---|
| 176 | }
|
|---|
| 177 |
|
|---|
| 178 | if(!depth) { // top level, total has not been initialized yet
|
|---|
| 179 | switch(rb.derivs) { // create estimate of next lower order for first try
|
|---|
| 180 | case 0:
|
|---|
| 181 | total=0.5*(f0->y+f2->y)*dx; break;
|
|---|
| 182 | case 1:
|
|---|
| 183 | total=(f0->y+4.0*f1.y+f2->y)*dx/6.0; break;
|
|---|
| 184 | case 2:
|
|---|
| 185 | total=( (14*f0->y + 32*f1.y + 14*f2->y) + dx * (f0->yp - f2->yp) ) * dx /60.; break;
|
|---|
| 186 | default:
|
|---|
| 187 | total=0.0; // just to suppress missing default warnings
|
|---|
| 188 | }
|
|---|
| 189 | } else total=rblr[i]; // otherwise, get it from previous level
|
|---|
| 190 |
|
|---|
| 191 | float_type left, right;
|
|---|
| 192 |
|
|---|
| 193 | switch(rb.derivs) {
|
|---|
| 194 | case 2:
|
|---|
| 195 | // use ninth-order estimates for each side, from full set of all values (!) (Thanks, Mathematica!)
|
|---|
| 196 | left= ( ( (169*f0->ypp + 1024*f1.ypp - 41*f2->ypp)*dx2 +
|
|---|
| 197 | (2727*f0->yp - 5040*f1.yp + 423*f2->yp) )*dx2 +
|
|---|
| 198 | (17007*f0->y + 24576*f1.y - 1263*f2->y) )* (dx2/40320.0);
|
|---|
| 199 | right= ( ( (169*f2->ypp + 1024*f1.ypp - 41*f0->ypp)*dx2 -
|
|---|
| 200 | (2727*f2->yp - 5040*f1.yp + 423*f0->yp) )*dx2 +
|
|---|
| 201 | (17007*f2->y + 24576*f1.y - 1263*f0->y) )* (dx2/40320.0);
|
|---|
| 202 | // std::cout << f0->x << " " << f1.x << " " << f2->x << std::endl ;
|
|---|
| 203 | // std::cout << f0->y << " " << f1.y << " " << f2->y << " " << left << " " << right << " " << total << std::endl ;
|
|---|
| 204 | break;
|
|---|
| 205 | case 1:
|
|---|
| 206 | left= ( (202*f0->y + 256*f1.y + 22*f2->y) + dx*(13*f0->yp - 40*f1.yp - 3*f2->yp) ) * dx /960.;
|
|---|
| 207 | right= ( (202*f2->y + 256*f1.y + 22*f0->y) - dx*(13*f2->yp - 40*f1.yp - 3*f0->yp) ) * dx /960.;
|
|---|
| 208 | break;
|
|---|
| 209 | case 0:
|
|---|
| 210 | left= (5*f0->y + 8*f1.y - f2->y)*dx/24.;
|
|---|
| 211 | right= (5*f2->y + 8*f1.y - f0->y)*dx/24.;
|
|---|
| 212 | break;
|
|---|
| 213 | default:
|
|---|
| 214 | left=right=0.0; // suppress warnings about missing default
|
|---|
| 215 | break;
|
|---|
| 216 | }
|
|---|
| 217 |
|
|---|
| 218 | lr[0]= left; // left interval
|
|---|
| 219 | lr[1]= right; // right interval
|
|---|
| 220 | float_type lrsum=left+right;
|
|---|
| 221 |
|
|---|
| 222 | float_type eps=std::abs(total-lrsum)*rb.eps_scale;
|
|---|
| 223 | if(rb.extrapolate) eps*=rb.eps_scale;
|
|---|
| 224 |
|
|---|
| 225 | if(!rb.adapt || eps < abs_tol || eps < std::abs(total)*rb.rel_tol) {
|
|---|
| 226 | if(depth==0 || !rb.extrapolate) retvals[i]=lrsum;
|
|---|
| 227 | else {
|
|---|
| 228 | retvals[i]=(rb.extrap_coef*lrsum - total)*rb.extrap2;
|
|---|
| 229 | // std::cout << "extrapolating " << lrsum << " " << total << " " << retvals[i] << std::endl;
|
|---|
| 230 |
|
|---|
| 231 | }
|
|---|
| 232 | } else {
|
|---|
| 233 | rb.depth=depth+1; // increment depth counter
|
|---|
| 234 | rb.lr=lr; // point to our left-right values array for recursion
|
|---|
| 235 | rb.abs_tol=abs_tol*0.5; // each half has half the error budget
|
|---|
| 236 | rb.f0=f0; rb.f1=&f1; rb.f2=f2; // insert pointers to data into our recursion block
|
|---|
| 237 | // std::cout << "recurring with " << f0->x << " " << f1.x << " " << f2->x << std::endl ;
|
|---|
| 238 | retvals[i]=integrate_step(rb); // and recur
|
|---|
| 239 | }
|
|---|
| 240 | }
|
|---|
| 241 | return retvals[0]+retvals[1];
|
|---|
| 242 | }
|
|---|
| 243 |
|
|---|
| 244 | template <typename float_type> bool c2_function<float_type>::check_monotonicity(
|
|---|
| 245 | const std::vector<float_type> &data, const char message[]) throw(c2_exception)
|
|---|
| 246 | {
|
|---|
| 247 | size_t np=data.size();
|
|---|
| 248 | if(np < 2) return false; // one point has no direction!
|
|---|
| 249 |
|
|---|
| 250 | bool rev=(data[1] < data[0]); // which way do data point?
|
|---|
| 251 | size_t i;
|
|---|
| 252 |
|
|---|
| 253 | if(!rev) for(i = 2; i < np && (data[i-1] < data[i]) ; i++);
|
|---|
| 254 | else for(i = 2; i < np &&(data[i-1] > data[i]) ; i++);
|
|---|
| 255 |
|
|---|
| 256 | if(i != np) throw c2_exception(message);
|
|---|
| 257 |
|
|---|
| 258 | return rev;
|
|---|
| 259 | }
|
|---|
| 260 |
|
|---|
| 261 | template <typename float_type> void c2_function<float_type>::set_sampling_grid(const std::vector<float_type> &grid) throw(c2_exception)
|
|---|
| 262 | {
|
|---|
| 263 | bool rev=check_monotonicity(grid, "set_sampling_grid: sampling grid not monotonic");
|
|---|
| 264 |
|
|---|
| 265 | if(!sampling_grid || no_overwrite_grid) sampling_grid=new std::vector<float_type>;
|
|---|
| 266 | (*sampling_grid)=grid; no_overwrite_grid=0;
|
|---|
| 267 |
|
|---|
| 268 | if(rev) std::reverse(sampling_grid->begin(), sampling_grid->end()); // make it increasing
|
|---|
| 269 | }
|
|---|
| 270 |
|
|---|
| 271 | template <typename float_type> std::vector<float_type> &c2_function<float_type>::get_sampling_grid(float_type xmin, float_type xmax) const
|
|---|
| 272 | {
|
|---|
| 273 | std::vector<float_type> *result=new std::vector<float_type>;
|
|---|
| 274 |
|
|---|
| 275 | if( !(sampling_grid) || !(sampling_grid->size()) || (xmax <= sampling_grid->front()) || (xmin >= sampling_grid->back()) ) {
|
|---|
| 276 | // nothing is known about the function in this region, return xmin and xmax
|
|---|
| 277 | result->push_back(xmin);
|
|---|
| 278 | result->push_back(xmax);
|
|---|
| 279 | } else {
|
|---|
| 280 | std::vector<float_type> &sg=*sampling_grid; // just a shortcut
|
|---|
| 281 | int np=sg.size();
|
|---|
| 282 | int klo=0, khi=np-1, firstindex=0, lastindex=np-1;
|
|---|
| 283 |
|
|---|
| 284 | result->push_back(xmin);
|
|---|
| 285 |
|
|---|
| 286 | if(xmin > sg.front() ) {
|
|---|
| 287 | // hunt through table for position bracketing starting point
|
|---|
| 288 | while(khi-klo > 1) {
|
|---|
| 289 | int km=(khi+klo)/2;
|
|---|
| 290 | if(sg[km] > xmin) khi=km;
|
|---|
| 291 | else klo=km;
|
|---|
| 292 | }
|
|---|
| 293 | khi=klo+1;
|
|---|
| 294 | // khi now points to first point definitively beyond our first point, or last point of array
|
|---|
| 295 | firstindex=khi;
|
|---|
| 296 | khi=np-1; // restart upper end of search
|
|---|
| 297 | }
|
|---|
| 298 |
|
|---|
| 299 | if(xmax < sg.back()) {
|
|---|
| 300 | // hunt through table for position bracketing starting point
|
|---|
| 301 | while(khi-klo > 1) {
|
|---|
| 302 | int km=(khi+klo)/2;
|
|---|
| 303 | if(sg[km] > xmax) khi=km;
|
|---|
| 304 | else klo=km;
|
|---|
| 305 | }
|
|---|
| 306 | khi=klo+1;
|
|---|
| 307 | // khi now points to first point definitively beyond our last point, or last point of array
|
|---|
| 308 | lastindex=klo;
|
|---|
| 309 | }
|
|---|
| 310 |
|
|---|
| 311 | int initsize=result->size();
|
|---|
| 312 | result->resize(initsize+(lastindex-firstindex+2));
|
|---|
| 313 | std::copy(sg.begin()+firstindex, sg.begin()+lastindex+1, result->begin()+initsize);
|
|---|
| 314 | result->back()=xmax;
|
|---|
| 315 |
|
|---|
| 316 | // this is the unrefined sampling grid... now check for very close points on front & back and fix if needed.
|
|---|
| 317 | preen_sampling_grid(result);
|
|---|
| 318 | }
|
|---|
| 319 | return *result;
|
|---|
| 320 | }
|
|---|
| 321 |
|
|---|
| 322 | template <typename float_type> void c2_function<float_type>::preen_sampling_grid(std::vector<float_type> *result) const
|
|---|
| 323 | {
|
|---|
| 324 | // this is the unrefined sampling grid... now check for very close points on front & back and fix if needed.
|
|---|
| 325 | if(result->size() > 2) { // may be able to prune dangerously close points near the ends if there are at least 3 points
|
|---|
| 326 | bool deleteit=false;
|
|---|
| 327 | float_type x0=(*result)[0], x1=(*result)[1];
|
|---|
| 328 | float_type dx1=x1-x0;
|
|---|
| 329 |
|
|---|
| 330 | float_type ftol=10.0*(std::numeric_limits<float_type>::epsilon()*(std::abs(x0)+std::abs(x1))+std::numeric_limits<float_type>::min());
|
|---|
| 331 | if(dx1 < ftol) deleteit=true;
|
|---|
| 332 | float_type dx2=(*result)[2]-x0;
|
|---|
| 333 | if(dx1/dx2 < 0.1) deleteit=true; // endpoint is very close to internal interesting point
|
|---|
| 334 |
|
|---|
| 335 | if(deleteit) result->erase(result->begin()+1); // delete redundant interesting point
|
|---|
| 336 | }
|
|---|
| 337 |
|
|---|
| 338 | if(result->size() > 2) { // may be able to prune dangerously close points near the ends if there are at least 3 points
|
|---|
| 339 | bool deleteit=false;
|
|---|
| 340 | int pos=result->size()-3;
|
|---|
| 341 | float_type x0=(*result)[pos+1], x1=(*result)[pos+2];
|
|---|
| 342 | float_type dx1=x1-x0;
|
|---|
| 343 |
|
|---|
| 344 | float_type ftol=10.0*(std::numeric_limits<float_type>::epsilon()*(std::abs(x0)+std::abs(x1))+std::numeric_limits<float_type>::min());
|
|---|
| 345 | if(dx1 < ftol) deleteit=true;
|
|---|
| 346 | float_type dx2=x1-(*result)[pos];
|
|---|
| 347 | if(dx1/dx2 < 0.1) deleteit=true; // endpoint is very close to internal interesting point
|
|---|
| 348 |
|
|---|
| 349 | if(deleteit) result->erase(result->end()-2); // delete redundant interesting point
|
|---|
| 350 | }
|
|---|
| 351 | }
|
|---|
| 352 |
|
|---|
| 353 | template <typename float_type> std::vector<float_type> &c2_function<float_type>::
|
|---|
| 354 | refine_sampling_grid(const std::vector<float_type> &grid, size_t refinement) const
|
|---|
| 355 | {
|
|---|
| 356 | size_t np=grid.size();
|
|---|
| 357 | size_t count=(np-1)*refinement + 1;
|
|---|
| 358 | float_type dxscale=1.0/refinement;
|
|---|
| 359 |
|
|---|
| 360 | std::vector<float_type> *result=new std::vector<float_type>(count);
|
|---|
| 361 |
|
|---|
| 362 | for(size_t i=0; i<(np-1); i++) {
|
|---|
| 363 | float_type x=grid[i];
|
|---|
| 364 | float_type dx=(grid[i+1]-x)*dxscale;
|
|---|
| 365 | for(size_t j=0; j<refinement; j++, x+=dx) (*result)[i*refinement+j]=x;
|
|---|
| 366 | }
|
|---|
| 367 | (*result)[count-1]=grid.back();
|
|---|
| 368 | return *result;
|
|---|
| 369 | }
|
|---|
| 370 |
|
|---|
| 371 | template <typename float_type> float_type c2_function<float_type>::integral(float_type xmin, float_type xmax, std::vector<float_type> *partials,
|
|---|
| 372 | float_type abs_tol, float_type rel_tol, int derivs, bool adapt, bool extrapolate) const
|
|---|
| 373 | {
|
|---|
| 374 | std::vector<float_type> &grid=get_sampling_grid(xmin, xmax);
|
|---|
| 375 | float_type intg=partial_integrals(grid, partials, abs_tol, rel_tol, adapt, extrapolate);
|
|---|
| 376 | delete &grid;
|
|---|
| 377 | return intg;
|
|---|
| 378 | }
|
|---|
| 379 |
|
|---|
| 380 | template <typename float_type> c2_function<float_type> &c2_function<float_type>::normalized_function(float_type xmin, float_type xmax, float_type norm)
|
|---|
| 381 | {
|
|---|
| 382 | float_type intg=integral(xmin, xmax);
|
|---|
| 383 | return *new c2_scaled_function<float_type>(*this, norm/intg);
|
|---|
| 384 | }
|
|---|
| 385 |
|
|---|
| 386 | template <typename float_type> c2_function<float_type> &c2_function<float_type>::square_normalized_function(float_type xmin, float_type xmax, float_type norm)
|
|---|
| 387 | {
|
|---|
| 388 | c2_quadratic<float_type> q(0., 0., 0., 1.);
|
|---|
| 389 | c2_composed_function<float_type> mesquared(q,*this);
|
|---|
| 390 |
|
|---|
| 391 | std::vector<float_type> grid(get_sampling_grid(xmin, xmax));
|
|---|
| 392 | float_type intg=mesquared.partial_integrals(grid);
|
|---|
| 393 |
|
|---|
| 394 | return *new c2_scaled_function<float_type>(*this, std::sqrt(norm/intg));
|
|---|
| 395 | }
|
|---|
| 396 |
|
|---|
| 397 | template <typename float_type> c2_function<float_type> &c2_function<float_type>::square_normalized_function(
|
|---|
| 398 | float_type xmin, float_type xmax, const c2_function<float_type> &weight, float_type norm)
|
|---|
| 399 | {
|
|---|
| 400 | c2_quadratic<float_type> q(0., 0., 0., 1.);
|
|---|
| 401 | c2_composed_function<float_type> mesquared(q,*this);
|
|---|
| 402 | c2_product<float_type> weighted(mesquared, weight);
|
|---|
| 403 |
|
|---|
| 404 | std::vector<float_type> grid(get_sampling_grid(xmin, xmax));
|
|---|
| 405 | float_type intg=weighted.partial_integrals(grid);
|
|---|
| 406 |
|
|---|
| 407 | return *new c2_scaled_function<float_type>(*this, std::sqrt(norm/intg));
|
|---|
| 408 | }
|
|---|
| 409 |
|
|---|
| 410 | template <typename float_type> float_type c2_function<float_type>::partial_integrals(
|
|---|
| 411 | std::vector<float_type> xgrid, std::vector<float_type> *partials,
|
|---|
| 412 | float_type abs_tol, float_type rel_tol, int derivs, bool adapt, bool extrapolate) const
|
|---|
| 413 | {
|
|---|
| 414 | int np=xgrid.size();
|
|---|
| 415 |
|
|---|
| 416 | struct c2_integrate_fblock f0, f2;
|
|---|
| 417 | struct c2_integrate_recur rb;
|
|---|
| 418 | rb.rel_tol=rel_tol;
|
|---|
| 419 | rb.extrapolate=extrapolate;
|
|---|
| 420 | rb.adapt=adapt;
|
|---|
| 421 | rb.derivs=derivs;
|
|---|
| 422 |
|
|---|
| 423 | reset_evaluations(); // counter returns with total evaluations needed for this integral
|
|---|
| 424 |
|
|---|
| 425 | if(partials) partials->resize(np-1);
|
|---|
| 426 |
|
|---|
| 427 | float_type sum=0.0;
|
|---|
| 428 |
|
|---|
| 429 | f2.x=xgrid[0];
|
|---|
| 430 | f2.y=value_with_derivatives(f2.x, &f2.yp, &f2.ypp);
|
|---|
| 431 | increment_evaluations();
|
|---|
| 432 |
|
|---|
| 433 | for(int i=0; i<np-1; i++) {
|
|---|
| 434 | f0=f2; // copy upper bound to lower before computing new upper bound
|
|---|
| 435 |
|
|---|
| 436 | f2.x=xgrid[i+1];
|
|---|
| 437 | f2.y=value_with_derivatives(f2.x, &f2.yp, &f2.ypp);
|
|---|
| 438 | increment_evaluations();
|
|---|
| 439 |
|
|---|
| 440 | rb.depth=0;
|
|---|
| 441 | rb.abs_tol=abs_tol;
|
|---|
| 442 | rb.f0=&f0; rb.f1=&f2; rb.f2=&f2; // we are really only using the left half for the top level
|
|---|
| 443 | rb.lr=0; // pointer is meaningless; will be filled in in recursion
|
|---|
| 444 | float_type ps=integrate_step(rb);
|
|---|
| 445 | sum+=ps;
|
|---|
| 446 | if(partials) (*partials)[i]=ps;
|
|---|
| 447 | }
|
|---|
| 448 | return sum;
|
|---|
| 449 | }
|
|---|
| 450 |
|
|---|
| 451 | // declare singleton functions for most common c2_function instances
|
|---|
| 452 | #define c2_singleton(X) template <typename float_type> const c2_##X<float_type> c2_##X<float_type>::X=c2_##X();
|
|---|
| 453 | c2_singleton(sin)
|
|---|
| 454 | c2_singleton(cos)
|
|---|
| 455 | c2_singleton(tan)
|
|---|
| 456 | c2_singleton(log)
|
|---|
| 457 | c2_singleton(exp)
|
|---|
| 458 | c2_singleton(sqrt)
|
|---|
| 459 | c2_singleton(identity)
|
|---|
| 460 |
|
|---|
| 461 | // reciprocal is actually parametric (a/x), but make singleton 1/x
|
|---|
| 462 | template <typename float_type> const c2_recip<float_type> c2_recip<float_type>::recip=c2_recip(1.0);
|
|---|
| 463 |
|
|---|
| 464 | #undef c2_singleton
|
|---|
| 465 |
|
|---|
| 466 | // generate a sampling grid at points separated by dx=5, which is intentionally
|
|---|
| 467 | // incommensurate with pi and 2*pi so grid errors are somewhat randomized
|
|---|
| 468 | template <typename float_type> std::vector<float_type> &c2_sin<float_type>::get_sampling_grid(float_type xmin, float_type xmax)
|
|---|
| 469 | {
|
|---|
| 470 | std::vector<float_type> *result=new std::vector<float_type>;
|
|---|
| 471 |
|
|---|
| 472 | for(; xmin < xmax; xmin+=5.0) result->push_back(xmin);
|
|---|
| 473 | result->push_back(xmax);
|
|---|
| 474 | this->preen_sampling_grid(result);
|
|---|
| 475 | return *result;
|
|---|
| 476 | }
|
|---|
| 477 |
|
|---|
| 478 | template <typename float_type> float_type Identity(float_type x) { return x; } // a useful function
|
|---|
| 479 | template <typename float_type> float_type f_one(float_type) { return 1.0; } // the first derivative of identity
|
|---|
| 480 | template <typename float_type> float_type f_zero(float_type) { return 0.0; } // the second derivative of identity
|
|---|
| 481 |
|
|---|
| 482 | // The constructor
|
|---|
| 483 | template <typename float_type> void interpolating_function<float_type>::init(
|
|---|
| 484 | const std::vector<float_type> &x, const std::vector<float_type> &f,
|
|---|
| 485 | bool lowerSlopeNatural, float_type lowerSlope,
|
|---|
| 486 | bool upperSlopeNatural, float_type upperSlope,
|
|---|
| 487 | float_type (*inputXConversion)(float_type),
|
|---|
| 488 | float_type (*inputXConversionPrime)(float_type),
|
|---|
| 489 | float_type (*inputXConversionDPrime)(float_type),
|
|---|
| 490 | float_type (*inputYConversion)(float_type),
|
|---|
| 491 | float_type (*inputYConversionPrime)(float_type),
|
|---|
| 492 | float_type (*inputYConversionDPrime)(float_type),
|
|---|
| 493 | float_type (*outputYConversion)(float_type)
|
|---|
| 494 | ) throw(c2_exception)
|
|---|
| 495 | {
|
|---|
| 496 | X= x;
|
|---|
| 497 | F= f;
|
|---|
| 498 |
|
|---|
| 499 | // Xraw is useful in some of the arithmetic operations between interpolating functions
|
|---|
| 500 | Xraw=x;
|
|---|
| 501 |
|
|---|
| 502 | set_domain(std::min(Xraw.front(), Xraw.back()),std::max(Xraw.front(), Xraw.back()));
|
|---|
| 503 |
|
|---|
| 504 | fXin=inputXConversion;
|
|---|
| 505 | fXinPrime=inputXConversionPrime;
|
|---|
| 506 | fXinDPrime=inputXConversionDPrime;
|
|---|
| 507 | fYin=inputYConversion;
|
|---|
| 508 | fYinPrime=inputYConversionPrime;
|
|---|
| 509 | fYinDPrime=inputYConversionDPrime;
|
|---|
| 510 | fYout=outputYConversion;
|
|---|
| 511 |
|
|---|
| 512 | if(x.size() != f.size()) {
|
|---|
| 513 | throw c2_exception("interpolating_function::init() -- x & y inputs are of different size");
|
|---|
| 514 | }
|
|---|
| 515 |
|
|---|
| 516 | size_t np=X.size(); // they are the same now, so lets take a short cut
|
|---|
| 517 |
|
|---|
| 518 | if(np < 2) {
|
|---|
| 519 | throw c2_exception("interpolating_function::init() -- input < 2 elements ");
|
|---|
| 520 | }
|
|---|
| 521 |
|
|---|
| 522 | bool xraw_rev=check_monotonicity(Xraw,
|
|---|
| 523 | "interpolating_function::init() non-monotonic raw x input"); // which way does raw X point? sampling grid MUST be increasing
|
|---|
| 524 |
|
|---|
| 525 | if(!xraw_rev) { // we can use pointer to raw X values if they are in the right order
|
|---|
| 526 | set_sampling_grid_pointer(Xraw); // our intial grid of x values is certainly a good guess for 'interesting' points
|
|---|
| 527 | } else {
|
|---|
| 528 | set_sampling_grid(Xraw); // make a copy of it, and assure it is in right order
|
|---|
| 529 | }
|
|---|
| 530 |
|
|---|
| 531 | if(fXin) { // check if X scale is nonlinear, and if so, do transform
|
|---|
| 532 | if(!lowerSlopeNatural) lowerSlope /= fXinPrime(X[0]);
|
|---|
| 533 | if(!upperSlopeNatural) upperSlope /= fXinPrime(X[np-1]);
|
|---|
| 534 | for(size_t i=0; i<np; i++) X[i]=fXin(X[i]);
|
|---|
| 535 | } else {
|
|---|
| 536 | fXin=Identity<float_type>;
|
|---|
| 537 | fXinPrime=f_one<float_type>;
|
|---|
| 538 | fXinDPrime=f_zero<float_type>;
|
|---|
| 539 | }
|
|---|
| 540 |
|
|---|
| 541 | if(inputYConversion) { // check if Y scale is nonlinear, and if so, do transform
|
|---|
| 542 | if(!lowerSlopeNatural) lowerSlope *= fYinPrime(F[0]);
|
|---|
| 543 | if(!upperSlopeNatural) upperSlope *= fYinPrime(F[np-1]);
|
|---|
| 544 | for(size_t i=0; i<np; i++) F[i]=inputYConversion(F[i]);
|
|---|
| 545 | } else {
|
|---|
| 546 | fYin=Identity<float_type>;
|
|---|
| 547 | fYinPrime=f_one<float_type>;
|
|---|
| 548 | fYinDPrime=f_zero<float_type>;
|
|---|
| 549 | fYout=Identity<float_type>;
|
|---|
| 550 | }
|
|---|
| 551 |
|
|---|
| 552 | xInverted=check_monotonicity(X,
|
|---|
| 553 | "interpolating_function::init() non-monotonic transformed x input");
|
|---|
| 554 |
|
|---|
| 555 | // construct spline tables here.
|
|---|
| 556 | // this code is a re-translation of the pythonlabtools spline algorithm from pythonlabtools.sourceforge.net
|
|---|
| 557 |
|
|---|
| 558 | std::vector<float_type> u(np), dy(np-1), dx(np-1), dxi(np-1), dx2i(np-2), siga(np-2), dydx(np-1);
|
|---|
| 559 |
|
|---|
| 560 | std::transform(X.begin()+1, X.end(), X.begin(), dx.begin(), std::minus<float_type>() ); // dx=X[1:] - X [:-1]
|
|---|
| 561 | for(size_t i=0; i<dxi.size(); i++) dxi[i]=1.0/dx[i]; // dxi = 1/dx
|
|---|
| 562 | for(size_t i=0; i<dx2i.size(); i++) dx2i[i]=1.0/(X[i+2]-X[i]);
|
|---|
| 563 |
|
|---|
| 564 | std::transform(F.begin()+1, F.end(), F.begin(), dy.begin(), std::minus<float_type>() ); // dy = F[i+1]-F[i]
|
|---|
| 565 | std::transform(dx2i.begin(), dx2i.end(), dx.begin(), siga.begin(), std::multiplies<float_type>()); // siga = dx[:-1]*dx2i
|
|---|
| 566 | std::transform(dxi.begin(), dxi.end(), dy.begin(), dydx.begin(), std::multiplies<float_type>()); // dydx=dy/dx
|
|---|
| 567 |
|
|---|
| 568 | // u[i]=(y[i+1]-y[i])/float(x[i+1]-x[i]) - (y[i]-y[i-1])/float(x[i]-x[i-1])
|
|---|
| 569 | std::transform(dydx.begin()+1, dydx.end(), dydx.begin(), u.begin()+1, std::minus<float_type>() ); // incomplete rendering of u = dydx[1:]-dydx[:-1]
|
|---|
| 570 |
|
|---|
| 571 | y2.resize(np,0.0);
|
|---|
| 572 |
|
|---|
| 573 | if(lowerSlopeNatural) {
|
|---|
| 574 | y2[0]=u[0]=0.0;
|
|---|
| 575 | } else {
|
|---|
| 576 | y2[0]= -0.5;
|
|---|
| 577 | u[0]=(3.0*dxi[0])*(dy[0]*dxi[0] -lowerSlope);
|
|---|
| 578 | }
|
|---|
| 579 |
|
|---|
| 580 | for(size_t i=1; i < np -1; i++) { // the inner loop
|
|---|
| 581 | float_type sig=siga[i-1];
|
|---|
| 582 | float_type p=sig*y2[i-1]+2.0;
|
|---|
| 583 | y2[i]=(sig-1.0)/p;
|
|---|
| 584 | u[i]=(6.0*u[i]*dx2i[i-1] - sig*u[i-1])/p;
|
|---|
| 585 | }
|
|---|
| 586 |
|
|---|
| 587 | float_type qn, un;
|
|---|
| 588 |
|
|---|
| 589 | if(upperSlopeNatural) {
|
|---|
| 590 | qn=un=0.0;
|
|---|
| 591 | } else {
|
|---|
| 592 | qn= 0.5;
|
|---|
| 593 | un=(3.0*dxi[dxi.size()-1])*(upperSlope- dy[dy.size()-1]*dxi[dxi.size()-1] );
|
|---|
| 594 | }
|
|---|
| 595 |
|
|---|
| 596 | y2[np-1]=(un-qn*u[np-2])/(qn*y2[np-2]+1.0);
|
|---|
| 597 | for (size_t k=np-1; k != 0; k--) y2[k-1]=y2[k-1]*y2[k]+u[k-1];
|
|---|
| 598 |
|
|---|
| 599 | lastKLow=-1; // flag new X search required for next evaluation
|
|---|
| 600 | }
|
|---|
| 601 |
|
|---|
| 602 | // This function is the reason for this class to exist
|
|---|
| 603 | // it computes the interpolated function, and (if requested) its proper first and second derivatives including all coordinate transforms
|
|---|
| 604 | template <typename float_type> float_type interpolating_function<float_type>::value_with_derivatives(
|
|---|
| 605 | float_type x, float_type *yprime, float_type *yprime2) const throw(c2_exception)
|
|---|
| 606 | {
|
|---|
| 607 | if(x < this->xmin() || x > this->xmax()) {
|
|---|
| 608 | std::ostringstream outstr;
|
|---|
| 609 | outstr << "Interpolating function argument " << x << " out of range " << this->xmin() << " -- " << this ->xmax() << ": bailing";
|
|---|
| 610 | throw c2_exception(outstr.str().c_str());
|
|---|
| 611 | }
|
|---|
| 612 |
|
|---|
| 613 | float_type xraw=x;
|
|---|
| 614 |
|
|---|
| 615 | // template here is impossible! if(fXin && fXin != (Identity<float_type>) )
|
|---|
| 616 | x=fXin(x); // save time by explicitly testing for identity function here
|
|---|
| 617 |
|
|---|
| 618 | int klo=0, khi=X.size()-1;
|
|---|
| 619 |
|
|---|
| 620 | if(!xInverted) { // select search depending on whether transformed X is increasing or decreasing
|
|---|
| 621 | if(lastKLow >=0 && (X[lastKLow] <= x) && (X[lastKLow+1] >= x) ) { // already bracketed
|
|---|
| 622 | klo=lastKLow;
|
|---|
| 623 | } else if(lastKLow >=0 && (X[lastKLow+1] <= x) && (X[lastKLow+2] > x)) { // in next bracket to the right
|
|---|
| 624 | klo=lastKLow+1;
|
|---|
| 625 | } else if(lastKLow > 0 && (X[lastKLow-1] <= x) && (X[lastKLow] > x)) { // in next bracket to the left
|
|---|
| 626 | klo=lastKLow-1;
|
|---|
| 627 | } else { // not bracketed, not close, start over
|
|---|
| 628 | // search for new KLow
|
|---|
| 629 | while(khi-klo > 1) {
|
|---|
| 630 | int km=(khi+klo)/2;
|
|---|
| 631 | if(X[km] > x) khi=km;
|
|---|
| 632 | else klo=km;
|
|---|
| 633 | }
|
|---|
| 634 | }
|
|---|
| 635 | } else {
|
|---|
| 636 | if(lastKLow >=0 && (X[lastKLow] >= x) && (X[lastKLow+1] <= x) ) { // already bracketed
|
|---|
| 637 | klo=lastKLow;
|
|---|
| 638 | } else if(lastKLow >=0 && (X[lastKLow+1] >= x) && (X[lastKLow+2] < x)) { // in next bracket to the right
|
|---|
| 639 | klo=lastKLow+1;
|
|---|
| 640 | } else if(lastKLow > 0 && (X[lastKLow-1] >= x) && (X[lastKLow] < x)) { // in next bracket to the left
|
|---|
| 641 | klo=lastKLow-1;
|
|---|
| 642 | } else { // not bracketed, not close, start over
|
|---|
| 643 | // search for new KLow
|
|---|
| 644 | while(khi-klo > 1) {
|
|---|
| 645 | int km=(khi+klo)/2;
|
|---|
| 646 | if(X[km] < x) khi=km;
|
|---|
| 647 | else klo=km;
|
|---|
| 648 | }
|
|---|
| 649 | }
|
|---|
| 650 | }
|
|---|
| 651 |
|
|---|
| 652 | khi=klo+1;
|
|---|
| 653 | lastKLow=klo;
|
|---|
| 654 |
|
|---|
| 655 | float_type h=X[khi]-X[klo];
|
|---|
| 656 |
|
|---|
| 657 | float_type a=(X[khi]-x)/h;
|
|---|
| 658 | float_type b=1.0-a;
|
|---|
| 659 | float_type ylo=F[klo], yhi=F[khi], y2lo=y2[klo], y2hi=y2[khi];
|
|---|
| 660 | float_type y=a*ylo+b*yhi+((a*a*a-a)*y2lo+(b*b*b-b)*y2hi)*(h*h)/6.0;
|
|---|
| 661 |
|
|---|
| 662 | // template here is impossible! if(fYin && fYin != Identity)
|
|---|
| 663 | y=fYout(y); // save time by explicitly testing for identity function here
|
|---|
| 664 |
|
|---|
| 665 | if(yprime || yprime2) {
|
|---|
| 666 | float_type fpi=1.0/fYinPrime(y);
|
|---|
| 667 | float_type gp=fXinPrime(xraw);
|
|---|
| 668 | float_type yp0=(yhi-ylo)/h+((3*b*b-1)*y2hi-(3*a*a-1)*y2lo)*h/6.0; // the derivative in interpolating table coordinates
|
|---|
| 669 |
|
|---|
| 670 | // from Mathematica Dt[InverseFunction[f][y[g[x]]], x]
|
|---|
| 671 | if(yprime) *yprime=gp*yp0*fpi; // the real derivative of the inverse transformed output
|
|---|
| 672 | if(yprime2) {
|
|---|
| 673 | float_type ypp0=b*y2hi+a*y2lo;
|
|---|
| 674 | float_type fpp=fYinDPrime(y);
|
|---|
| 675 | float_type gpp=fXinDPrime(xraw);
|
|---|
| 676 | // also from Mathematica Dt[InverseFunction[f][y[g[x]]], {x,2}]
|
|---|
| 677 | if(yprime2) *yprime2=(gp*gp*ypp0 + yp0*gpp - gp*gp*yp0*yp0*fpp*fpi*fpi)*fpi;
|
|---|
| 678 | }
|
|---|
| 679 | }
|
|---|
| 680 |
|
|---|
| 681 | return y;
|
|---|
| 682 | }
|
|---|
| 683 |
|
|---|
| 684 | template <typename float_type> void interpolating_function<float_type>::set_lower_extrapolation(float_type bound)
|
|---|
| 685 | {
|
|---|
| 686 | int kl = 0 ;
|
|---|
| 687 | int kh=kl+1;
|
|---|
| 688 | float_type xx=fXin(bound);
|
|---|
| 689 | float_type h0=X[kh]-X[kl];
|
|---|
| 690 | float_type h1=xx-X[kl];
|
|---|
| 691 | float_type yextrap=F[kl]+((F[kh]-F[kl])/h0 - h0*(y2[kl]+2.0*y2[kh])/6.0)*h1+y2[kl]*h1*h1/2.0;
|
|---|
| 692 |
|
|---|
| 693 | X.insert(X.begin(), xx);
|
|---|
| 694 | F.insert(F.begin(), yextrap);
|
|---|
| 695 | y2.insert(y2.begin(), y2.front()); // duplicate first or last element
|
|---|
| 696 | Xraw.insert(Xraw.begin(), bound);
|
|---|
| 697 | if (bound < this->fXMin) this->fXMin=bound; // check for reversed data
|
|---|
| 698 | else this->fXMax=bound;
|
|---|
| 699 |
|
|---|
| 700 | //printf("%10.4f %10.4f %10.4f %10.4f %10.4f\n", bound, xx, h0, h1, yextrap);
|
|---|
| 701 | //for(int i=0; i<X.size(); i++) printf("%4d %10.4f %10.4f %10.4f %10.4f \n", i, Xraw[i], X[i], F[i], y2[i]);
|
|---|
| 702 | }
|
|---|
| 703 |
|
|---|
| 704 | template <typename float_type> void interpolating_function<float_type>::set_upper_extrapolation(float_type bound)
|
|---|
| 705 | {
|
|---|
| 706 | int kl = X.size()-2 ;
|
|---|
| 707 | int kh=kl+1;
|
|---|
| 708 | float_type xx=fXin(bound);
|
|---|
| 709 | float_type h0=X[kh]-X[kl];
|
|---|
| 710 | float_type h1=xx-X[kl];
|
|---|
| 711 | float_type yextrap=F[kl]+((F[kh]-F[kl])/h0 - h0*(y2[kl]+2.0*y2[kh])/6.0)*h1+y2[kl]*h1*h1/2.0;
|
|---|
| 712 |
|
|---|
| 713 | X.insert(X.end(), xx);
|
|---|
| 714 | F.insert(F.end(), yextrap);
|
|---|
| 715 | y2.insert(y2.end(), y2.back()); // duplicate first or last element
|
|---|
| 716 | Xraw.insert(Xraw.end(), bound);
|
|---|
| 717 | if (bound < this->fXMin) this->fXMin=bound; // check for reversed data
|
|---|
| 718 | else this->fXMax=bound;
|
|---|
| 719 | //printf("%10.4f %10.4f %10.4f %10.4f %10.4f\n", bound, xx, h0, h1, yextrap);
|
|---|
| 720 | //for(int i=0; i<X.size(); i++) printf("%4d %10.4f %10.4f %10.4f %10.4f \n", i, Xraw[i], X[i], F[i], y2[i]);
|
|---|
| 721 | }
|
|---|
| 722 |
|
|---|
| 723 | // move derivatives into our internal coordinates (use splint to go the other way!)
|
|---|
| 724 | template <typename float_type> void interpolating_function<float_type>::localize_derivatives(
|
|---|
| 725 | float_type xraw, float_type y, float_type yp, float_type ypp, float_type *y0, float_type *yprime, float_type *yprime2) const
|
|---|
| 726 | {
|
|---|
| 727 | float_type fp=fYinPrime(y);
|
|---|
| 728 | float_type gp=fXinPrime(xraw);
|
|---|
| 729 | float_type fpp=fYinDPrime(y);
|
|---|
| 730 | float_type gpp=fXinDPrime(xraw);
|
|---|
| 731 |
|
|---|
| 732 | if(y0) *y0=fYin(y);
|
|---|
| 733 | if(yprime) *yprime=yp*fp/gp; // Mathematica Dt[f[y[InverseFunction[g][x]]], x]
|
|---|
| 734 | if(yprime2) *yprime2=( yp*yp*fpp - fp*yp*gpp/gp + fp*ypp )/(gp*gp) ; // Mathematica Dt[f[y[InverseFunction[g][x]]], {x,2}]
|
|---|
| 735 | }
|
|---|
| 736 |
|
|---|
| 737 | // return a new interpolating_function which is the unary function of an existing interpolating_function
|
|---|
| 738 | // can also be used to generate a resampling of another c2_function on a different grid
|
|---|
| 739 | // by creating a=interpolating_function(x,x)
|
|---|
| 740 | // and doing b=a.unary_operator(c) where c is a c2_function (probably another interpolating_function)
|
|---|
| 741 |
|
|---|
| 742 | template <typename float_type> interpolating_function<float_type>&
|
|---|
| 743 | interpolating_function<float_type>::unary_operator(const c2_function<float_type> &source) const
|
|---|
| 744 | {
|
|---|
| 745 | size_t np=X.size();
|
|---|
| 746 | std::vector<float_type>yv(np);
|
|---|
| 747 | c2_composed_function<float_type> comp(source, *this);
|
|---|
| 748 | float_type yp0, yp1, ypp;
|
|---|
| 749 |
|
|---|
| 750 | for(size_t i=0; i<np; i++) {
|
|---|
| 751 | yv[i]=source(fYout(F[i])); // copy pointwise the function of our data values
|
|---|
| 752 | }
|
|---|
| 753 |
|
|---|
| 754 | comp(Xraw.front(), &yp0, &ypp); // get derivative at front
|
|---|
| 755 | comp(Xraw.back(), &yp1, &ypp); // get derivative at back
|
|---|
| 756 |
|
|---|
| 757 | return *new interpolating_function(Xraw, yv, false, yp0, false, yp1,
|
|---|
| 758 | fXin, fXinPrime, fXinDPrime,
|
|---|
| 759 | fYin, fYinPrime, fYinDPrime, fYout);
|
|---|
| 760 | }
|
|---|
| 761 |
|
|---|
| 762 | template <typename float_type> void
|
|---|
| 763 | interpolating_function<float_type>::get_data(std::vector<float_type> &xvals, std::vector<float_type> &yvals) const throw()
|
|---|
| 764 | {
|
|---|
| 765 |
|
|---|
| 766 | xvals=Xraw;
|
|---|
| 767 | yvals.resize(F.size());
|
|---|
| 768 |
|
|---|
| 769 | for(size_t i=0; i<F.size(); i++) yvals[i]=fYout(F[i]);
|
|---|
| 770 | }
|
|---|
| 771 |
|
|---|
| 772 | template <typename float_type> interpolating_function<float_type> &
|
|---|
| 773 | interpolating_function<float_type>::binary_operator(const c2_function<float_type> &rhs,
|
|---|
| 774 | c2_binary_function<float_type> *combining_stub) const
|
|---|
| 775 | {
|
|---|
| 776 | size_t np=X.size();
|
|---|
| 777 | std::vector<float_type> yv(np);
|
|---|
| 778 | c2_constant<float_type> fval;
|
|---|
| 779 | c2_constant<float_type> yval;
|
|---|
| 780 | float_type yp0, yp1, ypp;
|
|---|
| 781 |
|
|---|
| 782 | for(size_t i=0; i<np; i++) {
|
|---|
| 783 | fval.reset(fYout(F[i])); // update the constant function pointwise
|
|---|
| 784 | yval.reset(rhs(Xraw[i]));
|
|---|
| 785 | yv[i]=(*combining_stub).combine(fval, yval, Xraw[i], (float_type *)0, (float_type *)0); // compute rhs & combine without derivatives
|
|---|
| 786 | }
|
|---|
| 787 |
|
|---|
| 788 | (*combining_stub).combine(*this, rhs, Xraw.front(), &yp0, &ypp); // get derivative at front
|
|---|
| 789 | (*combining_stub).combine(*this, rhs, Xraw.back(), &yp1, &ypp); // get derivative at back
|
|---|
| 790 |
|
|---|
| 791 | delete combining_stub;
|
|---|
| 792 |
|
|---|
| 793 | return *new interpolating_function(Xraw, yv, false, yp0, false, yp1,
|
|---|
| 794 | fXin, fXinPrime, fXinDPrime,
|
|---|
| 795 | fYin, fYinPrime, fYinDPrime, fYout);
|
|---|
| 796 | }
|
|---|
| 797 |
|
|---|
| 798 | template <typename float_type> float_type c2_f_logprime(float_type x) { return 1.0/x; } // the derivative of log(x)
|
|---|
| 799 | template <typename float_type> float_type c2_f_logprime2(float_type x) { return -1.0/(x*x); } // the second derivative of log(x)
|
|---|
| 800 |
|
|---|
| 801 | template <typename float_type> log_lin_interpolating_function<float_type>::log_lin_interpolating_function(
|
|---|
| 802 | const std::vector<float_type> &x, const std::vector<float_type> &f,
|
|---|
| 803 | bool lowerSlopeNatural, float_type lowerSlope,
|
|---|
| 804 | bool upperSlopeNatural, float_type upperSlope)
|
|---|
| 805 | : interpolating_function<float_type>()
|
|---|
| 806 | {
|
|---|
| 807 | init(x, f, lowerSlopeNatural, lowerSlope, upperSlopeNatural, upperSlope,
|
|---|
| 808 | (float_type (*)(float_type)) (std::log), c2_f_logprime, c2_f_logprime2, 0, 0, 0, 0);
|
|---|
| 809 | }
|
|---|
| 810 |
|
|---|
| 811 | template <typename float_type> lin_log_interpolating_function<float_type>::lin_log_interpolating_function(
|
|---|
| 812 | const std::vector<float_type> &x, const std::vector<float_type> &f,
|
|---|
| 813 | bool lowerSlopeNatural, float_type lowerSlope,
|
|---|
| 814 | bool upperSlopeNatural, float_type upperSlope)
|
|---|
| 815 | : interpolating_function<float_type>()
|
|---|
| 816 | {
|
|---|
| 817 | init(x, f, lowerSlopeNatural, lowerSlope, upperSlopeNatural, upperSlope,
|
|---|
| 818 | 0, 0, 0,
|
|---|
| 819 | (float_type (*)(float_type)) (std::log), c2_f_logprime, c2_f_logprime2,
|
|---|
| 820 | (float_type (*)(float_type)) (std::exp) );
|
|---|
| 821 | }
|
|---|
| 822 |
|
|---|
| 823 | template <typename float_type> log_log_interpolating_function<float_type>::log_log_interpolating_function(
|
|---|
| 824 | const std::vector<float_type> &x, const std::vector<float_type> &f,
|
|---|
| 825 | bool lowerSlopeNatural, float_type lowerSlope,
|
|---|
| 826 | bool upperSlopeNatural, float_type upperSlope)
|
|---|
| 827 | : interpolating_function<float_type>()
|
|---|
| 828 | {
|
|---|
| 829 | init(x, f, lowerSlopeNatural, lowerSlope, upperSlopeNatural, upperSlope,
|
|---|
| 830 | (float_type (*)(float_type)) (std::log), c2_f_logprime, c2_f_logprime2,
|
|---|
| 831 | (float_type (*)(float_type)) (std::log), c2_f_logprime, c2_f_logprime2,
|
|---|
| 832 | (float_type (*)(float_type)) (std::exp) );
|
|---|
| 833 | }
|
|---|
| 834 |
|
|---|
| 835 | template <typename float_type> float_type c2_f_recip(float_type x) { return 1.0/x; }
|
|---|
| 836 | template <typename float_type> float_type c2_f_recipprime(float_type x) { return -1.0/(x*x); } // the derivative of 1/x
|
|---|
| 837 | template <typename float_type> float_type c2_f_recipprime2(float_type x) { return 2.0/(x*x*x); } // the second derivative of 1/x
|
|---|
| 838 |
|
|---|
| 839 | template <typename float_type> arrhenius_interpolating_function<float_type>::arrhenius_interpolating_function(
|
|---|
| 840 | const std::vector<float_type> &x, const std::vector<float_type> &f,
|
|---|
| 841 | bool lowerSlopeNatural, float_type lowerSlope,
|
|---|
| 842 | bool upperSlopeNatural, float_type upperSlope)
|
|---|
| 843 | : interpolating_function<float_type>()
|
|---|
| 844 | {
|
|---|
| 845 | init(x, f, lowerSlopeNatural, lowerSlope, upperSlopeNatural, upperSlope,
|
|---|
| 846 | c2_f_recip, c2_f_recipprime, c2_f_recipprime2,
|
|---|
| 847 | (float_type (*)(float_type)) (std::log), c2_f_logprime, c2_f_logprime2,
|
|---|
| 848 | (float_type (*)(float_type)) (std::exp) );
|
|---|
| 849 | }
|
|---|
| 850 |
|
|---|
| 851 | template <typename float_type> c2_inverse_function<float_type>::c2_inverse_function(const c2_function<float_type> &source)
|
|---|
| 852 | : c2_plugin_function<float_type>(source)
|
|---|
| 853 | {
|
|---|
| 854 | float_type l=source.xmin();
|
|---|
| 855 | float_type r=source.xmax();
|
|---|
| 856 | start_hint=(l+r)*0.5; // guess that we start in the middle
|
|---|
| 857 | // compute our domain assuming the function is monotonic so its values on its domain boundaries are our domain
|
|---|
| 858 | float_type ly=source(l);
|
|---|
| 859 | float_type ry=source(r);
|
|---|
| 860 | if (ly > ry) {
|
|---|
| 861 | float_type t=ly; ly=ry; ry=t;
|
|---|
| 862 | }
|
|---|
| 863 | set_domain(ly, ry);
|
|---|
| 864 | }
|
|---|
| 865 |
|
|---|
| 866 | template <typename float_type> float_type c2_inverse_function<float_type>::value_with_derivatives(
|
|---|
| 867 | float_type x, float_type *yprime, float_type *yprime2
|
|---|
| 868 | ) const throw(c2_exception)
|
|---|
| 869 | {
|
|---|
| 870 | float_type l=this->func->xmin();
|
|---|
| 871 | float_type r=this->func->xmax();
|
|---|
| 872 | float_type yp, ypp;
|
|---|
| 873 | float_type y=this->func->find_root(l, r, get_start_hint(x), x, 0, &yp, &ypp);
|
|---|
| 874 | start_hint=y;
|
|---|
| 875 | if(yprime) *yprime=1.0/yp;
|
|---|
| 876 | if(yprime2) *yprime2=-ypp/(yp*yp*yp);
|
|---|
| 877 | return y;
|
|---|
| 878 | }
|
|---|
| 879 |
|
|---|
| 880 | //accumulated_histogram starts with binned data, generates the integral, and generates a piecewise linear interpolating_function
|
|---|
| 881 | //If drop_zeros is true, it merges empty bins together before integration
|
|---|
| 882 | //Note that the resulting interpolating_function is guaranteed to be increasing (if drop_zeros is false)
|
|---|
| 883 | // or stricly increasing (if drop_zeros is true)
|
|---|
| 884 | //If inverse_function is true, it drop zeros, integrates, and returns the inverse function which is useful
|
|---|
| 885 | // for random number generation based on the input distribution.
|
|---|
| 886 | //If normalize is true, the big end of the integral is scaled to 1.
|
|---|
| 887 | //If the data are passed in reverse order (large X first), the integral is carried out from the big end,
|
|---|
| 888 | // and then the data are reversed to the result in in increasing X order.
|
|---|
| 889 | template <typename float_type> accumulated_histogram<float_type>::accumulated_histogram(
|
|---|
| 890 | const std::vector<float_type>binedges, const std::vector<float_type> binheights,
|
|---|
| 891 | bool normalize, bool inverse_function, bool drop_zeros)
|
|---|
| 892 | {
|
|---|
| 893 |
|
|---|
| 894 | int np=binheights.size();
|
|---|
| 895 |
|
|---|
| 896 | std::vector<float_type> be, bh;
|
|---|
| 897 | if(drop_zeros || inverse_function) { //inverse functions cannot have any zero bins or they have vertical sections
|
|---|
| 898 | if(binheights[0] || !inverse_function) { // conserve lower x bound if not an inverse function
|
|---|
| 899 | be.push_back(binedges[0]);
|
|---|
| 900 | bh.push_back(binheights[0]);
|
|---|
| 901 | }
|
|---|
| 902 | for(int i=1; i<np-1; i++) {
|
|---|
| 903 | if(binheights[i]) {
|
|---|
| 904 | be.push_back(binedges[i]);
|
|---|
| 905 | bh.push_back(binheights[i]);
|
|---|
| 906 | }
|
|---|
| 907 | }
|
|---|
| 908 | if(binheights[np-1] || !inverse_function) {
|
|---|
| 909 | bh.push_back(binheights[np-1]);
|
|---|
| 910 | be.push_back(binedges[np-1]);
|
|---|
| 911 | be.push_back(binedges[np]); // push both sides of the last bin if needed
|
|---|
| 912 | }
|
|---|
| 913 | np=bh.size(); // set np to compressed size of bin array
|
|---|
| 914 | } else {
|
|---|
| 915 | be=binedges;
|
|---|
| 916 | bh=binheights;
|
|---|
| 917 | }
|
|---|
| 918 | std::vector<float_type> cum(np+1, 0.0);
|
|---|
| 919 | for(int i=1; i<=np; i++) cum[i]=bh[i]*(be[i]-be[i-1])+cum[i-1]; // accumulate bins, leaving bin 0 as 0
|
|---|
| 920 | if(be[1] < be[0]) { // if bins passed in backwards, reverse them
|
|---|
| 921 | std::reverse(be.begin(), be.end());
|
|---|
| 922 | std::reverse(cum.begin(), cum.end());
|
|---|
| 923 | for(unsigned int i=0; i<cum.size(); i++) cum[i]*=-1; // flip sign on reversed data
|
|---|
| 924 | }
|
|---|
| 925 | if(normalize) {
|
|---|
| 926 | float_type m=1.0/std::max(cum[0], cum[np]);
|
|---|
| 927 | for(int i=0; i<=np; i++) cum[i]*=m;
|
|---|
| 928 | }
|
|---|
| 929 | if(inverse_function) interpolating_function<float_type>(cum, be); // use cum as x axis in inverse function
|
|---|
| 930 | else interpolating_function<float_type>(be, cum); // else use lower bin edge as x axis
|
|---|
| 931 | std::fill(this->y2.begin(), this->y2.end(), 0.0); // clear second derivatives, to we are piecewise linear
|
|---|
| 932 | }
|
|---|
| 933 |
|
|---|
| 934 | template <typename float_type> c2_piecewise_function<float_type>::c2_piecewise_function()
|
|---|
| 935 | : c2_function<float_type>(), lastKLow(-1)
|
|---|
| 936 | {
|
|---|
| 937 | this->sampling_grid=new std::vector<float_type>; // this always has a smapling grid
|
|---|
| 938 | }
|
|---|
| 939 |
|
|---|
| 940 | template <typename float_type> c2_piecewise_function<float_type>::~c2_piecewise_function()
|
|---|
| 941 | {
|
|---|
| 942 | size_t np=functions.size();
|
|---|
| 943 | for(size_t i=0; i<np; i++) if(owns[i]) delete functions[i];
|
|---|
| 944 | }
|
|---|
| 945 |
|
|---|
| 946 | template <typename float_type> float_type c2_piecewise_function<float_type>::value_with_derivatives(
|
|---|
| 947 | float_type x, float_type *yprime, float_type *yprime2
|
|---|
| 948 | ) const throw(c2_exception)
|
|---|
| 949 | {
|
|---|
| 950 |
|
|---|
| 951 | size_t np=functions.size();
|
|---|
| 952 | if(!np) throw c2_exception("attempting to evaluate an empty piecewise function");
|
|---|
| 953 |
|
|---|
| 954 | if(x < this->xmin() || x > this->xmax()) {
|
|---|
| 955 | std::ostringstream outstr;
|
|---|
| 956 | outstr << "piecewise function argument " << x << " out of range " << this->xmin() << " -- " << this->xmax();
|
|---|
| 957 | throw c2_exception(outstr.str().c_str());
|
|---|
| 958 | }
|
|---|
| 959 |
|
|---|
| 960 | int klo=0;
|
|---|
| 961 |
|
|---|
| 962 | if(lastKLow >= 0 && functions[lastKLow]->xmin() <= x && functions[lastKLow]->xmax() > x) {
|
|---|
| 963 | klo=lastKLow;
|
|---|
| 964 | } else {
|
|---|
| 965 | int khi=np;
|
|---|
| 966 | while(khi-klo > 1) {
|
|---|
| 967 | int km=(khi+klo)/2;
|
|---|
| 968 | if(functions[km]->xmin() > x) khi=km;
|
|---|
| 969 | else klo=km;
|
|---|
| 970 | }
|
|---|
| 971 | }
|
|---|
| 972 | lastKLow=klo;
|
|---|
| 973 | return functions[klo]->value_with_derivatives(x, yprime, yprime2);
|
|---|
| 974 | }
|
|---|
| 975 |
|
|---|
| 976 | template <typename float_type> void c2_piecewise_function<float_type>::append_function(
|
|---|
| 977 | c2_function<float_type> &func, bool pass_ownership) throw(c2_exception)
|
|---|
| 978 | {
|
|---|
| 979 | if(functions.size()) { // check whether there are any gaps to fill, etc.
|
|---|
| 980 | c2_function<float_type> &tail=*(functions.back());
|
|---|
| 981 | float_type x0=tail.xmax();
|
|---|
| 982 | float_type x1=func.xmin();
|
|---|
| 983 | if(x0 < x1) {
|
|---|
| 984 | // must insert a connector if x0 < x1
|
|---|
| 985 | float_type y0=tail(x0);
|
|---|
| 986 | float_type y1=func(x1);
|
|---|
| 987 | c2_function<float_type> *connector=new c2_linear<float_type>(x0, y0, (y1-y0)/(x1-x0));
|
|---|
| 988 | connector->set_domain(x0,x1);
|
|---|
| 989 | functions.push_back(connector);
|
|---|
| 990 | owns.push_back(true);
|
|---|
| 991 | this->sampling_grid->push_back(x1);
|
|---|
| 992 | } else if(x0>x1) throw c2_exception("function domains not increasing in c2_piecewise_function");
|
|---|
| 993 | }
|
|---|
| 994 | functions.push_back(&func);
|
|---|
| 995 | owns.push_back(pass_ownership);
|
|---|
| 996 | // extend our domain to include all known functions
|
|---|
| 997 | this->set_domain(functions.front()->xmin(), functions.back()->xmax());
|
|---|
| 998 | // extend our sampling grid with the new function's grid, with the first point dropped to avoid duplicates
|
|---|
| 999 | std::vector<float_type> &newgrid=func.get_sampling_grid(func.xmin(), func.xmax());
|
|---|
| 1000 | this->sampling_grid->insert(this->sampling_grid->end(), newgrid.begin()+1, newgrid.end());
|
|---|
| 1001 | delete &newgrid;
|
|---|
| 1002 | }
|
|---|
| 1003 |
|
|---|
| 1004 | template <typename float_type> c2_connector_function<float_type>::c2_connector_function(
|
|---|
| 1005 | const c2_function<float_type> &f1, const c2_function<float_type> &f2, float_type x0, float_type x2,
|
|---|
| 1006 | bool auto_center, float_type y1)
|
|---|
| 1007 |
|
|---|
| 1008 | : c2_function<float_type>()
|
|---|
| 1009 | {
|
|---|
| 1010 | float_type y0, yp0, ypp0, y2, yp2, ypp2;
|
|---|
| 1011 | fdx=(x2-x0)/2.0;
|
|---|
| 1012 | fhinv=1.0/fdx;
|
|---|
| 1013 | fx1=(x0+x2)/2.0;
|
|---|
| 1014 |
|
|---|
| 1015 | y0=f1.value_with_derivatives(x0, &yp0, &ypp0); // get left wall values from conventional computation
|
|---|
| 1016 | y2=f2.value_with_derivatives(x2, &yp2, &ypp2); // get right wall values from conventional computation
|
|---|
| 1017 |
|
|---|
| 1018 | // scale derivs to put function on [-1,1] since mma solution is done this way
|
|---|
| 1019 | yp0*=fdx;
|
|---|
| 1020 | yp2*=fdx;
|
|---|
| 1021 | ypp0*=fdx*fdx;
|
|---|
| 1022 | ypp2*=fdx*fdx;
|
|---|
| 1023 |
|
|---|
| 1024 | float_type ff0=(8*(y0 + y2) + 5*(yp0 - yp2) + ypp0 + ypp2)/16.0;
|
|---|
| 1025 | if(auto_center) y1=ff0; // forces ff to be 0 if we are auto-centering
|
|---|
| 1026 |
|
|---|
| 1027 | // y[x_] = y1 + x (a + b x) + (x-1) x (x+1) (c + d x + e x^2 + f x^3)
|
|---|
| 1028 | fy1=y1;
|
|---|
| 1029 | fa=-(y0 - y2)/2.;
|
|---|
| 1030 | fb=(y0 - 2*y1 + y2)/2.;
|
|---|
| 1031 | fc=(7*(y0 - y2 + yp0 + yp2) + ypp0 - ypp2)/16.;
|
|---|
| 1032 | fd=(32*y1 - 16*(y2 + y0) + 9*(yp2 - yp0) - ypp0 - ypp2)/16.;
|
|---|
| 1033 | fe=(3*(y2 - y0 - yp0 - yp2) - ypp0 + ypp2)/16.;
|
|---|
| 1034 | ff=(ff0 - y1);
|
|---|
| 1035 | // y'[x] = a + 2 b x + (3x^2 - 1) (c + d x + e x^2 + f x^3) + (x-1) x (x+1) (d + 2 e x + 3 f x^2 )
|
|---|
| 1036 | // y''[x] = 2b + (x-1) x (x+1) (2 e + 6 f x) + 2 (3 x^2 -1) (d + 2 e x + 3 f x^2 ) + 6 x (c + d x + e x^2 + f x^3)
|
|---|
| 1037 | this->set_domain(x0,x2); // this is where the function is valid
|
|---|
| 1038 | }
|
|---|
| 1039 |
|
|---|
| 1040 | template <typename float_type> c2_connector_function<float_type>::~c2_connector_function()
|
|---|
| 1041 | {
|
|---|
| 1042 | }
|
|---|
| 1043 |
|
|---|
| 1044 | template <typename float_type> float_type c2_connector_function<float_type>::value_with_derivatives(
|
|---|
| 1045 | float_type x, float_type *yprime, float_type *yprime2
|
|---|
| 1046 | ) const throw(c2_exception)
|
|---|
| 1047 | {
|
|---|
| 1048 |
|
|---|
| 1049 | float_type dx=(x-fx1)*fhinv;
|
|---|
| 1050 | float_type q1=fc + dx*(fd + dx*(fe + dx*ff));
|
|---|
| 1051 | float_type xp1=(dx-1)*(dx+1)*dx;
|
|---|
| 1052 |
|
|---|
| 1053 | float_type y= fy1 + dx*(fa+fb*dx) + xp1*q1;
|
|---|
| 1054 | if(yprime || yprime2) {
|
|---|
| 1055 | float_type q2 =fd + dx*(2*fe + dx*3*ff);
|
|---|
| 1056 | float_type q3=2*fe+6*ff*dx;
|
|---|
| 1057 | float_type xp2=(3*dx*dx-1);
|
|---|
| 1058 | if(yprime) *yprime=(fa + 2*fb*dx + xp2*q1 + xp1*q2)*fhinv;
|
|---|
| 1059 | if(yprime2) *yprime2=(2*fb+xp1*q3+2*xp2*q2+6*dx*q1)*fhinv*fhinv;
|
|---|
| 1060 | }
|
|---|
| 1061 | return y;
|
|---|
| 1062 | }
|
|---|