// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: Em8DetectorConstruction.cc,v 1.21 2007/10/02 10:12:47 vnivanch Exp $ // GEANT4 tag $Name: geant4-09-03-cand-01 $ // // #include "Em8DetectorConstruction.hh" #include "Em8DetectorMessenger.hh" #include "Em8CalorimeterSD.hh" #include "G4Material.hh" #include "G4Tubs.hh" #include "G4LogicalVolume.hh" #include "G4PVPlacement.hh" #include "G4FieldManager.hh" #include "G4TransportationManager.hh" #include "G4SDManager.hh" #include "G4GeometryManager.hh" #include "G4RunManager.hh" #include "G4Region.hh" #include "G4RegionStore.hh" #include "G4PhysicalVolumeStore.hh" #include "G4LogicalVolumeStore.hh" #include "G4SolidStore.hh" #include "G4ProductionCuts.hh" #include "G4VisAttributes.hh" #include "G4Colour.hh" #include "G4UnitsTable.hh" #include "G4ios.hh" ///////////////////////////////////////////////////////////////////////////// // // Em8DetectorConstruction::Em8DetectorConstruction() : fWorldChanged(false), fWorldMaterial(NULL),fSolidWorld(NULL),fLogicWorld(NULL),fPhysicsWorld(NULL), fAbsorberMaterial(NULL),fSolidAbsorber(NULL),fLogicAbsorber(NULL), fPhysicsAbsorber(NULL),fDetectorMessenger(NULL), fCalorimeterSD(NULL),fRegGasDet(NULL) { fDelta = 0.0001*mm; fAbsorberThickness = 23.0*mm; fAbsorberRadius = 10.*cm; fAbsorberZ = 0.*cm ; fWindowThick = 51.0*micrometer ; fGammaCut = 23*mm; fElectronCut = 23*mm; fPositronCut = 23*mm; fDetectorMessenger = new Em8DetectorMessenger(this); } ////////////////////////////////////////////////////////////////////////// // // Em8DetectorConstruction::~Em8DetectorConstruction() { delete fDetectorMessenger; } ////////////////////////////////////////////////////////////////////////// // // G4VPhysicalVolume* Em8DetectorConstruction::Construct() { DefineMaterials(); return ConstructCalorimeter(); } ////////////////////////////////////////////////////////////////////////////// // // void Em8DetectorConstruction::DefineMaterials() { //This function illustrates the possible ways to define materials G4String name, symbol ; //a=mass of a mole; G4double a, z, density ; //z=mean number of protons; G4int nel ; //iz=number of protons in an isotope; // n=number of nucleons in an isotope; G4int ncomponents; G4double fractionmass; // // define Elements // a = 1.01*g/mole; G4Element* elH = new G4Element(name="Hydrogen",symbol="H" , z= 1., a); a = 12.01*g/mole; G4Element* elC = new G4Element(name="Carbon", symbol="C", z=6., a); a = 14.01*g/mole; G4Element* elN = new G4Element(name="Nitrogen",symbol="N" , z= 7., a); a = 16.00*g/mole; G4Element* elO = new G4Element(name="Oxygen" ,symbol="O" , z= 8., a); a = 39.948*g/mole; G4Element* elAr = new G4Element(name="Argon", symbol="Ar", z=18., a); // // define simple materials // // Aluminium a = 26.98*g/mole; density = 2.7*g/cm3; G4Material* Al = new G4Material(name="Aluminium", z=13., a, density); if(Al); // Mylar density = 1.39*g/cm3; G4Material* Mylar = new G4Material(name="Mylar", density, nel=3); Mylar->AddElement(elO,2); Mylar->AddElement(elC,5); Mylar->AddElement(elH,4); // Silicon as detector material density = 2.330*g/cm3; a = 28.09*g/mole; G4Material* Si = new G4Material(name="Silicon", z=14., a, density); if(Si); // Krypton as detector gas, STP density = 3.700*mg/cm3 ; a = 83.80*g/mole ; G4Material* Kr = new G4Material(name="Kr",z=36., a, density ); // Dry air (average composition) density = 1.7836*mg/cm3 ; // STP G4Material* Argon = new G4Material(name="Argon" , density, ncomponents=1); Argon->AddElement(elAr, 1); density = 1.25053*mg/cm3 ; // STP G4Material* Nitrogen = new G4Material(name="N2" , density, ncomponents=1); Nitrogen->AddElement(elN, 2); density = 1.4289*mg/cm3 ; // STP G4Material* Oxygen = new G4Material(name="O2" , density, ncomponents=1); Oxygen->AddElement(elO, 2); density = 1.2928*mg/cm3 ; // STP G4Material* Air = new G4Material(name="Air" , density, ncomponents=3); Air->AddMaterial( Nitrogen, fractionmass = 0.7557 ) ; Air->AddMaterial( Oxygen, fractionmass = 0.2315 ) ; Air->AddMaterial( Argon, fractionmass = 0.0128 ) ; /* ************** // 93% Kr + 7% CH4, STP density = 3.491*mg/cm3 ; G4Material* Kr7CH4 = new G4Material(name="Kr7CH4" , density, ncomponents=2); Kr7CH4->AddMaterial( Kr, fractionmass = 0.986 ) ; Kr7CH4->AddMaterial( metane, fractionmass = 0.014 ) ; G4double TRT_Xe_density = 5.485*mg/cm3; G4Material* TRT_Xe = new G4Material(name="TRT_Xe", TRT_Xe_density, nel=1, kStateGas,293.15*kelvin,1.*atmosphere); TRT_Xe->AddElement(elXe,1); G4double TRT_CO2_density = 1.842*mg/cm3; G4Material* TRT_CO2 = new G4Material(name="TRT_CO2", TRT_CO2_density, nel=2, kStateGas,293.15*kelvin,1.*atmosphere); TRT_CO2->AddElement(elC,1); TRT_CO2->AddElement(elO,2); G4double TRT_CF4_density = 3.9*mg/cm3; G4Material* TRT_CF4 = new G4Material(name="TRT_CF4", TRT_CF4_density, nel=2, kStateGas,293.15*kelvin,1.*atmosphere); TRT_CF4->AddElement(elC,1); TRT_CF4->AddElement(elF,4); // ATLAS TRT straw tube gas mixture (20 C, 1 atm) G4double XeCO2CF4_density = 4.76*mg/cm3; G4Material* XeCO2CF4 = new G4Material(name="XeCO2CF4", XeCO2CF4_density, ncomponents=3, kStateGas,293.15*kelvin,1.*atmosphere); XeCO2CF4->AddMaterial(TRT_Xe,0.807); XeCO2CF4->AddMaterial(TRT_CO2,0.039); XeCO2CF4->AddMaterial(TRT_CF4,0.154); *********** */ // Xenon as detector gas, STP density = 5.858*mg/cm3 ; a = 131.29*g/mole ; G4Material* Xe = new G4Material(name="Xenon",z=54., a, density ); // Metane, STP density = 0.7174*mg/cm3 ; G4Material* metane = new G4Material(name="CH4",density,nel=2) ; metane->AddElement(elC,1) ; metane->AddElement(elH,4) ; // C3H8,20 C, 2 atm density = 3.758*mg/cm3 ; G4Material* C3H8 = new G4Material(name="C3H8",density,nel=2) ; C3H8->AddElement(elC,3) ; C3H8->AddElement(elH,8) ; // Propane, STP density = 2.005*mg/cm3 ; G4Material* propane = new G4Material(name="propane",density,nel=2) ; propane->AddElement(elC,3) ; propane->AddElement(elH,8) ; // 87.5% Xe + 7.5% CH4 + 5% C3H8, 20 C, 1 atm density = 4.9196*mg/cm3 ; G4Material* XeCH4C3H8 = new G4Material(name="XeCH4C3H8" , density, ncomponents=3); XeCH4C3H8->AddMaterial( Xe, fractionmass = 0.971 ) ; XeCH4C3H8->AddMaterial( metane, fractionmass = 0.010 ) ; XeCH4C3H8->AddMaterial( propane, fractionmass = 0.019 ) ; // 93% Ar + 7% CH4, STP density = 1.709*mg/cm3 ; G4Material* Ar7CH4 = new G4Material(name="Ar7CH4", density, ncomponents=2); Ar7CH4->AddMaterial( Argon, fractionmass = 0.971 ) ; Ar7CH4->AddMaterial( metane, fractionmass = 0.029 ) ; // Carbon dioxide, STP density = 1.977*mg/cm3; G4Material* CarbonDioxide = new G4Material(name="CO2", density, nel=2); CarbonDioxide->AddElement(elC,1); CarbonDioxide->AddElement(elO,2); // 80% Ar + 20% CO2, STP density = 1.8223*mg/cm3 ; G4Material* Ar_80CO2_20 = new G4Material(name="ArCO2" , density, ncomponents=2); Ar_80CO2_20->AddMaterial( Argon, fractionmass = 0.783 ) ; Ar_80CO2_20->AddMaterial( CarbonDioxide, fractionmass = 0.217 ) ; // 80% Xe + 20% CO2, STP density = 5.0818*mg/cm3 ; G4Material* Xe20CO2 = new G4Material(name="Xe20CO2", density, ncomponents=2); Xe20CO2->AddMaterial( Xe, fractionmass = 0.922 ) ; Xe20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.078 ) ; // 80% Kr + 20% CO2, STP density = 3.601*mg/cm3 ; G4Material* Kr20CO2 = new G4Material(name="Kr20CO2" , density, ncomponents=2); Kr20CO2->AddMaterial( Kr, fractionmass = 0.89 ) ; Kr20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.11 ) ; // G4cout << *(G4Material::GetMaterialTable()) << G4endl; // fWindowMat = Mylar ; fAbsorberMaterial = XeCH4C3H8; // Al; // Si; // Xe; // Ar7CH4; // C3H8; // XeCH4C3H8; fWorldMaterial = Mylar; // Air ; } ///////////////////////////////////////////////////////////////////////// // // G4VPhysicalVolume* Em8DetectorConstruction::ConstructCalorimeter() { // Cleanup old geometry G4GeometryManager::GetInstance()->OpenGeometry(); G4PhysicalVolumeStore::GetInstance()->Clean(); G4LogicalVolumeStore::GetInstance()->Clean(); G4SolidStore::GetInstance()->Clean(); // G4RegionStore::GetInstance()->Clean(); // complete the Calor parameters definition and print ComputeCalorParameters(); PrintCalorParameters(); // World fSolidWorld = new G4Tubs("World", //its name 0.,fWorldSizeR,fWorldSizeZ/2.,0.,twopi) ;//its size fLogicWorld = new G4LogicalVolume(fSolidWorld, //its solid fWorldMaterial, //its material "World"); //its name fPhysicsWorld = new G4PVPlacement(0, //no rotation G4ThreeVector(), //at (0,0,0) "World", //its name fLogicWorld, //its logical volume NULL, //its mother volume false, //no boolean operation 0); //copy number // Absorber if (fAbsorberThickness > 0.) { fSolidAbsorber = new G4Tubs("Absorber", 0.,fAbsorberRadius,fAbsorberThickness/2.,0.,twopi); fLogicAbsorber = new G4LogicalVolume(fSolidAbsorber, fAbsorberMaterial, "Absorber"); fPhysicsAbsorber = new G4PVPlacement(0, G4ThreeVector(0.,0.,fAbsorberZ), "Absorber", fLogicAbsorber, fPhysicsWorld, false, 0); } if( fRegGasDet != 0 ) // remove obsolete root logical volume { fRegGasDet->RemoveRootLogicalVolume(fLogicAbsorber); } G4ProductionCuts* cuts = 0; if( fRegGasDet == 0 ) // First time - instantiate a region and a cut objects { fRegGasDet = new G4Region("VertexDetector"); cuts = new G4ProductionCuts(); fRegGasDet->SetProductionCuts(cuts); } else // Second time - get a cut object from region { cuts = fRegGasDet->GetProductionCuts(); } fRegGasDet->AddRootLogicalVolume(fLogicAbsorber); cuts->SetProductionCut(fGammaCut,"gamma"); cuts->SetProductionCut(fElectronCut,"e-"); cuts->SetProductionCut(fPositronCut,"e+"); // Sensitive Detectors: Absorber G4SDManager* SDman = G4SDManager::GetSDMpointer(); if(!fCalorimeterSD) { fCalorimeterSD = new Em8CalorimeterSD("CalorSD",this); SDman->AddNewDetector( fCalorimeterSD ); } if (fLogicAbsorber) fLogicAbsorber->SetSensitiveDetector(fCalorimeterSD); // Parameterisation // G4VXrayTRmodel* pTRModel = new G4IrregularXrayTRmodel(logicRadiator, // fRadThickness,fGasGap); // G4VXrayTRmodel* pTRModel = new G4FoamXrayTRmodel(logicRadiator, // fRadThickness,fGasGap); // G4VXrayTRmodel* pTRModel = new G4RegularXrayTRmodel(logicRadiator, // fRadThickness,fGasGap); // G4double alphaPlate = 160.0 ; // G4double alphaGas = 160.0 ; // G4VXrayTRmodel* pTRModel = new G4GamDistrXrayTRmodel(logicRadiator, // fRadThickness,alphaPlate, // fGasGap,alphaGas); // G4VXrayTRmodel* pTRModel = new G4PlateIrrGasXrayTRmodel(logicRadiator, // fRadThickness,fGasGap); // pTRModel->GetPlateZmuProduct() ; // pTRModel->GetGasZmuProduct() ; // pTRModel->GetNumberOfPhotons() ; // always return physics world return fPhysicsWorld; } //////////////////////////////////////////////////////////////////////////// // // void Em8DetectorConstruction::PrintCalorParameters() { G4cout << "\n The WORLD is made of " << fWorldSizeZ/mm << "mm of " << fWorldMaterial->GetName() ; G4cout << ", the transverse size (R) of the world is " << fWorldSizeR/mm << " mm. " << G4endl; G4cout << " The ABSORBER is made of " << fAbsorberThickness/mm << "mm of " << fAbsorberMaterial->GetName() ; G4cout << ", the transverse size (R) is " << fAbsorberRadius/mm << " mm. " << G4endl; G4cout << " Z position of the (middle of the) absorber " << fAbsorberZ/mm << " mm." << G4endl; G4cout << G4endl; } /////////////////////////////////////////////////////////////////////////// // // void Em8DetectorConstruction::SetAbsorberMaterial(G4String materialChoice) { // get the pointer to the material table const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); // search the material by its name G4Material* pttoMaterial; for (size_t J = 0 ; J < theMaterialTable->size() ; J++) { pttoMaterial = (*theMaterialTable)[J]; if(pttoMaterial->GetName() == materialChoice) { fAbsorberMaterial = pttoMaterial; fLogicAbsorber->SetMaterial(pttoMaterial); // PrintCalorParameters(); } } } //////////////////////////////////////////////////////////////////////////// // // void Em8DetectorConstruction::SetWorldMaterial(G4String materialChoice) { // get the pointer to the material table const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable(); // search the material by its name G4Material* pttoMaterial; for (size_t J=0 ; Jsize() ; J++) { pttoMaterial = (*theMaterialTable)[J]; if(pttoMaterial->GetName() == materialChoice) { fWorldMaterial = pttoMaterial; fLogicWorld->SetMaterial(pttoMaterial); // PrintCalorParameters(); } } } /////////////////////////////////////////////////////////////////////////// // // void Em8DetectorConstruction::SetAbsorberThickness(G4double val) { // change Absorber thickness and recompute the calorimeter parameters fAbsorberThickness = val; ComputeCalorParameters(); } ///////////////////////////////////////////////////////////////////////////// // // void Em8DetectorConstruction::SetAbsorberRadius(G4double val) { // change the transverse size and recompute the calorimeter parameters fAbsorberRadius = val; ComputeCalorParameters(); } //////////////////////////////////////////////////////////////////////////// // // void Em8DetectorConstruction::SetWorldSizeZ(G4double val) { fWorldChanged=true; fWorldSizeZ = val; ComputeCalorParameters(); } /////////////////////////////////////////////////////////////////////////// // // void Em8DetectorConstruction::SetWorldSizeR(G4double val) { fWorldChanged=true; fWorldSizeR = val; ComputeCalorParameters(); } ////////////////////////////////////////////////////////////////////////////// // // void Em8DetectorConstruction::SetAbsorberZpos(G4double val) { fAbsorberZ = val; ComputeCalorParameters(); } /////////////////////////////////////////////////////////////////////////////// // // void Em8DetectorConstruction::UpdateGeometry() { G4RunManager::GetRunManager()->DefineWorldVolume(ConstructCalorimeter()); } // // ////////////////////////////////////////////////////////////////////////////