| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | /**
|
|---|
| 28 | * \file
|
|---|
| 29 | * \brief Provides code for the general c2_function algebra which supports
|
|---|
| 30 | * fast, flexible operations on piecewise-twice-differentiable functions
|
|---|
| 31 | *
|
|---|
| 32 | * \author Created by R. A. Weller and Marcus H. Mendenhall on 7/9/05.
|
|---|
| 33 | * \author Copyright 2005 __Vanderbilt University__. All rights reserved.
|
|---|
| 34 | *
|
|---|
| 35 | * \version c2_function.cc,v 1.169 2008/05/22 12:45:19 marcus Exp
|
|---|
| 36 | */
|
|---|
| 37 |
|
|---|
| 38 | #include <iostream>
|
|---|
| 39 | #include <vector>
|
|---|
| 40 | #include <algorithm>
|
|---|
| 41 | #include <cstdlib>
|
|---|
| 42 | #include <numeric>
|
|---|
| 43 | #include <functional>
|
|---|
| 44 | #include <iterator>
|
|---|
| 45 | #include <cmath>
|
|---|
| 46 | #include <limits>
|
|---|
| 47 | #include <sstream>
|
|---|
| 48 |
|
|---|
| 49 | template <typename float_type> const std::string c2_function<float_type>::cvs_file_vers() const
|
|---|
| 50 | { return "c2_function.cc,v 1.169 2008/05/22 12:45:19 marcus Exp"; }
|
|---|
| 51 |
|
|---|
| 52 | // find a pre-bracketed root of a c2_function, which is a MUCH easier job than general root finding
|
|---|
| 53 | // since the derivatives are known exactly, and smoothness is guaranteed.
|
|---|
| 54 | // this searches for f(x)=value, to make life a little easier than always searching for f(x)=0
|
|---|
| 55 | template <typename float_type> float_type c2_function<float_type>::find_root(float_type lower_bracket, float_type upper_bracket,
|
|---|
| 56 | float_type start, float_type value, int *error,
|
|---|
| 57 | float_type *final_yprime, float_type *final_yprime2) const throw(c2_exception)
|
|---|
| 58 | {
|
|---|
| 59 | // find f(x)=value within the brackets, using the guarantees of smoothness associated with a c2_function
|
|---|
| 60 | // can use local f(x)=a*x**2 + b*x + c and solve quadratic to find root, then iterate
|
|---|
| 61 |
|
|---|
| 62 | float_type yp, yp2; // we will make unused pointers point here, to save null checks later
|
|---|
| 63 | if (!final_yprime) final_yprime=&yp;
|
|---|
| 64 | if (!final_yprime2) final_yprime2=&yp2;
|
|---|
| 65 |
|
|---|
| 66 | float_type ftol=5*(std::numeric_limits<float_type>::epsilon()*std::abs(value)+std::numeric_limits<float_type>::min());
|
|---|
| 67 | float_type xtol=5*(std::numeric_limits<float_type>::epsilon()*(std::abs(upper_bracket)+std::abs(lower_bracket))+std::numeric_limits<float_type>::min());
|
|---|
| 68 |
|
|---|
| 69 | float_type root=start; // start looking in the middle
|
|---|
| 70 | if(error) *error=0; // start out with error flag set to OK, if it is expected
|
|---|
| 71 |
|
|---|
| 72 | float_type c, b;
|
|---|
| 73 |
|
|---|
| 74 | if(!root_info) {
|
|---|
| 75 | root_info=new struct c2_root_info;
|
|---|
| 76 | root_info->inited=false;
|
|---|
| 77 | }
|
|---|
| 78 | // this new logic is to keep track of where we were before, and lower the number of
|
|---|
| 79 | // function evaluations if we are searching inside the same bracket as before.
|
|---|
| 80 | // Since this root finder has, very often, the bracket of the entire domain of the function,
|
|---|
| 81 | // this makes a big difference, especially to c2_inverse_function
|
|---|
| 82 | if(!root_info->inited || upper_bracket != root_info->upper.x || lower_bracket != root_info->lower.x) {
|
|---|
| 83 | root_info->upper.x=upper_bracket;
|
|---|
| 84 | fill_fblock(root_info->upper);
|
|---|
| 85 | root_info->lower.x=lower_bracket;
|
|---|
| 86 | fill_fblock(root_info->lower);
|
|---|
| 87 | root_info->inited=true;
|
|---|
| 88 | }
|
|---|
| 89 |
|
|---|
| 90 | float_type clower=root_info->lower.y-value;
|
|---|
| 91 | if(!clower) {
|
|---|
| 92 | *final_yprime=root_info->lower.yp;
|
|---|
| 93 | *final_yprime2=root_info->lower.ypp;
|
|---|
| 94 | return lower_bracket;
|
|---|
| 95 | }
|
|---|
| 96 |
|
|---|
| 97 | float_type cupper=root_info->upper.y-value;
|
|---|
| 98 | if(!cupper) {
|
|---|
| 99 | *final_yprime=root_info->upper.yp;
|
|---|
| 100 | *final_yprime2=root_info->upper.ypp;
|
|---|
| 101 | return upper_bracket;
|
|---|
| 102 | }
|
|---|
| 103 | const float_type lower_sign = (clower < 0) ? -1 : 1;
|
|---|
| 104 |
|
|---|
| 105 | if(lower_sign*cupper >0) {
|
|---|
| 106 | // argh, no sign change in here!
|
|---|
| 107 | if(error) { *error=1; return 0.0; }
|
|---|
| 108 | else {
|
|---|
| 109 | std::ostringstream outstr;
|
|---|
| 110 | outstr << "unbracketed root in find_root at xlower= " << lower_bracket << ", xupper= " << upper_bracket;
|
|---|
| 111 | outstr << ", value= " << value << ": bailing";
|
|---|
| 112 | throw c2_exception(outstr.str().c_str());
|
|---|
| 113 | }
|
|---|
| 114 | }
|
|---|
| 115 |
|
|---|
| 116 | float_type delta=upper_bracket-lower_bracket; // first error step
|
|---|
| 117 | c=value_with_derivatives(root, final_yprime, final_yprime2)-value; // compute initial values
|
|---|
| 118 | b=*final_yprime; // make a local copy for readability
|
|---|
| 119 | increment_evaluations();
|
|---|
| 120 |
|
|---|
| 121 | while(
|
|---|
| 122 | std::abs(delta) > xtol && // absolute x step check
|
|---|
| 123 | std::abs(c) > ftol && // absolute y tolerance
|
|---|
| 124 | std::abs(c) > xtol*std::abs(b) // comparison to smallest possible Y step from derivative
|
|---|
| 125 | )
|
|---|
| 126 | {
|
|---|
| 127 | float_type a=(*final_yprime2)/2; // second derivative is 2*a
|
|---|
| 128 | float_type disc=b*b-4*a*c;
|
|---|
| 129 | // std::cout << std::endl << "find_root_debug a,b,c,d " << a << " " << b << " " << c << " " << disc << std::endl;
|
|---|
| 130 |
|
|---|
| 131 | if(disc >= 0) {
|
|---|
| 132 | float_type q=-0.5*((b>=0)?(b+std::sqrt(disc)):(b-std::sqrt(disc)));
|
|---|
| 133 | if(q*q > std::abs(a*c)) delta=c/q; // since x1=q/a, x2=c/q, x1/x2=q^2/ac, this picks smaller step
|
|---|
| 134 | else delta=q/a;
|
|---|
| 135 | root+=delta;
|
|---|
| 136 | }
|
|---|
| 137 |
|
|---|
| 138 | if(disc < 0 || root<lower_bracket || root>upper_bracket ||
|
|---|
| 139 | std::abs(delta) >= 0.5*(upper_bracket-lower_bracket)) {
|
|---|
| 140 | // if we jump out of the bracket, or aren't converging well, bisect
|
|---|
| 141 | root=0.5*(lower_bracket+upper_bracket);
|
|---|
| 142 | delta=upper_bracket-lower_bracket;
|
|---|
| 143 | }
|
|---|
| 144 | c=value_with_derivatives(root, final_yprime, final_yprime2)-value; // compute initial values
|
|---|
| 145 | if(c2_isnan(c)) {
|
|---|
| 146 | bad_x_point=root;
|
|---|
| 147 | return c; // return the nan if a computation failed
|
|---|
| 148 | }
|
|---|
| 149 | b=*final_yprime; // make a local copy for readability
|
|---|
| 150 | increment_evaluations();
|
|---|
| 151 |
|
|---|
| 152 | // now, close in bracket on whichever side this still brackets
|
|---|
| 153 | if(c*lower_sign < 0.0) {
|
|---|
| 154 | cupper=c;
|
|---|
| 155 | upper_bracket=root;
|
|---|
| 156 | } else {
|
|---|
| 157 | clower=c;
|
|---|
| 158 | lower_bracket=root;
|
|---|
| 159 | }
|
|---|
| 160 | // std::cout << "find_root_debug x, y, dx " << root << " " << c << " " << delta << std::endl;
|
|---|
| 161 | }
|
|---|
| 162 | return root;
|
|---|
| 163 | }
|
|---|
| 164 |
|
|---|
| 165 | /* def partial_integrals(self, xgrid):
|
|---|
| 166 | Return the integrals of a function between the sampling points xgrid. The sum is the definite integral.
|
|---|
| 167 | This method uses an exact integration of the polynomial which matches the values and derivatives at the
|
|---|
| 168 | endpoints of a segment. Its error scales as h**6, if the input functions really are smooth.
|
|---|
| 169 | This could very well be used as a stepper for adaptive Romberg integration.
|
|---|
| 170 | For InterpolatingFunctions, it is likely that the Simpson's rule integrator is sufficient.
|
|---|
| 171 | #the weights come from an exact mathematica solution to the 5th order polynomial with the given values & derivatives
|
|---|
| 172 | #yint = (y0+y1)*dx/2 + dx^2*(yp0-yp1)/10 + dx^3 * (ypp0+ypp1)/120 )
|
|---|
| 173 | */
|
|---|
| 174 |
|
|---|
| 175 | // the recursive part of the integrator is agressively designed to minimize copying of data... lots of pointers
|
|---|
| 176 | template <typename float_type> float_type c2_function<float_type>::integrate_step(c2_integrate_recur &rb) const throw(c2_exception)
|
|---|
| 177 | {
|
|---|
| 178 | std::vector< recur_item > &rb_stack=*rb.rb_stack; // heap-based stack of data for recursion
|
|---|
| 179 | rb_stack.clear();
|
|---|
| 180 |
|
|---|
| 181 | recur_item top;
|
|---|
| 182 | top.depth=0; top.done=false; top.f0index=0; top.f2index=0; top.step_sum=0;
|
|---|
| 183 |
|
|---|
| 184 | // push storage for our initial elements
|
|---|
| 185 | rb_stack.push_back(top);
|
|---|
| 186 | rb_stack.back().f1=*rb.f0;
|
|---|
| 187 | rb_stack.back().done=true; // this element will never be evaluated further
|
|---|
| 188 |
|
|---|
| 189 | rb_stack.push_back(top);
|
|---|
| 190 | rb_stack.back().f1=*rb.f1;
|
|---|
| 191 | rb_stack.back().done=true; // this element will never be evaluated further
|
|---|
| 192 |
|
|---|
| 193 | if(!rb.inited) {
|
|---|
| 194 | switch(rb.derivs) {
|
|---|
| 195 | case 0:
|
|---|
| 196 | rb.eps_scale=0.1; rb.extrap_coef=16; break;
|
|---|
| 197 | case 1:
|
|---|
| 198 | rb.eps_scale=0.1; rb.extrap_coef=64; break;
|
|---|
| 199 | case 2:
|
|---|
| 200 | rb.eps_scale=0.02; rb.extrap_coef=1024; break;
|
|---|
| 201 | default:
|
|---|
| 202 | throw c2_exception("derivs must be 0, 1 or 2 in partial_integrals");
|
|---|
| 203 | }
|
|---|
| 204 |
|
|---|
| 205 | rb.extrap2=1.0/(rb.extrap_coef-1.0);
|
|---|
| 206 | rb.dx_tolerance=10.0*std::numeric_limits<float_type>::epsilon();
|
|---|
| 207 | rb.abs_tol_min=10.0*std::numeric_limits<float_type>::min();
|
|---|
| 208 | rb.inited=true;
|
|---|
| 209 | }
|
|---|
| 210 |
|
|---|
| 211 | // now, push our first real element
|
|---|
| 212 | top.f0index=0; // left element is stack[0]
|
|---|
| 213 | top.f2index=1; // right element is stack[1]
|
|---|
| 214 | top.abs_tol=rb.abs_tol;
|
|---|
| 215 | rb_stack.push_back(top);
|
|---|
| 216 |
|
|---|
| 217 | while(rb_stack.size() > 2) {
|
|---|
| 218 | recur_item &back=rb_stack.back();
|
|---|
| 219 | if(back.done) {
|
|---|
| 220 | float_type sum=back.step_sum;
|
|---|
| 221 | rb_stack.pop_back();
|
|---|
| 222 | rb_stack.back().step_sum+=sum; // bump our sum up to the parent
|
|---|
| 223 | continue;
|
|---|
| 224 | }
|
|---|
| 225 | back.done=true;
|
|---|
| 226 |
|
|---|
| 227 | c2_fblock<float_type> &f0=rb_stack[back.f0index].f1, &f2=rb_stack[back.f2index].f1;
|
|---|
| 228 | c2_fblock<float_type> &f1=back.f1; // will hold new middle values
|
|---|
| 229 | size_t f1index=rb_stack.size()-1; // our current offset
|
|---|
| 230 | float_type abs_tol=back.abs_tol;
|
|---|
| 231 |
|
|---|
| 232 | f1.x=0.5*(f0.x + f2.x); // center of interval
|
|---|
| 233 | float_type dx2=0.5*(f2.x - f0.x);
|
|---|
| 234 |
|
|---|
| 235 | // check for underflow on step size, which prevents us from achieving specified accuracy.
|
|---|
| 236 | if(std::abs(dx2) < std::abs(f1.x)*rb.dx_tolerance || std::abs(dx2) < rb.abs_tol_min) {
|
|---|
| 237 | std::ostringstream outstr;
|
|---|
| 238 | outstr << "Step size underflow in adaptive_partial_integrals at depth=" << back.depth << ", x= " << f1.x;
|
|---|
| 239 | throw c2_exception(outstr.str().c_str());
|
|---|
| 240 | }
|
|---|
| 241 |
|
|---|
| 242 | fill_fblock(f1);
|
|---|
| 243 | if(c2_isnan(f1.y)) {
|
|---|
| 244 | bad_x_point=f1.x;
|
|---|
| 245 | return f1.y; // can't go any further if a nan has appeared
|
|---|
| 246 | }
|
|---|
| 247 |
|
|---|
| 248 | bool yptrouble=f0.ypbad || f2.ypbad || f1.ypbad;
|
|---|
| 249 | bool ypptrouble=f0.yppbad || f2.yppbad || f1.yppbad;
|
|---|
| 250 |
|
|---|
| 251 | // select the real derivative count based on whether we are at a point where derivatives exist
|
|---|
| 252 | int derivs = std::min(rb.derivs, (yptrouble||ypptrouble)?(yptrouble?0:1):2);
|
|---|
| 253 |
|
|---|
| 254 | if(!back.depth) { // top level, total has not been initialized yet
|
|---|
| 255 | switch(derivs) { // create estimate of next lower order for first try
|
|---|
| 256 | case 0:
|
|---|
| 257 | back.previous_estimate=(f0.y+f2.y)*dx2; break;
|
|---|
| 258 | case 1:
|
|---|
| 259 | back.previous_estimate=(f0.y+4.0*f1.y+f2.y)*dx2/3.0; break;
|
|---|
| 260 | case 2:
|
|---|
| 261 | back.previous_estimate=( (14*f0.y + 32*f1.y + 14*f2.y) + 2*dx2 * (f0.yp - f2.yp) ) * dx2 /30.; break;
|
|---|
| 262 | default:
|
|---|
| 263 | back.previous_estimate=0.0; // just to suppress missing default warnings
|
|---|
| 264 | }
|
|---|
| 265 | }
|
|---|
| 266 |
|
|---|
| 267 | float_type left, right;
|
|---|
| 268 |
|
|---|
| 269 | // pre-compute constants so all multiplies use a small dynamic range
|
|---|
| 270 | // constants for 0 derivative integrator
|
|---|
| 271 | static const float_type c0c1=5./12., c0c2=8./12., c0c3=-1./12.;
|
|---|
| 272 | // constants for 1 derivative integrator
|
|---|
| 273 | static const float_type c1c1=101./240., c1c2=128./240., c1c3=11./240.,
|
|---|
| 274 | c1c4=13./240., c1c5=-40./240., c1c6=-3./240.;
|
|---|
| 275 | // constants for 2 derivative integrator
|
|---|
| 276 | static const float_type c2c1=169./40320., c2c2=1024./ 40320., c2c3=-41./40320.,
|
|---|
| 277 | c2c4=2727./40320., c2c5=-5040./40320., c2c6=423./40320.,
|
|---|
| 278 | c2c7=17007./40320., c2c8=24576./40320., c2c9=-1263./40320.;
|
|---|
| 279 |
|
|---|
| 280 | switch(derivs) {
|
|---|
| 281 | case 2:
|
|---|
| 282 | // use ninth-order estimates for each side, from full set of all values (!) (Thanks, Mathematica!)
|
|---|
| 283 | left= ( ( (c2c1*f0.ypp + c2c2*f1.ypp + c2c3*f2.ypp)*dx2 +
|
|---|
| 284 | (c2c4*f0.yp + c2c5*f1.yp + c2c6*f2.yp) )*dx2 +
|
|---|
| 285 | (c2c7*f0.y + c2c8*f1.y + c2c9*f2.y) )* dx2;
|
|---|
| 286 | right= ( ( (c2c1*f2.ypp + c2c2*f1.ypp + c2c3*f0.ypp)*dx2 -
|
|---|
| 287 | (c2c4*f2.yp + c2c5*f1.yp + c2c6*f0.yp) )*dx2 +
|
|---|
| 288 | (c2c7*f2.y + c2c8*f1.y + c2c9*f0.y) )* dx2;
|
|---|
| 289 | // std::cout << f0.x << " " << f1.x << " " << f2.x << std::endl ;
|
|---|
| 290 | // std::cout << f0.y << " " << f1.y << " " << f2.y << " " << left << " " << right << " " << total << std::endl ;
|
|---|
| 291 | break;
|
|---|
| 292 | case 1:
|
|---|
| 293 | left= ( (c1c1*f0.y + c1c2*f1.y + c1c3*f2.y) + dx2*(c1c4*f0.yp + c1c5*f1.yp + c1c6*f2.yp) ) * dx2 ;
|
|---|
| 294 | right= ( (c1c1*f2.y + c1c2*f1.y + c1c3*f0.y) - dx2*(c1c4*f2.yp + c1c5*f1.yp + c1c6*f0.yp) ) * dx2 ;
|
|---|
| 295 | break;
|
|---|
| 296 | case 0:
|
|---|
| 297 | left= (c0c1*f0.y + c0c2*f1.y + c0c3*f2.y)*dx2;
|
|---|
| 298 | right= (c0c1*f2.y + c0c2*f1.y + c0c3*f0.y)*dx2;
|
|---|
| 299 | break;
|
|---|
| 300 | default:
|
|---|
| 301 | left=right=0.0; // suppress warnings about missing default
|
|---|
| 302 | break;
|
|---|
| 303 | }
|
|---|
| 304 |
|
|---|
| 305 | float_type lrsum=left+right;
|
|---|
| 306 |
|
|---|
| 307 | bool extrapolate=back.depth && rb.extrapolate && (derivs==rb.derivs); // only extrapolate if no trouble with derivs
|
|---|
| 308 | float_type eps=std::abs(back.previous_estimate-lrsum)*rb.eps_scale;
|
|---|
| 309 | if(extrapolate) eps*=rb.eps_scale;
|
|---|
| 310 |
|
|---|
| 311 | if(rb.adapt && eps > abs_tol && eps > std::abs(lrsum)*rb.rel_tol) {
|
|---|
| 312 | // tolerance not met, subdivide & recur
|
|---|
| 313 | if(abs_tol > rb.abs_tol_min) abs_tol=abs_tol*0.5; // each half has half the error budget
|
|---|
| 314 | top.abs_tol=abs_tol;
|
|---|
| 315 | top.depth=back.depth+1;
|
|---|
| 316 |
|
|---|
| 317 | // save the last things we need from back before a push happens, in case
|
|---|
| 318 | // the push causes a reallocation and moves the whole stack.
|
|---|
| 319 | size_t f0index=back.f0index, f2index=back.f2index;
|
|---|
| 320 |
|
|---|
| 321 | top.f0index=f1index; top.f2index=f2index; // insert pointers to right side data into our recursion block
|
|---|
| 322 | top.previous_estimate=right;
|
|---|
| 323 | rb_stack.push_back(top);
|
|---|
| 324 |
|
|---|
| 325 | top.f0index=f0index; top.f2index=f1index; // insert pointers to left side data into our recursion block
|
|---|
| 326 | top.previous_estimate=left;
|
|---|
| 327 | rb_stack.push_back(top);
|
|---|
| 328 |
|
|---|
| 329 | } else if(extrapolate) {
|
|---|
| 330 | // extrapolation only happens on leaf nodes, where the tolerance was met.
|
|---|
| 331 | back.step_sum+=(rb.extrap_coef*lrsum - back.previous_estimate)*rb.extrap2;
|
|---|
| 332 | } else {
|
|---|
| 333 | back.step_sum+=lrsum;
|
|---|
| 334 | }
|
|---|
| 335 | }
|
|---|
| 336 | return rb_stack.back().step_sum; // last element on the stack holds the sum
|
|---|
| 337 | }
|
|---|
| 338 |
|
|---|
| 339 | template <typename float_type> bool c2_function<float_type>::check_monotonicity(
|
|---|
| 340 | const std::vector<float_type> &data, const char message[]) const throw(c2_exception)
|
|---|
| 341 | {
|
|---|
| 342 | size_t np=data.size();
|
|---|
| 343 | if(np < 2) return false; // one point has no direction!
|
|---|
| 344 |
|
|---|
| 345 | bool rev=(data[1] < data[0]); // which way do data point?
|
|---|
| 346 | size_t i;
|
|---|
| 347 |
|
|---|
| 348 | if(!rev) for(i = 2; i < np && (data[i-1] < data[i]) ; i++);
|
|---|
| 349 | else for(i = 2; i < np &&(data[i-1] > data[i]) ; i++);
|
|---|
| 350 |
|
|---|
| 351 | if(i != np) throw c2_exception(message);
|
|---|
| 352 |
|
|---|
| 353 | return rev;
|
|---|
| 354 | }
|
|---|
| 355 |
|
|---|
| 356 | template <typename float_type> void c2_function<float_type>::set_sampling_grid(const std::vector<float_type> &grid) throw(c2_exception)
|
|---|
| 357 | {
|
|---|
| 358 | bool rev=check_monotonicity(grid, "set_sampling_grid: sampling grid not monotonic");
|
|---|
| 359 |
|
|---|
| 360 | if(!sampling_grid || no_overwrite_grid) sampling_grid=new std::vector<float_type>;
|
|---|
| 361 | (*sampling_grid)=grid; no_overwrite_grid=0;
|
|---|
| 362 |
|
|---|
| 363 | if(rev) std::reverse(sampling_grid->begin(), sampling_grid->end()); // make it increasing
|
|---|
| 364 | }
|
|---|
| 365 |
|
|---|
| 366 | template <typename float_type> void c2_function<float_type>::
|
|---|
| 367 | get_sampling_grid(float_type xmin, float_type xmax, std::vector<float_type> &grid) const
|
|---|
| 368 | {
|
|---|
| 369 | std::vector<float_type> *result=&grid;
|
|---|
| 370 | result->clear();
|
|---|
| 371 |
|
|---|
| 372 | if( !(sampling_grid) || !(sampling_grid->size()) || (xmax <= sampling_grid->front()) || (xmin >= sampling_grid->back()) ) {
|
|---|
| 373 | // nothing is known about the function in this region, return xmin and xmax
|
|---|
| 374 | result->push_back(xmin);
|
|---|
| 375 | result->push_back(xmax);
|
|---|
| 376 | } else {
|
|---|
| 377 | std::vector<float_type> &sg=*sampling_grid; // just a shortcut
|
|---|
| 378 | int np=sg.size();
|
|---|
| 379 | int klo=0, khi=np-1, firstindex=0, lastindex=np-1;
|
|---|
| 380 |
|
|---|
| 381 | result->push_back(xmin);
|
|---|
| 382 |
|
|---|
| 383 | if(xmin > sg.front() ) {
|
|---|
| 384 | // hunt through table for position bracketing starting point
|
|---|
| 385 | while(khi-klo > 1) {
|
|---|
| 386 | int km=(khi+klo)/2;
|
|---|
| 387 | if(sg[km] > xmin) khi=km;
|
|---|
| 388 | else klo=km;
|
|---|
| 389 | }
|
|---|
| 390 | khi=klo+1;
|
|---|
| 391 | // khi now points to first point definitively beyond our first point, or last point of array
|
|---|
| 392 | firstindex=khi;
|
|---|
| 393 | khi=np-1; // restart upper end of search
|
|---|
| 394 | }
|
|---|
| 395 |
|
|---|
| 396 | if(xmax < sg.back()) {
|
|---|
| 397 | // hunt through table for position bracketing starting point
|
|---|
| 398 | while(khi-klo > 1) {
|
|---|
| 399 | int km=(khi+klo)/2;
|
|---|
| 400 | if(sg[km] > xmax) khi=km;
|
|---|
| 401 | else klo=km;
|
|---|
| 402 | }
|
|---|
| 403 | khi=klo+1;
|
|---|
| 404 | // khi now points to first point definitively beyond our last point, or last point of array
|
|---|
| 405 | lastindex=klo;
|
|---|
| 406 | }
|
|---|
| 407 |
|
|---|
| 408 | int initsize=result->size();
|
|---|
| 409 | result->resize(initsize+(lastindex-firstindex+2));
|
|---|
| 410 | std::copy(sg.begin()+firstindex, sg.begin()+lastindex+1, result->begin()+initsize);
|
|---|
| 411 | result->back()=xmax;
|
|---|
| 412 |
|
|---|
| 413 | // this is the unrefined sampling grid... now check for very close points on front & back and fix if needed.
|
|---|
| 414 | preen_sampling_grid(result);
|
|---|
| 415 | }
|
|---|
| 416 | }
|
|---|
| 417 |
|
|---|
| 418 | template <typename float_type> void c2_function<float_type>::preen_sampling_grid(std::vector<float_type> *result) const
|
|---|
| 419 | {
|
|---|
| 420 | // this is the unrefined sampling grid... now check for very close points on front & back and fix if needed.
|
|---|
| 421 | if(result->size() > 2) { // may be able to prune dangerously close points near the ends if there are at least 3 points
|
|---|
| 422 | bool deleteit=false;
|
|---|
| 423 | float_type x0=(*result)[0], x1=(*result)[1];
|
|---|
| 424 | float_type dx1=x1-x0;
|
|---|
| 425 |
|
|---|
| 426 | float_type ftol=10.0*(std::numeric_limits<float_type>::epsilon()*(std::abs(x0)+std::abs(x1))+std::numeric_limits<float_type>::min());
|
|---|
| 427 | if(dx1 < ftol) deleteit=true;
|
|---|
| 428 | float_type dx2=(*result)[2]-x0;
|
|---|
| 429 | if(dx1/dx2 < 0.1) deleteit=true; // endpoint is very close to internal interesting point
|
|---|
| 430 |
|
|---|
| 431 | if(deleteit) result->erase(result->begin()+1); // delete redundant interesting point
|
|---|
| 432 | }
|
|---|
| 433 |
|
|---|
| 434 | if(result->size() > 2) { // may be able to prune dangerously close points near the ends if there are at least 3 points
|
|---|
| 435 | bool deleteit=false;
|
|---|
| 436 | int pos=result->size()-3;
|
|---|
| 437 | float_type x0=(*result)[pos+1], x1=(*result)[pos+2];
|
|---|
| 438 | float_type dx1=x1-x0;
|
|---|
| 439 |
|
|---|
| 440 | float_type ftol=10.0*(std::numeric_limits<float_type>::epsilon()*(std::abs(x0)+std::abs(x1))+std::numeric_limits<float_type>::min());
|
|---|
| 441 | if(dx1 < ftol) deleteit=true;
|
|---|
| 442 | float_type dx2=x1-(*result)[pos];
|
|---|
| 443 | if(dx1/dx2 < 0.1) deleteit=true; // endpoint is very close to internal interesting point
|
|---|
| 444 |
|
|---|
| 445 | if(deleteit) result->erase(result->end()-2); // delete redundant interesting point
|
|---|
| 446 | }
|
|---|
| 447 | }
|
|---|
| 448 |
|
|---|
| 449 | template <typename float_type> void c2_function<float_type>::
|
|---|
| 450 | refine_sampling_grid(std::vector<float_type> &grid, size_t refinement) const
|
|---|
| 451 | {
|
|---|
| 452 | size_t np=grid.size();
|
|---|
| 453 | size_t count=(np-1)*refinement + 1;
|
|---|
| 454 | float_type dxscale=1.0/refinement;
|
|---|
| 455 |
|
|---|
| 456 | std::vector<float_type> result(count);
|
|---|
| 457 |
|
|---|
| 458 | for(size_t i=0; i<(np-1); i++) {
|
|---|
| 459 | float_type x=grid[i];
|
|---|
| 460 | float_type dx=(grid[i+1]-x)*dxscale;
|
|---|
| 461 | for(size_t j=0; j<refinement; j++, x+=dx) result[i*refinement+j]=x;
|
|---|
| 462 | }
|
|---|
| 463 | result.back()=grid.back();
|
|---|
| 464 | grid=result; // copy the expanded grid back to the input
|
|---|
| 465 | }
|
|---|
| 466 |
|
|---|
| 467 | template <typename float_type> float_type c2_function<float_type>::integral(float_type xmin, float_type xmax, std::vector<float_type> *partials,
|
|---|
| 468 | float_type abs_tol, float_type rel_tol, int derivs, bool adapt, bool extrapolate) const throw(c2_exception)
|
|---|
| 469 | {
|
|---|
| 470 | if(xmin==xmax) {
|
|---|
| 471 | if(partials) partials->clear();
|
|---|
| 472 | return 0.0;
|
|---|
| 473 | }
|
|---|
| 474 | std::vector<float_type> grid;
|
|---|
| 475 | get_sampling_grid(xmin, xmax, grid);
|
|---|
| 476 | float_type intg=partial_integrals(grid, partials, abs_tol, rel_tol, derivs, adapt, extrapolate);
|
|---|
| 477 | return intg;
|
|---|
| 478 | }
|
|---|
| 479 |
|
|---|
| 480 | template <typename float_type> c2_function<float_type> &c2_function<float_type>::normalized_function(float_type xmin, float_type xmax, float_type norm)
|
|---|
| 481 | const throw(c2_exception)
|
|---|
| 482 | {
|
|---|
| 483 | float_type intg=integral(xmin, xmax);
|
|---|
| 484 | return *new c2_scaled_function_p<float_type>(*this, norm/intg);
|
|---|
| 485 | }
|
|---|
| 486 |
|
|---|
| 487 | template <typename float_type> c2_function<float_type> &c2_function<float_type>::square_normalized_function(float_type xmin, float_type xmax, float_type norm)
|
|---|
| 488 | const throw(c2_exception)
|
|---|
| 489 | {
|
|---|
| 490 | c2_ptr<float_type> mesquared((*new c2_quadratic_p<float_type>(0., 0., 0., 1.))(*this));
|
|---|
| 491 |
|
|---|
| 492 | std::vector<float_type> grid;
|
|---|
| 493 | get_sampling_grid(xmin, xmax, grid);
|
|---|
| 494 | float_type intg=mesquared->partial_integrals(grid);
|
|---|
| 495 |
|
|---|
| 496 | return *new c2_scaled_function_p<float_type>(*this, std::sqrt(norm/intg));
|
|---|
| 497 | }
|
|---|
| 498 |
|
|---|
| 499 | template <typename float_type> c2_function<float_type> &c2_function<float_type>::square_normalized_function(
|
|---|
| 500 | float_type xmin, float_type xmax, const c2_function<float_type> &weight, float_type norm)
|
|---|
| 501 | const throw(c2_exception)
|
|---|
| 502 | {
|
|---|
| 503 | c2_ptr<float_type> weighted((*new c2_quadratic_p<float_type>(0., 0., 0., 1.))(*this) * weight);
|
|---|
| 504 |
|
|---|
| 505 | std::vector<float_type> grid;
|
|---|
| 506 | get_sampling_grid(xmin, xmax, grid);
|
|---|
| 507 | float_type intg=weighted->partial_integrals(grid);
|
|---|
| 508 |
|
|---|
| 509 | return *new c2_scaled_function_p<float_type>(*this, std::sqrt(norm/intg));
|
|---|
| 510 | }
|
|---|
| 511 |
|
|---|
| 512 | template <typename float_type> float_type c2_function<float_type>::partial_integrals(
|
|---|
| 513 | std::vector<float_type> xgrid, std::vector<float_type> *partials,
|
|---|
| 514 | float_type abs_tol, float_type rel_tol, int derivs, bool adapt, bool extrapolate)
|
|---|
| 515 | const throw(c2_exception)
|
|---|
| 516 | {
|
|---|
| 517 | int np=xgrid.size();
|
|---|
| 518 |
|
|---|
| 519 | c2_fblock<float_type> f0, f2;
|
|---|
| 520 | struct c2_integrate_recur rb;
|
|---|
| 521 | rb.rel_tol=rel_tol;
|
|---|
| 522 | rb.extrapolate=extrapolate;
|
|---|
| 523 | rb.adapt=adapt;
|
|---|
| 524 | rb.derivs=derivs;
|
|---|
| 525 | std::vector< recur_item > rb_stack;
|
|---|
| 526 | rb_stack.reserve(20); // enough for most operations
|
|---|
| 527 | rb.rb_stack=&rb_stack;
|
|---|
| 528 | rb.inited=false;
|
|---|
| 529 | float_type dx_inv=1.0/std::abs(xgrid.back()-xgrid.front());
|
|---|
| 530 |
|
|---|
| 531 | if(partials) partials->resize(np-1);
|
|---|
| 532 |
|
|---|
| 533 | float_type sum=0.0;
|
|---|
| 534 |
|
|---|
| 535 | f2.x=xgrid[0];
|
|---|
| 536 | fill_fblock(f2);
|
|---|
| 537 | if(c2_isnan(f2.y)) {
|
|---|
| 538 | bad_x_point=f2.x;
|
|---|
| 539 | return f2.y; // can't go any further if a nan has appeared
|
|---|
| 540 | }
|
|---|
| 541 |
|
|---|
| 542 | for(int i=0; i<np-1; i++) {
|
|---|
| 543 | f0=f2; // copy upper bound to lower before computing new upper bound
|
|---|
| 544 |
|
|---|
| 545 | f2.x=xgrid[i+1];
|
|---|
| 546 | fill_fblock(f2);
|
|---|
| 547 | if(c2_isnan(f2.y)) {
|
|---|
| 548 | bad_x_point=f2.x;
|
|---|
| 549 | return f2.y; // can't go any further if a nan has appeared
|
|---|
| 550 | }
|
|---|
| 551 |
|
|---|
| 552 | rb.abs_tol=abs_tol*std::abs(f2.x-f0.x)*dx_inv; // distribute error tolerance over whole domain
|
|---|
| 553 | rb.f0=&f0; rb.f1=&f2;
|
|---|
| 554 | float_type ps=integrate_step(rb);
|
|---|
| 555 | sum+=ps;
|
|---|
| 556 | if(partials) (*partials)[i]=ps;
|
|---|
| 557 | if(c2_isnan(ps)) break; // NaN stops integration
|
|---|
| 558 | }
|
|---|
| 559 | return sum;
|
|---|
| 560 | }
|
|---|
| 561 |
|
|---|
| 562 | // generate a sampling grid at points separated by dx=5, which is intentionally
|
|---|
| 563 | // incommensurate with pi and 2*pi so grid errors are somewhat randomized
|
|---|
| 564 | template <typename float_type> void c2_sin_p<float_type>::
|
|---|
| 565 | get_sampling_grid(float_type xmin, float_type xmax, std::vector<float_type> &grid) const
|
|---|
| 566 | {
|
|---|
| 567 | grid.clear();
|
|---|
| 568 | for(; xmin < xmax; xmin+=5.0) grid.push_back(xmin);
|
|---|
| 569 | grid.push_back(xmax);
|
|---|
| 570 | this->preen_sampling_grid(&grid);
|
|---|
| 571 | }
|
|---|
| 572 |
|
|---|
| 573 | template <typename float_type> float_type c2_function_transformation<float_type>::evaluate(
|
|---|
| 574 | float_type xraw,
|
|---|
| 575 | float_type y, float_type yp0, float_type ypp0,
|
|---|
| 576 | float_type *yprime, float_type *yprime2) const
|
|---|
| 577 | {
|
|---|
| 578 | y=Y.fHasStaticTransforms ? Y.pOut(y) : Y.fOut(y);
|
|---|
| 579 |
|
|---|
| 580 | if(yprime || yprime2) {
|
|---|
| 581 |
|
|---|
| 582 | float_type yp, yp2;
|
|---|
| 583 | if(X.fHasStaticTransforms && Y.fHasStaticTransforms) {
|
|---|
| 584 | float_type fpi=1.0/Y.pInPrime(y);
|
|---|
| 585 | float_type gp=X.pInPrime(xraw);
|
|---|
| 586 | // from Mathematica Dt[InverseFunction[f][y[g[x]]], x]
|
|---|
| 587 | yp=gp*yp0*fpi; // transformed derivative
|
|---|
| 588 | yp2=(gp*gp*ypp0 + X.pInDPrime(xraw)*yp0 - Y.pInDPrime(y)*yp*yp )*fpi;
|
|---|
| 589 | } else {
|
|---|
| 590 | float_type fpi=1.0/Y.fInPrime(y);
|
|---|
| 591 | float_type gp=X.fInPrime(xraw);
|
|---|
| 592 | // from Mathematica Dt[InverseFunction[f][y[g[x]]], x]
|
|---|
| 593 | yp=gp*yp0*fpi; // transformed derivative
|
|---|
| 594 | yp2=(gp*gp*ypp0 + X.fInDPrime(xraw)*yp0 - Y.fInDPrime(y)*yp*yp )*fpi;
|
|---|
| 595 | }
|
|---|
| 596 | if(yprime) *yprime=yp;
|
|---|
| 597 | if(yprime2) *yprime2=yp2;
|
|---|
| 598 | }
|
|---|
| 599 | return y;
|
|---|
| 600 | }
|
|---|
| 601 |
|
|---|
| 602 | // The constructor
|
|---|
| 603 | template <typename float_type> interpolating_function_p<float_type> & interpolating_function_p<float_type>::load(
|
|---|
| 604 | const std::vector<float_type> &x, const std::vector<float_type> &f,
|
|---|
| 605 | bool lowerSlopeNatural, float_type lowerSlope,
|
|---|
| 606 | bool upperSlopeNatural, float_type upperSlope,
|
|---|
| 607 | bool splined
|
|---|
| 608 | ) throw(c2_exception)
|
|---|
| 609 | {
|
|---|
| 610 | c2_ptr<float_type> keepme(*this);
|
|---|
| 611 | X= x;
|
|---|
| 612 | F= f;
|
|---|
| 613 |
|
|---|
| 614 | // Xraw is useful in some of the arithmetic operations between interpolating functions
|
|---|
| 615 | Xraw=x;
|
|---|
| 616 |
|
|---|
| 617 | set_domain(std::min(Xraw.front(), Xraw.back()),std::max(Xraw.front(), Xraw.back()));
|
|---|
| 618 |
|
|---|
| 619 | if(x.size() != f.size()) {
|
|---|
| 620 | throw c2_exception("interpolating_function::init() -- x & y inputs are of different size");
|
|---|
| 621 | }
|
|---|
| 622 |
|
|---|
| 623 | size_t np=X.size(); // they are the same now, so lets take a short cut
|
|---|
| 624 |
|
|---|
| 625 | if(np < 2) {
|
|---|
| 626 | throw c2_exception("interpolating_function::init() -- input < 2 elements ");
|
|---|
| 627 | }
|
|---|
| 628 |
|
|---|
| 629 | bool xraw_rev=check_monotonicity(Xraw,
|
|---|
| 630 | "interpolating_function::init() non-monotonic raw x input"); // which way does raw X point? sampling grid MUST be increasing
|
|---|
| 631 |
|
|---|
| 632 | if(!xraw_rev) { // we can use pointer to raw X values if they are in the right order
|
|---|
| 633 | set_sampling_grid_pointer(Xraw); // our intial grid of x values is certainly a good guess for 'interesting' points
|
|---|
| 634 | } else {
|
|---|
| 635 | set_sampling_grid(Xraw); // make a copy of it, and assure it is in right order
|
|---|
| 636 | }
|
|---|
| 637 |
|
|---|
| 638 | if(fTransform.X.fTransformed) { // check if X scale is nonlinear, and if so, do transform
|
|---|
| 639 | if(!lowerSlopeNatural) lowerSlope /= fTransform.X.fInPrime(X[0]);
|
|---|
| 640 | if(!upperSlopeNatural) upperSlope /= fTransform.X.fInPrime(X[np-1]);
|
|---|
| 641 | for(size_t i=0; i<np; i++) X[i]=fTransform.X.fIn(X[i]);
|
|---|
| 642 | }
|
|---|
| 643 | if(fTransform.Y.fTransformed) { // check if Y scale is nonlinear, and if so, do transform
|
|---|
| 644 | if(!lowerSlopeNatural) lowerSlope *= fTransform.Y.fInPrime(F[0]);
|
|---|
| 645 | if(!upperSlopeNatural) upperSlope *= fTransform.Y.fInPrime(F[np-1]);
|
|---|
| 646 | for(size_t i=0; i<np; i++) F[i]=fTransform.Y.fIn(F[i]);
|
|---|
| 647 | }
|
|---|
| 648 |
|
|---|
| 649 | xInverted=check_monotonicity(X,
|
|---|
| 650 | "interpolating_function::init() non-monotonic transformed x input");
|
|---|
| 651 |
|
|---|
| 652 | if(splined) spline(lowerSlopeNatural, lowerSlope, upperSlopeNatural, upperSlope);
|
|---|
| 653 | else y2.assign(np,0.0);
|
|---|
| 654 |
|
|---|
| 655 | lastKLow=0;
|
|---|
| 656 | keepme.release_for_return();
|
|---|
| 657 | return *this;
|
|---|
| 658 | }
|
|---|
| 659 |
|
|---|
| 660 | /*
|
|---|
| 661 | // The constructor
|
|---|
| 662 | template <typename float_type> interpolating_function_p<float_type> & interpolating_function_p<float_type>::load_pairs(
|
|---|
| 663 | std::vector<std::pair<float_type, float_type> > &data,
|
|---|
| 664 | bool lowerSlopeNatural, float_type lowerSlope,
|
|---|
| 665 | bool upperSlopeNatural, float_type upperSlope,
|
|---|
| 666 | bool splined
|
|---|
| 667 | ) throw(c2_exception)
|
|---|
| 668 | {
|
|---|
| 669 | c2_ptr<float_type> keepme(*this);
|
|---|
| 670 |
|
|---|
| 671 | size_t np=data.size();
|
|---|
| 672 | if(np < 2) {
|
|---|
| 673 | throw c2_exception("interpolating_function::init() -- input < 2 elements ");
|
|---|
| 674 | }
|
|---|
| 675 |
|
|---|
| 676 | // sort into ascending order
|
|---|
| 677 | std::sort(data.begin(), data.end(), comp_pair);
|
|---|
| 678 |
|
|---|
| 679 | std::vector<float_type> xtmp, ytmp;
|
|---|
| 680 | xtmp.reserve(np);
|
|---|
| 681 | ytmp.reserve(np);
|
|---|
| 682 | for (size_t i=0; i<np; i++) {
|
|---|
| 683 | xtmp.push_back(data[i].first);
|
|---|
| 684 | ytmp.push_back(data[i].second);
|
|---|
| 685 | }
|
|---|
| 686 | this->load(xtmp, ytmp, lowerSlopeNatural, lowerSlope, upperSlopeNatural, upperSlope, splined);
|
|---|
| 687 |
|
|---|
| 688 | keepme.release_for_return();
|
|---|
| 689 | return *this;
|
|---|
| 690 | }
|
|---|
| 691 |
|
|---|
| 692 | template <typename float_type> interpolating_function_p<float_type> &
|
|---|
| 693 | interpolating_function_p<float_type>::load_random_generator_function(
|
|---|
| 694 | const std::vector<float_type> &bincenters, const c2_function<float_type> &binheights)
|
|---|
| 695 | throw(c2_exception)
|
|---|
| 696 | {
|
|---|
| 697 | c2_ptr<float_type> keepme(*this);
|
|---|
| 698 |
|
|---|
| 699 | std::vector<float_type> integral;
|
|---|
| 700 | c2_const_ptr<float_type> keepit(binheights); // manage function... not really needed here, but always safe.
|
|---|
| 701 | // integrate from first to last bin in original order, leaving results in integral
|
|---|
| 702 | // ask for relative error of 1e-6 on each bin, with absolute error set to 0 (since we don't know the data scale).
|
|---|
| 703 | float_type sum=binheights.partial_integrals(bincenters, &integral, 0.0, 1e-6);
|
|---|
| 704 | // the integral vector now has partial integrals... it must be accumulated by summing
|
|---|
| 705 | integral.insert(integral.begin(), 0.0); // integral from start to start is 0
|
|---|
| 706 | float_type scale=1.0/sum;
|
|---|
| 707 | for(size_t i=1; i<integral.size(); i++) integral[i]=integral[i]*scale + integral[i-1];
|
|---|
| 708 | integral.back()=1.0; // force exact value on boundary
|
|---|
| 709 |
|
|---|
| 710 | this->load(integral, bincenters,
|
|---|
| 711 | false, 1.0/(scale*binheights(bincenters.front() )),
|
|---|
| 712 | false, 1.0/(scale*binheights(bincenters.back() ))
|
|---|
| 713 | ); // use integral as x axis in inverse function
|
|---|
| 714 | keepme.release_for_return();
|
|---|
| 715 | return *this;
|
|---|
| 716 | }
|
|---|
| 717 |
|
|---|
| 718 | template <typename float_type> interpolating_function_p<float_type> &
|
|---|
| 719 | interpolating_function_p<float_type>::load_random_generator_bins(
|
|---|
| 720 | const std::vector<float_type> &bins, const std::vector<float_type> &binheights)
|
|---|
| 721 | throw(c2_exception)
|
|---|
| 722 | {
|
|---|
| 723 | c2_ptr<float_type> keepme(*this);
|
|---|
| 724 |
|
|---|
| 725 | size_t np=binheights.size();
|
|---|
| 726 | std::vector<float_type> integral(np+1), bin_edges(np+1);
|
|---|
| 727 |
|
|---|
| 728 | // compute the integral based on estimates of the bin edges from the given bin centers...
|
|---|
| 729 | // except for bin 0 & final bin, the edge of a bin is halfway between then center of the
|
|---|
| 730 | // bin and the center of the previous/next bin.
|
|---|
| 731 | // This gives width[n] = (center[n+1]+center[n])/2 - (center[n]+center[n-1])/2 = (center[n+1]-center[n-1])/2
|
|---|
| 732 | // for the edges, assume a bin of width (center[1]-center[0]) or (center[np-1]-center[np-2])
|
|---|
| 733 | // be careful that absolute values are used in case data are reversed.
|
|---|
| 734 |
|
|---|
| 735 | if(bins.size() == binheights.size()+1) {
|
|---|
| 736 | bin_edges=bins; // edges array was passed in
|
|---|
| 737 | } else if (bins.size() == binheights.size()) {
|
|---|
| 738 | bin_edges.front()=bins[0] - (bins[1]-bins[0])*0.5; // edge bin
|
|---|
| 739 | for(size_t i=1; i<np; i++) {
|
|---|
| 740 | bin_edges[i]=(bins[i]+bins[i-1])*0.5;
|
|---|
| 741 | }
|
|---|
| 742 | bin_edges.back()=bins[np-1] + (bins[np-1]-bins[np-2])*0.5; // edge bin
|
|---|
| 743 | } else {
|
|---|
| 744 | throw c2_exception("inconsistent bin vectors passed to load_random_generator_bins");
|
|---|
| 745 | }
|
|---|
| 746 |
|
|---|
| 747 | float_type running_sum=0.0;
|
|---|
| 748 | for(size_t i=0; i<np; i++) {
|
|---|
| 749 | integral[i]=running_sum;
|
|---|
| 750 | if(!binheights[i]) throw c2_exception("empty bin passed to load_random_generator_bins");
|
|---|
| 751 | running_sum+=binheights[i]*std::abs(bin_edges[i+1]-bin_edges[i]);
|
|---|
| 752 | }
|
|---|
| 753 | float_type scale=1.0/running_sum;
|
|---|
| 754 | for(size_t i=0; i<np; i++) integral[i]*=scale;
|
|---|
| 755 | integral.back()=1.0; // force exactly correct value on boundary
|
|---|
| 756 | this->load(integral, bin_edges,
|
|---|
| 757 | false, 1.0/(scale*binheights.front()),
|
|---|
| 758 | false, 1.0/(scale*binheights.back())
|
|---|
| 759 | ); // use integral as x axis in inverse function
|
|---|
| 760 | keepme.release_for_return();
|
|---|
| 761 | return *this;
|
|---|
| 762 | }
|
|---|
| 763 | */
|
|---|
| 764 |
|
|---|
| 765 | // The spline table generator
|
|---|
| 766 | template <typename float_type> void interpolating_function_p<float_type>::spline(
|
|---|
| 767 | bool lowerSlopeNatural, float_type lowerSlope,
|
|---|
| 768 | bool upperSlopeNatural, float_type upperSlope
|
|---|
| 769 | ) throw(c2_exception)
|
|---|
| 770 | {
|
|---|
| 771 | // construct spline tables here.
|
|---|
| 772 | // this code is a re-translation of the pythonlabtools spline algorithm from pythonlabtools.sourceforge.net
|
|---|
| 773 | size_t np=X.size();
|
|---|
| 774 | std::vector<float_type> u(np), dy(np-1), dx(np-1), dxi(np-1), dx2i(np-2), siga(np-2), dydx(np-1);
|
|---|
| 775 |
|
|---|
| 776 | std::transform(X.begin()+1, X.end(), X.begin(), dx.begin(), std::minus<float_type>() ); // dx=X[1:] - X [:-1]
|
|---|
| 777 | for(size_t i=0; i<dxi.size(); i++) dxi[i]=1.0/dx[i]; // dxi = 1/dx
|
|---|
| 778 | for(size_t i=0; i<dx2i.size(); i++) dx2i[i]=1.0/(X[i+2]-X[i]);
|
|---|
| 779 |
|
|---|
| 780 | std::transform(F.begin()+1, F.end(), F.begin(), dy.begin(), std::minus<float_type>() ); // dy = F[i+1]-F[i]
|
|---|
| 781 | std::transform(dx2i.begin(), dx2i.end(), dx.begin(), siga.begin(), std::multiplies<float_type>()); // siga = dx[:-1]*dx2i
|
|---|
| 782 | std::transform(dxi.begin(), dxi.end(), dy.begin(), dydx.begin(), std::multiplies<float_type>()); // dydx=dy/dx
|
|---|
| 783 |
|
|---|
| 784 | // u[i]=(y[i+1]-y[i])/float(x[i+1]-x[i]) - (y[i]-y[i-1])/float(x[i]-x[i-1])
|
|---|
| 785 | std::transform(dydx.begin()+1, dydx.end(), dydx.begin(), u.begin()+1, std::minus<float_type>() ); // incomplete rendering of u = dydx[1:]-dydx[:-1]
|
|---|
| 786 |
|
|---|
| 787 | y2.resize(np,0.0);
|
|---|
| 788 |
|
|---|
| 789 | if(lowerSlopeNatural) {
|
|---|
| 790 | y2[0]=u[0]=0.0;
|
|---|
| 791 | } else {
|
|---|
| 792 | y2[0]= -0.5;
|
|---|
| 793 | u[0]=(3.0*dxi[0])*(dy[0]*dxi[0] -lowerSlope);
|
|---|
| 794 | }
|
|---|
| 795 |
|
|---|
| 796 | for(size_t i=1; i < np -1; i++) { // the inner loop
|
|---|
| 797 | float_type sig=siga[i-1];
|
|---|
| 798 | float_type p=sig*y2[i-1]+2.0;
|
|---|
| 799 | y2[i]=(sig-1.0)/p;
|
|---|
| 800 | u[i]=(6.0*u[i]*dx2i[i-1] - sig*u[i-1])/p;
|
|---|
| 801 | }
|
|---|
| 802 |
|
|---|
| 803 | float_type qn, un;
|
|---|
| 804 |
|
|---|
| 805 | if(upperSlopeNatural) {
|
|---|
| 806 | qn=un=0.0;
|
|---|
| 807 | } else {
|
|---|
| 808 | qn= 0.5;
|
|---|
| 809 | un=(3.0*dxi[dxi.size()-1])*(upperSlope- dy[dy.size()-1]*dxi[dxi.size()-1] );
|
|---|
| 810 | }
|
|---|
| 811 |
|
|---|
| 812 | y2[np-1]=(un-qn*u[np-2])/(qn*y2[np-2]+1.0);
|
|---|
| 813 | for (size_t k=np-1; k != 0; k--) y2[k-1]=y2[k-1]*y2[k]+u[k-1];
|
|---|
| 814 | }
|
|---|
| 815 |
|
|---|
| 816 | template <typename float_type> interpolating_function_p<float_type> &interpolating_function_p<float_type>::sample_function(
|
|---|
| 817 | const c2_function<float_type> &func,
|
|---|
| 818 | float_type xmin, float_type xmax, float_type abs_tol, float_type rel_tol,
|
|---|
| 819 | bool lowerSlopeNatural, float_type lowerSlope,
|
|---|
| 820 | bool upperSlopeNatural, float_type upperSlope
|
|---|
| 821 | ) throw(c2_exception)
|
|---|
| 822 | {
|
|---|
| 823 | c2_ptr<float_type> keepme(*this);
|
|---|
| 824 |
|
|---|
| 825 | const c2_transformation<float_type> &XX=fTransform.X, &YY=fTransform.Y; // shortcuts
|
|---|
| 826 |
|
|---|
| 827 | // set up our params to look like the samplng function for now
|
|---|
| 828 | sampler_function=func;
|
|---|
| 829 | std::vector<float_type> grid;
|
|---|
| 830 | func.get_sampling_grid(xmin, xmax, grid);
|
|---|
| 831 | size_t gsize=grid.size();
|
|---|
| 832 | if(XX.fTransformed) for(size_t i=0; i<gsize; i++) grid[i]=XX.fIn(grid[i]);
|
|---|
| 833 | set_sampling_grid_pointer(grid);
|
|---|
| 834 |
|
|---|
| 835 | // float_type xmin1=fXin(xmin), xmax1=fXin(xmax); // bounds in transformed space
|
|---|
| 836 | // get a list of points needed in transformed space, directly into our tables
|
|---|
| 837 | this->adaptively_sample(grid.front(), grid.back(), 8*abs_tol, 8*rel_tol, 0, &X, &F);
|
|---|
| 838 | // clear the sampler function now, since otherwise our value_with_derivatives is broken
|
|---|
| 839 | sampler_function.unset_function();
|
|---|
| 840 |
|
|---|
| 841 | xInverted=check_monotonicity(X,
|
|---|
| 842 | "interpolating_function::init() non-monotonic transformed x input");
|
|---|
| 843 |
|
|---|
| 844 | size_t np=X.size();
|
|---|
| 845 |
|
|---|
| 846 | // Xraw is useful in some of the arithmetic operations between interpolating functions
|
|---|
| 847 | if(!XX.fTransformed) Xraw=X;
|
|---|
| 848 | else {
|
|---|
| 849 | Xraw.resize(np);
|
|---|
| 850 | for (size_t i=1; i<np-1; i++) Xraw[i]=XX.fOut(X[i]);
|
|---|
| 851 | Xraw.front()=xmin;
|
|---|
| 852 | Xraw.back()=xmax;
|
|---|
| 853 | }
|
|---|
| 854 |
|
|---|
| 855 | bool xraw_rev=check_monotonicity(Xraw,
|
|---|
| 856 | "interpolating_function::init() non-monotonic raw x input");
|
|---|
| 857 | // which way does raw X point? sampling grid MUST be increasing
|
|---|
| 858 |
|
|---|
| 859 | if(!xraw_rev) { // we can use pointer to raw X values if they are in the right order
|
|---|
| 860 | set_sampling_grid_pointer(Xraw);
|
|---|
| 861 | // our intial grid of x values is certainly a good guess for 'interesting' points
|
|---|
| 862 | } else {
|
|---|
| 863 | set_sampling_grid(Xraw); // make a copy of it, and assure it is in right order
|
|---|
| 864 | }
|
|---|
| 865 |
|
|---|
| 866 | if(XX.fTransformed) { // check if X scale is nonlinear, and if so, do transform
|
|---|
| 867 | if(!lowerSlopeNatural) lowerSlope /= XX.fInPrime(xmin);
|
|---|
| 868 | if(!upperSlopeNatural) upperSlope /= XX.fInPrime(xmax);
|
|---|
| 869 | }
|
|---|
| 870 | if(YY.fTransformed) { // check if Y scale is nonlinear, and if so, do transform
|
|---|
| 871 | if(!lowerSlopeNatural) lowerSlope *= YY.fInPrime(func(xmin));
|
|---|
| 872 | if(!upperSlopeNatural) upperSlope *= YY.fInPrime(func(xmax));
|
|---|
| 873 | }
|
|---|
| 874 | // note that each of ends has 3 points with two equal gaps, since they were obtained by bisection
|
|---|
| 875 | // so the step sizes are easy to get
|
|---|
| 876 | // the 'natural slope' option for sampled functions has a different meaning than
|
|---|
| 877 | // for normal splines. In this case, the derivative is adjusted to make the
|
|---|
| 878 | // second derivative constant on the last two points at each end
|
|---|
| 879 | // which is consistent with the error sampling technique we used to get here
|
|---|
| 880 | if(lowerSlopeNatural) {
|
|---|
| 881 | float_type hlower=X[1]-X[0];
|
|---|
| 882 | lowerSlope=0.5*(-F[2]-3*F[0]+4*F[1])/hlower;
|
|---|
| 883 | lowerSlopeNatural=false; // it's not the usual meaning of natural any more
|
|---|
| 884 | }
|
|---|
| 885 | if(upperSlopeNatural) {
|
|---|
| 886 | float_type hupper=X[np-1]-X[np-2];
|
|---|
| 887 | upperSlope=0.5*(F[np-3]+3*F[np-1]-4*F[np-2])/hupper;
|
|---|
| 888 | upperSlopeNatural=false; // it's not the usual meaning of natural any more
|
|---|
| 889 | }
|
|---|
| 890 | this->set_domain(xmin, xmax);
|
|---|
| 891 |
|
|---|
| 892 | spline(lowerSlopeNatural, lowerSlope, upperSlopeNatural, upperSlope);
|
|---|
| 893 | lastKLow=0;
|
|---|
| 894 | keepme.release_for_return();
|
|---|
| 895 | return *this;
|
|---|
| 896 | }
|
|---|
| 897 |
|
|---|
| 898 | // This function is the reason for this class to exist
|
|---|
| 899 | // it computes the interpolated function, and (if requested) its proper first and second derivatives including all coordinate transforms
|
|---|
| 900 | template <typename float_type> float_type interpolating_function_p<float_type>::value_with_derivatives(
|
|---|
| 901 | float_type x, float_type *yprime, float_type *yprime2) const throw(c2_exception)
|
|---|
| 902 | {
|
|---|
| 903 | if(sampler_function.valid()) {
|
|---|
| 904 | // if this is non-null, we are sampling data for later, so just return raw function
|
|---|
| 905 | // however, transform it into our sampling space, first.
|
|---|
| 906 | if(yprime) *yprime=0;
|
|---|
| 907 | if(yprime2) *yprime2=0;
|
|---|
| 908 | sampler_function->increment_evaluations();
|
|---|
| 909 | return fTransform.Y.fIn(sampler_function(fTransform.X.fOut(x))); // derivatives are completely undefined
|
|---|
| 910 | }
|
|---|
| 911 |
|
|---|
| 912 | if(x < this->xmin() || x > this->xmax()) {
|
|---|
| 913 | std::ostringstream outstr;
|
|---|
| 914 | outstr << "Interpolating function argument " << x << " out of range " << this->xmin() << " -- " << this ->xmax() << ": bailing";
|
|---|
| 915 | throw c2_exception(outstr.str().c_str());
|
|---|
| 916 | }
|
|---|
| 917 |
|
|---|
| 918 | float_type xraw=x;
|
|---|
| 919 |
|
|---|
| 920 | if(fTransform.X.fTransformed) x=fTransform.X.fHasStaticTransforms?
|
|---|
| 921 | fTransform.X.pIn(x) : fTransform.X.fIn(x); // save time by explicitly testing for identity function here
|
|---|
| 922 |
|
|---|
| 923 | int klo=0, khi=X.size()-1;
|
|---|
| 924 |
|
|---|
| 925 | if(khi < 0) throw c2_exception("Uninitialized interpolating function being evaluated");
|
|---|
| 926 |
|
|---|
| 927 | const float_type *XX=&X[lastKLow]; // make all fast checks short offsets from here
|
|---|
| 928 |
|
|---|
| 929 | if(!xInverted) { // select search depending on whether transformed X is increasing or decreasing
|
|---|
| 930 | if((XX[0] <= x) && (XX[1] >= x) ) { // already bracketed
|
|---|
| 931 | klo=lastKLow;
|
|---|
| 932 | } else if((XX[1] <= x) && (XX[2] >= x)) { // in next bracket to the right
|
|---|
| 933 | klo=lastKLow+1;
|
|---|
| 934 | } else if(lastKLow > 0 && (XX[-1] <= x) && (XX[0] >= x)) { // in next bracket to the left
|
|---|
| 935 | klo=lastKLow-1;
|
|---|
| 936 | } else { // not bracketed, not close, start over
|
|---|
| 937 | // search for new KLow
|
|---|
| 938 | while(khi-klo > 1) {
|
|---|
| 939 | int km=(khi+klo)/2;
|
|---|
| 940 | if(X[km] > x) khi=km;
|
|---|
| 941 | else klo=km;
|
|---|
| 942 | }
|
|---|
| 943 | }
|
|---|
| 944 | } else {
|
|---|
| 945 | if((XX[0] >= x) && (XX[1] <= x) ) { // already bracketed
|
|---|
| 946 | klo=lastKLow;
|
|---|
| 947 | } else if((XX[1] >= x) && (XX[2] <= x)) { // in next bracket to the right
|
|---|
| 948 | klo=lastKLow+1;
|
|---|
| 949 | } else if(lastKLow > 0 && (XX[-1] >= x) && (XX[0] <= x)) { // in next bracket to the left
|
|---|
| 950 | klo=lastKLow-1;
|
|---|
| 951 | } else { // not bracketed, not close, start over
|
|---|
| 952 | // search for new KLow
|
|---|
| 953 | while(khi-klo > 1) {
|
|---|
| 954 | int km=(khi+klo)/2;
|
|---|
| 955 | if(X[km] < x) khi=km;
|
|---|
| 956 | else klo=km;
|
|---|
| 957 | }
|
|---|
| 958 | }
|
|---|
| 959 | }
|
|---|
| 960 |
|
|---|
| 961 | khi=klo+1;
|
|---|
| 962 | lastKLow=klo;
|
|---|
| 963 |
|
|---|
| 964 | float_type h=X[khi]-X[klo];
|
|---|
| 965 |
|
|---|
| 966 | float_type a=(X[khi]-x)/h;
|
|---|
| 967 | float_type b=1.0-a;
|
|---|
| 968 | float_type ylo=F[klo], yhi=F[khi], y2lo=y2[klo], y2hi=y2[khi];
|
|---|
| 969 | float_type y=a*ylo+b*yhi+((a*a*a-a)*y2lo+(b*b*b-b)*y2hi)*(h*h)/6.0;
|
|---|
| 970 |
|
|---|
| 971 | float_type yp0=0; // the derivative in interpolating table coordinates
|
|---|
| 972 | float_type ypp0=0; // second derivative
|
|---|
| 973 |
|
|---|
| 974 | if(yprime || yprime2) {
|
|---|
| 975 | yp0=(yhi-ylo)/h+((3*b*b-1)*y2hi-(3*a*a-1)*y2lo)*h/6.0; // the derivative in interpolating table coordinates
|
|---|
| 976 | ypp0=b*y2hi+a*y2lo; // second derivative
|
|---|
| 977 | }
|
|---|
| 978 |
|
|---|
| 979 | if(fTransform.isIdentity) {
|
|---|
| 980 | if(yprime) *yprime=yp0;
|
|---|
| 981 | if(yprime2) *yprime2=ypp0;
|
|---|
| 982 | return y;
|
|---|
| 983 | } else return fTransform.evaluate(xraw, y, yp0, ypp0, yprime, yprime2);
|
|---|
| 984 | }
|
|---|
| 985 |
|
|---|
| 986 | template <typename float_type> void interpolating_function_p<float_type>::set_lower_extrapolation(float_type bound)
|
|---|
| 987 | {
|
|---|
| 988 | int kl = 0 ;
|
|---|
| 989 | int kh=kl+1;
|
|---|
| 990 | float_type xx=fTransform.X.fIn(bound);
|
|---|
| 991 | float_type h0=X[kh]-X[kl];
|
|---|
| 992 | float_type h1=xx-X[kl];
|
|---|
| 993 | float_type yextrap=F[kl]+((F[kh]-F[kl])/h0 - h0*(y2[kl]+2.0*y2[kh])/6.0)*h1+y2[kl]*h1*h1/2.0;
|
|---|
| 994 |
|
|---|
| 995 | X.insert(X.begin(), xx);
|
|---|
| 996 | F.insert(F.begin(), yextrap);
|
|---|
| 997 | y2.insert(y2.begin(), y2.front()); // duplicate first or last element
|
|---|
| 998 | Xraw.insert(Xraw.begin(), bound);
|
|---|
| 999 | if (bound < this->fXMin) this->fXMin=bound; // check for reversed data
|
|---|
| 1000 | else this->fXMax=bound;
|
|---|
| 1001 |
|
|---|
| 1002 | //printf("%10.4f %10.4f %10.4f %10.4f %10.4f\n", bound, xx, h0, h1, yextrap);
|
|---|
| 1003 | //for(int i=0; i<X.size(); i++) printf("%4d %10.4f %10.4f %10.4f %10.4f \n", i, Xraw[i], X[i], F[i], y2[i]);
|
|---|
| 1004 | }
|
|---|
| 1005 |
|
|---|
| 1006 | template <typename float_type> void interpolating_function_p<float_type>::set_upper_extrapolation(float_type bound)
|
|---|
| 1007 | {
|
|---|
| 1008 | int kl = X.size()-2 ;
|
|---|
| 1009 | int kh=kl+1;
|
|---|
| 1010 | float_type xx=fTransform.X.fIn(bound);
|
|---|
| 1011 | float_type h0=X[kh]-X[kl];
|
|---|
| 1012 | float_type h1=xx-X[kl];
|
|---|
| 1013 | float_type yextrap=F[kl]+((F[kh]-F[kl])/h0 - h0*(y2[kl]+2.0*y2[kh])/6.0)*h1+y2[kl]*h1*h1/2.0;
|
|---|
| 1014 |
|
|---|
| 1015 | X.insert(X.end(), xx);
|
|---|
| 1016 | F.insert(F.end(), yextrap);
|
|---|
| 1017 | y2.insert(y2.end(), y2.back()); // duplicate first or last element
|
|---|
| 1018 | Xraw.insert(Xraw.end(), bound);
|
|---|
| 1019 | if (bound < this->fXMin) this->fXMin=bound; // check for reversed data
|
|---|
| 1020 | else this->fXMax=bound;
|
|---|
| 1021 | //printf("%10.4f %10.4f %10.4f %10.4f %10.4f\n", bound, xx, h0, h1, yextrap);
|
|---|
| 1022 | //for(int i=0; i<X.size(); i++) printf("%4d %10.4f %10.4f %10.4f %10.4f \n", i, Xraw[i], X[i], F[i], y2[i]);
|
|---|
| 1023 | }
|
|---|
| 1024 |
|
|---|
| 1025 | // return a new interpolating_function which is the unary function of an existing interpolating_function
|
|---|
| 1026 | // can also be used to generate a resampling of another c2_function on a different grid
|
|---|
| 1027 | // by creating a=interpolating_function(x,x)
|
|---|
| 1028 | // and doing b=a.unary_operator(c) where c is a c2_function (probably another interpolating_function)
|
|---|
| 1029 |
|
|---|
| 1030 | template <typename float_type> interpolating_function_p<float_type>&
|
|---|
| 1031 | interpolating_function_p<float_type>::unary_operator(const c2_function<float_type> &source) const
|
|---|
| 1032 | {
|
|---|
| 1033 | size_t np=X.size();
|
|---|
| 1034 | std::vector<float_type>yv(np);
|
|---|
| 1035 | c2_ptr<float_type> comp(source(*this));
|
|---|
| 1036 | float_type yp0, yp1, ypp;
|
|---|
| 1037 |
|
|---|
| 1038 | for(size_t i=1; i<np-1; i++) {
|
|---|
| 1039 | yv[i]=source(fTransform.Y.fOut(F[i])); // copy pointwise the function of our data values
|
|---|
| 1040 | }
|
|---|
| 1041 |
|
|---|
| 1042 | yv.front()=comp(Xraw.front(), &yp0, &ypp); // get derivative at front
|
|---|
| 1043 | yv.back()= comp(Xraw.back(), &yp1, &ypp); // get derivative at back
|
|---|
| 1044 |
|
|---|
| 1045 | interpolating_function_p ©=clone();
|
|---|
| 1046 | copy.load(this->Xraw, yv, false, yp0, false, yp1);
|
|---|
| 1047 |
|
|---|
| 1048 | return copy;
|
|---|
| 1049 | }
|
|---|
| 1050 |
|
|---|
| 1051 | template <typename float_type> void
|
|---|
| 1052 | interpolating_function_p<float_type>::get_data(std::vector<float_type> &xvals, std::vector<float_type> &yvals) const throw()
|
|---|
| 1053 | {
|
|---|
| 1054 |
|
|---|
| 1055 | xvals=Xraw;
|
|---|
| 1056 | yvals.resize(F.size());
|
|---|
| 1057 |
|
|---|
| 1058 | for(size_t i=0; i<F.size(); i++) yvals[i]=fTransform.Y.fOut(F[i]);
|
|---|
| 1059 | }
|
|---|
| 1060 |
|
|---|
| 1061 | template <typename float_type> interpolating_function_p<float_type> &
|
|---|
| 1062 | interpolating_function_p<float_type>::binary_operator(const c2_function<float_type> &rhs,
|
|---|
| 1063 | const c2_binary_function<float_type> *combining_stub) const
|
|---|
| 1064 | {
|
|---|
| 1065 | size_t np=X.size();
|
|---|
| 1066 | std::vector<float_type> yv(np);
|
|---|
| 1067 | c2_constant_p<float_type> fval(0);
|
|---|
| 1068 | float_type yp0, yp1, ypp;
|
|---|
| 1069 |
|
|---|
| 1070 | c2_const_ptr<float_type> stub(*combining_stub); // manage ownership
|
|---|
| 1071 |
|
|---|
| 1072 | for(size_t i=1; i<np-1; i++) {
|
|---|
| 1073 | fval.reset(fTransform.Y.fOut(F[i])); // update the constant function pointwise
|
|---|
| 1074 | yv[i]=combining_stub->combine(fval, rhs, Xraw[i], (float_type *)0, (float_type *)0); // compute rhs & combine without derivatives
|
|---|
| 1075 | }
|
|---|
| 1076 |
|
|---|
| 1077 | yv.front()=combining_stub->combine(*this, rhs, Xraw.front(), &yp0, &ypp); // get derivative at front
|
|---|
| 1078 | yv.back()= combining_stub->combine(*this, rhs, Xraw.back(), &yp1, &ypp); // get derivative at back
|
|---|
| 1079 |
|
|---|
| 1080 | interpolating_function_p ©=clone();
|
|---|
| 1081 | copy.load(this->Xraw, yv, false, yp0, false, yp1);
|
|---|
| 1082 |
|
|---|
| 1083 | return copy;
|
|---|
| 1084 | }
|
|---|
| 1085 |
|
|---|
| 1086 | template <typename float_type> c2_inverse_function_p<float_type>::c2_inverse_function_p(const c2_function<float_type> &source)
|
|---|
| 1087 | : c2_function<float_type>(), func(source)
|
|---|
| 1088 | {
|
|---|
| 1089 | float_type l=source.xmin();
|
|---|
| 1090 | float_type r=source.xmax();
|
|---|
| 1091 | start_hint=(l+r)*0.5; // guess that we start in the middle
|
|---|
| 1092 | // compute our domain assuming the function is monotonic so its values on its domain boundaries are our domain
|
|---|
| 1093 | float_type ly=source(l);
|
|---|
| 1094 | float_type ry=source(r);
|
|---|
| 1095 | if (ly > ry) {
|
|---|
| 1096 | float_type t=ly; ly=ry; ry=t;
|
|---|
| 1097 | }
|
|---|
| 1098 | set_domain(ly, ry);
|
|---|
| 1099 | }
|
|---|
| 1100 |
|
|---|
| 1101 | template <typename float_type> float_type c2_inverse_function_p<float_type>::value_with_derivatives(
|
|---|
| 1102 | float_type x, float_type *yprime, float_type *yprime2
|
|---|
| 1103 | ) const throw(c2_exception)
|
|---|
| 1104 | {
|
|---|
| 1105 | float_type l=this->func->xmin();
|
|---|
| 1106 | float_type r=this->func->xmax();
|
|---|
| 1107 | float_type yp, ypp;
|
|---|
| 1108 | float_type y=this->func->find_root(l, r, get_start_hint(x), x, 0, &yp, &ypp);
|
|---|
| 1109 | start_hint=y;
|
|---|
| 1110 | if(yprime) *yprime=1.0/yp;
|
|---|
| 1111 | if(yprime2) *yprime2=-ypp/(yp*yp*yp);
|
|---|
| 1112 | return y;
|
|---|
| 1113 | }
|
|---|
| 1114 |
|
|---|
| 1115 | //accumulated_histogram starts with binned data, generates the integral, and generates a piecewise linear interpolating_function
|
|---|
| 1116 | //If drop_zeros is true, it merges empty bins together before integration
|
|---|
| 1117 | //Note that the resulting interpolating_function is guaranteed to be increasing (if drop_zeros is false)
|
|---|
| 1118 | // or stricly increasing (if drop_zeros is true)
|
|---|
| 1119 | //If inverse_function is true, it drop zeros, integrates, and returns the inverse function which is useful
|
|---|
| 1120 | // for random number generation based on the input distribution.
|
|---|
| 1121 | //If normalize is true, the big end of the integral is scaled to 1.
|
|---|
| 1122 | //If the data are passed in reverse order (large X first), the integral is carried out from the big end,
|
|---|
| 1123 | // and then the data are reversed to the result in in increasing X order.
|
|---|
| 1124 | template <typename float_type> accumulated_histogram<float_type>::accumulated_histogram(
|
|---|
| 1125 | const std::vector<float_type>binedges, const std::vector<float_type> binheights,
|
|---|
| 1126 | bool normalize, bool inverse_function, bool drop_zeros)
|
|---|
| 1127 | {
|
|---|
| 1128 |
|
|---|
| 1129 | int np=binheights.size();
|
|---|
| 1130 |
|
|---|
| 1131 | std::vector<float_type> be, bh;
|
|---|
| 1132 | if(drop_zeros || inverse_function) { //inverse functions cannot have any zero bins or they have vertical sections
|
|---|
| 1133 | if(binheights[0] || !inverse_function) { // conserve lower x bound if not an inverse function
|
|---|
| 1134 | be.push_back(binedges[0]);
|
|---|
| 1135 | bh.push_back(binheights[0]);
|
|---|
| 1136 | }
|
|---|
| 1137 | for(int i=1; i<np-1; i++) {
|
|---|
| 1138 | if(binheights[i]) {
|
|---|
| 1139 | be.push_back(binedges[i]);
|
|---|
| 1140 | bh.push_back(binheights[i]);
|
|---|
| 1141 | }
|
|---|
| 1142 | }
|
|---|
| 1143 | if(binheights[np-1] || !inverse_function) {
|
|---|
| 1144 | bh.push_back(binheights[np-1]);
|
|---|
| 1145 | be.push_back(binedges[np-1]);
|
|---|
| 1146 | be.push_back(binedges[np]); // push both sides of the last bin if needed
|
|---|
| 1147 | }
|
|---|
| 1148 | np=bh.size(); // set np to compressed size of bin array
|
|---|
| 1149 | } else {
|
|---|
| 1150 | be=binedges;
|
|---|
| 1151 | bh=binheights;
|
|---|
| 1152 | }
|
|---|
| 1153 | std::vector<float_type> cum(np+1, 0.0);
|
|---|
| 1154 | for(int i=1; i<=np; i++) cum[i]=bh[i]*(be[i]-be[i-1])+cum[i-1]; // accumulate bins, leaving bin 0 as 0
|
|---|
| 1155 | if(be[1] < be[0]) { // if bins passed in backwards, reverse them
|
|---|
| 1156 | std::reverse(be.begin(), be.end());
|
|---|
| 1157 | std::reverse(cum.begin(), cum.end());
|
|---|
| 1158 | for(unsigned int i=0; i<cum.size(); i++) cum[i]*=-1; // flip sign on reversed data
|
|---|
| 1159 | }
|
|---|
| 1160 | if(normalize) {
|
|---|
| 1161 | float_type m=1.0/std::max(cum[0], cum[np]);
|
|---|
| 1162 | for(int i=0; i<=np; i++) cum[i]*=m;
|
|---|
| 1163 | }
|
|---|
| 1164 | if(inverse_function) interpolating_function_p<float_type>(cum, be); // use cum as x axis in inverse function
|
|---|
| 1165 | else interpolating_function_p<float_type>(be, cum); // else use lower bin edge as x axis
|
|---|
| 1166 | std::fill(this->y2.begin(), this->y2.end(), 0.0); // clear second derivatives, to we are piecewise linear
|
|---|
| 1167 | }
|
|---|
| 1168 |
|
|---|
| 1169 | template <typename float_type> c2_piecewise_function_p<float_type>::c2_piecewise_function_p()
|
|---|
| 1170 | : c2_function<float_type>(), lastKLow(-1)
|
|---|
| 1171 | {
|
|---|
| 1172 | this->sampling_grid=new std::vector<float_type>; // this always has a smapling grid
|
|---|
| 1173 | }
|
|---|
| 1174 |
|
|---|
| 1175 | template <typename float_type> c2_piecewise_function_p<float_type>::~c2_piecewise_function_p()
|
|---|
| 1176 | {
|
|---|
| 1177 | }
|
|---|
| 1178 |
|
|---|
| 1179 | template <typename float_type> float_type c2_piecewise_function_p<float_type>::value_with_derivatives(
|
|---|
| 1180 | float_type x, float_type *yprime, float_type *yprime2
|
|---|
| 1181 | ) const throw(c2_exception)
|
|---|
| 1182 | {
|
|---|
| 1183 |
|
|---|
| 1184 | size_t np=functions.size();
|
|---|
| 1185 | if(!np) throw c2_exception("attempting to evaluate an empty piecewise function");
|
|---|
| 1186 |
|
|---|
| 1187 | if(x < this->xmin() || x > this->xmax()) {
|
|---|
| 1188 | std::ostringstream outstr;
|
|---|
| 1189 | outstr << "piecewise function argument " << x << " out of range " << this->xmin() << " -- " << this->xmax();
|
|---|
| 1190 | throw c2_exception(outstr.str().c_str());
|
|---|
| 1191 | }
|
|---|
| 1192 |
|
|---|
| 1193 | int klo=0;
|
|---|
| 1194 |
|
|---|
| 1195 | if(lastKLow >= 0 && functions[lastKLow]->xmin() <= x && functions[lastKLow]->xmax() > x) {
|
|---|
| 1196 | klo=lastKLow;
|
|---|
| 1197 | } else {
|
|---|
| 1198 | int khi=np;
|
|---|
| 1199 | while(khi-klo > 1) {
|
|---|
| 1200 | int km=(khi+klo)/2;
|
|---|
| 1201 | if(functions[km]->xmin() > x) khi=km;
|
|---|
| 1202 | else klo=km;
|
|---|
| 1203 | }
|
|---|
| 1204 | }
|
|---|
| 1205 | lastKLow=klo;
|
|---|
| 1206 | return functions[klo]->value_with_derivatives(x, yprime, yprime2);
|
|---|
| 1207 | }
|
|---|
| 1208 |
|
|---|
| 1209 | template <typename float_type> void c2_piecewise_function_p<float_type>::append_function(
|
|---|
| 1210 | const c2_function<float_type> &func) throw(c2_exception)
|
|---|
| 1211 | {
|
|---|
| 1212 | c2_const_ptr<float_type> keepfunc(func); // manage function before we can throw any exceptions
|
|---|
| 1213 | if(functions.size()) { // check whether there are any gaps to fill, etc.
|
|---|
| 1214 | const c2_function<float_type> &tail=functions.back();
|
|---|
| 1215 | float_type x0=tail.xmax();
|
|---|
| 1216 | float_type x1=func.xmin();
|
|---|
| 1217 | if(x0 < x1) {
|
|---|
| 1218 | // must insert a connector if x0 < x1
|
|---|
| 1219 | float_type y0=tail(x0);
|
|---|
| 1220 | float_type y1=func(x1);
|
|---|
| 1221 | c2_function<float_type> &connector=*new c2_linear_p<float_type>(x0, y0, (y1-y0)/(x1-x0));
|
|---|
| 1222 | connector.set_domain(x0,x1);
|
|---|
| 1223 | functions.push_back(c2_const_ptr<float_type>(connector));
|
|---|
| 1224 | this->sampling_grid->push_back(x1);
|
|---|
| 1225 | } else if(x0>x1) throw c2_exception("function domains not increasing in c2_piecewise_function");
|
|---|
| 1226 | }
|
|---|
| 1227 | functions.push_back(keepfunc);
|
|---|
| 1228 | // extend our domain to include all known functions
|
|---|
| 1229 | this->set_domain(functions.front()->xmin(), functions.back()->xmax());
|
|---|
| 1230 | // extend our sampling grid with the new function's grid, with the first point dropped to avoid duplicates
|
|---|
| 1231 | std::vector<float_type> newgrid;
|
|---|
| 1232 | func.get_sampling_grid(func.xmin(), func.xmax(), newgrid);
|
|---|
| 1233 | this->sampling_grid->insert(this->sampling_grid->end(), newgrid.begin()+1, newgrid.end());
|
|---|
| 1234 | }
|
|---|
| 1235 |
|
|---|
| 1236 | template <typename float_type> c2_connector_function_p<float_type>::c2_connector_function_p(
|
|---|
| 1237 | float_type x0, const c2_function<float_type> &f0, float_type x2, const c2_function<float_type> &f2,
|
|---|
| 1238 | bool auto_center, float_type y1)
|
|---|
| 1239 | : c2_function<float_type>()
|
|---|
| 1240 | {
|
|---|
| 1241 | c2_const_ptr<float_type> left(f0), right(f2); // make sure if these are unowned, they get deleted
|
|---|
| 1242 | c2_fblock<float_type> fb0, fb2;
|
|---|
| 1243 | fb0.x=x0;
|
|---|
| 1244 | f0.fill_fblock(fb0);
|
|---|
| 1245 | fb2.x=x2;
|
|---|
| 1246 | f2.fill_fblock(fb2);
|
|---|
| 1247 | init(fb0, fb2, auto_center, y1);
|
|---|
| 1248 | }
|
|---|
| 1249 |
|
|---|
| 1250 | template <typename float_type> c2_connector_function_p<float_type>::c2_connector_function_p(
|
|---|
| 1251 | float_type x0, float_type y0, float_type yp0, float_type ypp0,
|
|---|
| 1252 | float_type x2, float_type y2, float_type yp2, float_type ypp2,
|
|---|
| 1253 | bool auto_center, float_type y1)
|
|---|
| 1254 | : c2_function<float_type>()
|
|---|
| 1255 | {
|
|---|
| 1256 | c2_fblock<float_type> fb0, fb2;
|
|---|
| 1257 | fb0.x=x0; fb0.y=y0; fb0.yp=yp0; fb0.ypp=ypp0;
|
|---|
| 1258 | fb2.x=x2; fb2.y=y2; fb2.yp=yp2; fb2.ypp=ypp2;
|
|---|
| 1259 | init(fb0, fb2, auto_center, y1);
|
|---|
| 1260 | }
|
|---|
| 1261 |
|
|---|
| 1262 | template <typename float_type> c2_connector_function_p<float_type>::c2_connector_function_p(
|
|---|
| 1263 | const c2_fblock<float_type> &fb0,
|
|---|
| 1264 | const c2_fblock<float_type> &fb2,
|
|---|
| 1265 | bool auto_center, float_type y1)
|
|---|
| 1266 | : c2_function<float_type>()
|
|---|
| 1267 | {
|
|---|
| 1268 | init(fb0, fb2, auto_center, y1);
|
|---|
| 1269 | }
|
|---|
| 1270 |
|
|---|
| 1271 | template <typename float_type> void c2_connector_function_p<float_type>::init(
|
|---|
| 1272 | const c2_fblock<float_type> &fb0,
|
|---|
| 1273 | const c2_fblock<float_type> &fb2,
|
|---|
| 1274 | bool auto_center, float_type y1)
|
|---|
| 1275 | {
|
|---|
| 1276 | float_type dx=(fb2.x-fb0.x)/2.0;
|
|---|
| 1277 | fhinv=1.0/dx;
|
|---|
| 1278 |
|
|---|
| 1279 | // scale derivs to put function on [-1,1] since mma solution is done this way
|
|---|
| 1280 | float_type yp0=fb0.yp*dx;
|
|---|
| 1281 | float_type yp2=fb2.yp*dx;
|
|---|
| 1282 | float_type ypp0=fb0.ypp*dx*dx;
|
|---|
| 1283 | float_type ypp2=fb2.ypp*dx*dx;
|
|---|
| 1284 |
|
|---|
| 1285 | float_type ff0=(8*(fb0.y + fb2.y) + 5*(yp0 - yp2) + ypp0 + ypp2)*0.0625;
|
|---|
| 1286 | if(auto_center) y1=ff0; // forces ff to be 0 if we are auto-centering
|
|---|
| 1287 |
|
|---|
| 1288 | // y[x_] = y1 + x (a + b x) + x [(x-1) (x+1)] (c + d x) + x (x-1)^2 (x+1)^2 (e + f x)
|
|---|
| 1289 | // y' = a + 2 b x + d x [(x+1)(x-1)] + (c + d x)(3x^2-1) + f x [(x+1)(x-1)]^2 + (e + f x)[(x+1)(x-1)](5x^2-1)
|
|---|
| 1290 | // y'' = 2 b + 6x(c + d x) + 2d(3x^2-1) + 4x(e + f x)(5x^2-3) + 2f(x^2-1)(5x^2-1)
|
|---|
| 1291 | fy1=y1;
|
|---|
| 1292 | fa=(fb2.y - fb0.y)*0.5;
|
|---|
| 1293 | fb=(fb0.y + fb2.y)*0.5 - y1;
|
|---|
| 1294 | fc=(yp2+yp0-2.*fa)*0.25;
|
|---|
| 1295 | fd=(yp2-yp0-4.*fb)*0.25;
|
|---|
| 1296 | fe=(ypp2-ypp0-12.*fc)*0.0625;
|
|---|
| 1297 | ff=(ff0 - y1);
|
|---|
| 1298 | this->set_domain(fb0.x, fb2.x); // this is where the function is valid
|
|---|
| 1299 | }
|
|---|
| 1300 |
|
|---|
| 1301 | template <typename float_type> c2_connector_function_p<float_type>::~c2_connector_function_p()
|
|---|
| 1302 | {
|
|---|
| 1303 | }
|
|---|
| 1304 |
|
|---|
| 1305 | template <typename float_type> float_type c2_connector_function_p<float_type>::value_with_derivatives(
|
|---|
| 1306 | float_type x, float_type *yprime, float_type *yprime2
|
|---|
| 1307 | ) const throw(c2_exception)
|
|---|
| 1308 | {
|
|---|
| 1309 | float_type x0=this->xmin(), x2=this->xmax();
|
|---|
| 1310 | float_type dx=(x-(x0+x2)*0.5)*fhinv;
|
|---|
| 1311 | float_type q1=(x-x0)*(x-x2)*fhinv*fhinv; // exactly vanish all bits at both ends
|
|---|
| 1312 | float_type q2=dx*q1;
|
|---|
| 1313 |
|
|---|
| 1314 | float_type r1=fa+fb*dx;
|
|---|
| 1315 | float_type r2=fc+fd*dx;
|
|---|
| 1316 | float_type r3=fe+ff*dx;
|
|---|
| 1317 |
|
|---|
| 1318 | float_type y=fy1+dx*r1+q2*r2+q1*q2*r3;
|
|---|
| 1319 |
|
|---|
| 1320 | if(yprime || yprime2) {
|
|---|
| 1321 | float_type q3=3*q1+2;
|
|---|
| 1322 | float_type q4=5*q1+4;
|
|---|
| 1323 | if(yprime) *yprime=(fa+2*fb*dx+fd*q2+r2*q3+ff*q1*q2+q1*q4*r3)*fhinv;
|
|---|
| 1324 | if(yprime2) *yprime2=2*(fb+fd*q3+3*dx*r2+ff*q1*q4+r3*(2*dx*(5*q1+2)))*fhinv*fhinv;
|
|---|
| 1325 | }
|
|---|
| 1326 | return y;
|
|---|
| 1327 | }
|
|---|
| 1328 |
|
|---|
| 1329 | // the recursive part of the sampler is agressively designed to minimize copying of data... lots of pointers
|
|---|
| 1330 | template <typename float_type> void c2_function<float_type>::sample_step(c2_sample_recur &rb) const throw(c2_exception)
|
|---|
| 1331 | {
|
|---|
| 1332 | std::vector< recur_item > &rb_stack=*rb.rb_stack; // heap-based stack of data for recursion
|
|---|
| 1333 | rb_stack.clear();
|
|---|
| 1334 |
|
|---|
| 1335 | recur_item top;
|
|---|
| 1336 | top.depth=0; top.done=false; top.f0index=0; top.f2index=0;
|
|---|
| 1337 |
|
|---|
| 1338 | // push storage for our initial elements
|
|---|
| 1339 | rb_stack.push_back(top);
|
|---|
| 1340 | rb_stack.back().f1=*rb.f0;
|
|---|
| 1341 | rb_stack.back().done=true;
|
|---|
| 1342 |
|
|---|
| 1343 | rb_stack.push_back(top);
|
|---|
| 1344 | rb_stack.back().f1=*rb.f1;
|
|---|
| 1345 | rb_stack.back().done=true;
|
|---|
| 1346 |
|
|---|
| 1347 | if(!rb.inited) {
|
|---|
| 1348 | rb.dx_tolerance=10.0*std::numeric_limits<float_type>::epsilon();
|
|---|
| 1349 | rb.abs_tol_min=10.0*std::numeric_limits<float_type>::min();
|
|---|
| 1350 | rb.inited=true;
|
|---|
| 1351 | }
|
|---|
| 1352 |
|
|---|
| 1353 | // now, push our first real element
|
|---|
| 1354 | top.f0index=0; // left element is stack[0]
|
|---|
| 1355 | top.f2index=1; // right element is stack[1]
|
|---|
| 1356 | rb_stack.push_back(top);
|
|---|
| 1357 |
|
|---|
| 1358 | while(rb_stack.size() > 2) {
|
|---|
| 1359 | recur_item &back=rb_stack.back();
|
|---|
| 1360 | if(back.done) {
|
|---|
| 1361 | rb_stack.pop_back();
|
|---|
| 1362 | continue;
|
|---|
| 1363 | }
|
|---|
| 1364 | back.done=true;
|
|---|
| 1365 |
|
|---|
| 1366 | c2_fblock<float_type> &f0=rb_stack[back.f0index].f1, &f2=rb_stack[back.f2index].f1;
|
|---|
| 1367 | c2_fblock<float_type> &f1=back.f1; // will hold new middle values
|
|---|
| 1368 | size_t f1index=rb_stack.size()-1; // our current offset
|
|---|
| 1369 |
|
|---|
| 1370 | // std::cout << "processing: " << rb_stack.size() << " " <<
|
|---|
| 1371 | // (&back-&rb_stack.front()) << " " << back.depth << " " << f0.x << " " << f2.x << std::endl;
|
|---|
| 1372 |
|
|---|
| 1373 | f1.x=0.5*(f0.x + f2.x); // center of interval
|
|---|
| 1374 | float_type dx2=0.5*(f2.x - f0.x);
|
|---|
| 1375 |
|
|---|
| 1376 | // check for underflow on step size, which prevents us from achieving specified accuracy.
|
|---|
| 1377 | if(std::abs(dx2) < std::abs(f1.x)*rb.dx_tolerance || std::abs(dx2) < rb.abs_tol_min) {
|
|---|
| 1378 | std::ostringstream outstr;
|
|---|
| 1379 | outstr << "Step size underflow in adaptive_sampling at depth=" << back.depth << ", x= " << f1.x;
|
|---|
| 1380 | throw c2_exception(outstr.str().c_str());
|
|---|
| 1381 | }
|
|---|
| 1382 |
|
|---|
| 1383 | fill_fblock(f1);
|
|---|
| 1384 |
|
|---|
| 1385 | if(c2_isnan(f1.y) || f1.ypbad || f1.yppbad) {
|
|---|
| 1386 | // can't go any further if a nan has appeared
|
|---|
| 1387 | bad_x_point=f1.x;
|
|---|
| 1388 | throw c2_exception("NaN encountered while sampling function");
|
|---|
| 1389 | }
|
|---|
| 1390 |
|
|---|
| 1391 | float_type eps;
|
|---|
| 1392 | if(rb.derivs==2) {
|
|---|
| 1393 | // this is code from connector_function to compute the value at the midpoint
|
|---|
| 1394 | // it is re-included here to avoid constructing a complete c2connector
|
|---|
| 1395 | // just to find out if we are close enough
|
|---|
| 1396 | float_type ff0=(8*(f0.y + f2.y) + 5*(f0.yp - f2.yp)*dx2 + (f0.ypp+f2.ypp)*dx2*dx2)*0.0625;
|
|---|
| 1397 | // we are converging as at least x**5 and bisecting, so real error on final step is smaller
|
|---|
| 1398 | eps=std::abs(ff0-f1.y)/32.0;
|
|---|
| 1399 | } else {
|
|---|
| 1400 | // there are two tolerances to meet... the shift in the estimate of the actual point,
|
|---|
| 1401 | // and the difference between the current points and the extremum
|
|---|
| 1402 | // build all the coefficients needed to construct the local parabola
|
|---|
| 1403 | float_type ypcenter, ypp;
|
|---|
| 1404 | if (rb.derivs==1) {
|
|---|
| 1405 | // linear extrapolation error using exact derivs
|
|---|
| 1406 | eps = (std::abs(f0.y+f0.yp*dx2-f1.y)+std::abs(f2.y-f2.yp*dx2-f1.y))*0.125;
|
|---|
| 1407 | ypcenter=2*f1.yp*dx2; // first deriv scaled so this interval is on [-1,1]
|
|---|
| 1408 | ypp=2*(f2.yp-f0.yp)*dx2*dx2; // second deriv estimate scaled so this interval is on [-1,1]
|
|---|
| 1409 | } else {
|
|---|
| 1410 | // linear interpolation error without derivs if we are at top level
|
|---|
| 1411 | // or 3-point parabolic interpolation estimates from previous level, if available
|
|---|
| 1412 | ypcenter=(f2.y-f0.y)*0.5; // derivative estimate at center
|
|---|
| 1413 | ypp=(f2.y+f0.y-2*f1.y); // second deriv estimate
|
|---|
| 1414 | if(back.depth==0) eps=std::abs((f0.y+f2.y)*0.5 - f1.y)*2; // penalize first step
|
|---|
| 1415 | else eps=std::abs(f1.y-back.previous_estimate)*0.25;
|
|---|
| 1416 | }
|
|---|
| 1417 | float_type ypleft=ypcenter-ypp; // derivative at left edge
|
|---|
| 1418 | float_type ypright=ypcenter+ypp; // derivative at right edge
|
|---|
| 1419 | float_type extremum_eps=0;
|
|---|
| 1420 | if((ypleft*ypright) <=0) // y' changes sign if we have an extremum
|
|---|
| 1421 | {
|
|---|
| 1422 | // compute position and value of the extremum this way
|
|---|
| 1423 | float_type xext=-ypcenter/ypp;
|
|---|
| 1424 | float_type yext=f1.y + xext*ypcenter + 0.5*xext*xext*ypp;
|
|---|
| 1425 | // and then find the the smallest offset of it from a point, looking in the left or right side
|
|---|
| 1426 | if(xext <=0) extremum_eps=std::min(std::abs(f0.y-yext), std::abs(f1.y-yext));
|
|---|
| 1427 | else extremum_eps=std::min(std::abs(f2.y-yext), std::abs(f1.y-yext));
|
|---|
| 1428 | }
|
|---|
| 1429 | eps=std::max(eps, extremum_eps); // if previous shot was really bad, keep trying
|
|---|
| 1430 | }
|
|---|
| 1431 |
|
|---|
| 1432 | if(eps < rb.abs_tol || eps < std::abs(f1.y)*rb.rel_tol) {
|
|---|
| 1433 | if(rb.out) {
|
|---|
| 1434 | // we've met the tolerance, and are building a function, append two connectors
|
|---|
| 1435 | rb.out->append_function(
|
|---|
| 1436 | *new c2_connector_function_p<float_type>(f0, f1, true, 0.0)
|
|---|
| 1437 | );
|
|---|
| 1438 | rb.out->append_function(
|
|---|
| 1439 | *new c2_connector_function_p<float_type>(f1, f2, true, 0.0)
|
|---|
| 1440 | );
|
|---|
| 1441 | }
|
|---|
| 1442 | if(rb.xvals && rb.yvals) {
|
|---|
| 1443 | rb.xvals->push_back(f0.x);
|
|---|
| 1444 | rb.xvals->push_back(f1.x);
|
|---|
| 1445 | rb.yvals->push_back(f0.y);
|
|---|
| 1446 | rb.yvals->push_back(f1.y);
|
|---|
| 1447 | // the value at f2 will get pushed in the next segment... it is not forgotten
|
|---|
| 1448 | }
|
|---|
| 1449 | } else {
|
|---|
| 1450 | top.depth=back.depth+1; // increment depth counter
|
|---|
| 1451 |
|
|---|
| 1452 | // save the last things we need from back before a push happens, in case
|
|---|
| 1453 | // the push causes a reallocation and moves the whole stack.
|
|---|
| 1454 | size_t f0index=back.f0index, f2index=back.f2index;
|
|---|
| 1455 | float_type left=0, right=0;
|
|---|
| 1456 | if(rb.derivs==0) {
|
|---|
| 1457 | // compute three-point parabolic interpolation estimate of right-hand and left-hand midpoint
|
|---|
| 1458 | left=(6*f1.y + 3*f0.y - f2.y) * 0.125;
|
|---|
| 1459 | right=(6*f1.y + 3*f2.y - f0.y) * 0.125;
|
|---|
| 1460 | }
|
|---|
| 1461 |
|
|---|
| 1462 | top.f0index=f1index; top.f2index=f2index; // insert pointers to right side data into our recursion block
|
|---|
| 1463 | top.previous_estimate=right;
|
|---|
| 1464 | rb_stack.push_back(top);
|
|---|
| 1465 |
|
|---|
| 1466 | top.f0index=f0index; top.f2index=f1index; // insert pointers to left side data into our recursion block
|
|---|
| 1467 | top.previous_estimate=left;
|
|---|
| 1468 | rb_stack.push_back(top);
|
|---|
| 1469 | }
|
|---|
| 1470 | }
|
|---|
| 1471 | }
|
|---|
| 1472 |
|
|---|
| 1473 | template <typename float_type> c2_piecewise_function_p<float_type> *
|
|---|
| 1474 | c2_function<float_type>::adaptively_sample(
|
|---|
| 1475 | float_type xmin, float_type xmax,
|
|---|
| 1476 | float_type abs_tol, float_type rel_tol,
|
|---|
| 1477 | int derivs, std::vector<float_type> *xvals, std::vector<float_type> *yvals) const throw(c2_exception)
|
|---|
| 1478 | {
|
|---|
| 1479 | c2_fblock<float_type> f0, f2;
|
|---|
| 1480 | c2_sample_recur rb;
|
|---|
| 1481 | std::vector< recur_item > rb_stack;
|
|---|
| 1482 | rb_stack.reserve(20); // enough for most operations
|
|---|
| 1483 | rb.rb_stack=&rb_stack;
|
|---|
| 1484 | rb.out=0;
|
|---|
| 1485 | if(derivs==2) rb.out=new c2_piecewise_function_p<float_type>();
|
|---|
| 1486 | c2_ptr<float_type> pieces(*rb.out); // manage this function, if any, so it deletes on an exception
|
|---|
| 1487 | rb.rel_tol=rel_tol;
|
|---|
| 1488 | rb.abs_tol=abs_tol;
|
|---|
| 1489 | rb.xvals=xvals;
|
|---|
| 1490 | rb.yvals=yvals;
|
|---|
| 1491 | rb.derivs=derivs;
|
|---|
| 1492 | rb.inited=false;
|
|---|
| 1493 |
|
|---|
| 1494 | if(xvals && yvals) {
|
|---|
| 1495 | xvals->clear();
|
|---|
| 1496 | yvals->clear();
|
|---|
| 1497 | }
|
|---|
| 1498 |
|
|---|
| 1499 | // create xgrid as a automatic-variable copy of the sampling grid so the exception handler correctly
|
|---|
| 1500 | // disposes of it.
|
|---|
| 1501 | std::vector<float_type> xgrid;
|
|---|
| 1502 | get_sampling_grid(xmin, xmax, xgrid);
|
|---|
| 1503 | int np=xgrid.size();
|
|---|
| 1504 |
|
|---|
| 1505 | f2.x=xgrid[0];
|
|---|
| 1506 | fill_fblock(f2);
|
|---|
| 1507 | if(c2_isnan(f2.y) || f2.ypbad || f2.yppbad) {
|
|---|
| 1508 | // can't go any further if a nan has appeared
|
|---|
| 1509 | bad_x_point=f2.x;
|
|---|
| 1510 | throw c2_exception("NaN encountered while sampling function");
|
|---|
| 1511 | }
|
|---|
| 1512 |
|
|---|
| 1513 | for(int i=0; i<np-1; i++) {
|
|---|
| 1514 | f0=f2; // copy upper bound to lower before computing new upper bound
|
|---|
| 1515 |
|
|---|
| 1516 | f2.x=xgrid[i+1];
|
|---|
| 1517 | fill_fblock(f2);
|
|---|
| 1518 | if(c2_isnan(f2.y) || f2.ypbad || f2.yppbad) {
|
|---|
| 1519 | // can't go any further if a nan has appeared
|
|---|
| 1520 | bad_x_point=f2.x;
|
|---|
| 1521 | throw c2_exception("NaN encountered while sampling function");
|
|---|
| 1522 | }
|
|---|
| 1523 |
|
|---|
| 1524 | rb.f0=&f0; rb.f1=&f2;
|
|---|
| 1525 | sample_step(rb);
|
|---|
| 1526 | }
|
|---|
| 1527 | if(xvals && yvals) { // push final point in vector
|
|---|
| 1528 | xvals->push_back(f2.x);
|
|---|
| 1529 | yvals->push_back(f2.y);
|
|---|
| 1530 | }
|
|---|
| 1531 |
|
|---|
| 1532 | if(rb.out) rb.out->set_sampling_grid(xgrid); // reflect old sampling grid, which still should be right
|
|---|
| 1533 | pieces.release_for_return(); // unmanage the piecewise_function so we can return it
|
|---|
| 1534 | return rb.out;
|
|---|
| 1535 | }
|
|---|
| 1536 |
|
|---|
| 1537 | template <typename float_type, typename Final>
|
|---|
| 1538 | interpolating_function_p<float_type> & inverse_integrated_density_function(
|
|---|
| 1539 | const std::vector<float_type> &bincenters, const c2_function<float_type> &binheights)
|
|---|
| 1540 | throw(c2_exception)
|
|---|
| 1541 | {
|
|---|
| 1542 | return (new Final())->load_random_generator_function(bincenters, binheights);
|
|---|
| 1543 | }
|
|---|
| 1544 |
|
|---|
| 1545 | template <typename float_type, typename Final>
|
|---|
| 1546 | interpolating_function_p<float_type> & inverse_integrated_density_bins(
|
|---|
| 1547 | const std::vector<float_type> &bins, const std::vector<float_type> &binheights)
|
|---|
| 1548 | throw(c2_exception)
|
|---|
| 1549 | {
|
|---|
| 1550 | return (new Final())->load_random_generator_bins(bins, binheights);
|
|---|
| 1551 | }
|
|---|