// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: RunAction.cc,v 1.1 2007/08/16 10:32:04 vnivanch Exp $ // GEANT4 tag $Name: $ // //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... #include "RunAction.hh" #include "DetectorConstruction.hh" #include "QGSP.hh" #include "PrimaryGeneratorAction.hh" #include "RunActionMessenger.hh" #include "G4Run.hh" #include "G4RunManager.hh" #include "G4UnitsTable.hh" #include "G4ios.hh" #include "Randomize.hh" #include "G4EmCalculator.hh" #ifdef G4ANALYSIS_USE #include "AIDA/AIDA.h" #endif //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... RunAction::RunAction(DetectorConstruction* det, PrimaryGeneratorAction* kin):detector(det), kinematic(kin), af(0), tree(0) { verboseLevel = 0; binLength = offsetX = 0.; histo[0] = 0; tree = 0; af = 0; #ifdef G4ANALYSIS_USE // Creating the analysis factory af = AIDA_createAnalysisFactory(); ftype = "hbook"; fname = "monopole"; #endif // create commands for interactive definition of the detector runActionMessenger = new RunActionMessenger(this); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... RunAction::~RunAction() { #ifdef G4ANALYSIS_USE delete af; #endif } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... void RunAction::bookHisto() { G4double length = detector->GetAbsorSizeX(); if(!binLength) binLength = 5 * mm; if(binLength > detector->GetMaxStepSize()) binLength = detector->GetMaxStepSize(); G4int nbBins = (int)(0.5 + length / binLength); offsetX = 0.5 * length; #ifdef G4ANALYSIS_USE if(GetVerbose() > 0) G4cout << "\n----> Histogram Tree opened" << G4endl; // Create the tree factory AIDA::ITreeFactory* tf = af->createTreeFactory(); // Create a tree mapped to an hbook file. G4bool readOnly = false; G4bool createNew = true; //G4String ftype = "hbook"; //G4String fname = "monopole"; G4String fName = fname; fName += "."; fName += ftype; G4String option = "--noErrors uncompress"; tree = tf->create(fName,ftype, readOnly, createNew, option); // Create a histogram factory, whose histograms will be handled by the tree AIDA::IHistogramFactory* hf = af->createHistogramFactory(*tree); // Create histograms histo[0] = hf->createHistogram1D("1","Edep (MeV/mm) along absorber (mm)", nbBins, 0, length); histo[1] = hf->createHistogram1D("2","DEDX (MeV/mm) of proton", 100, -3., 7.); histo[2] = hf->createHistogram1D("3","DEDX (MeV/mm) of monopole", 100, -3., 7.); histo[3] = hf->createHistogram1D("4","Range(mm) of proton", 100, -3., 7.); histo[4] = hf->createHistogram1D("5","Range(mm) of monopole", 100, -3., 7.); delete tf; delete hf; #endif } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... void RunAction::saveHisto() { #ifdef G4ANALYSIS_USE tree->commit(); // Writing the histograms to the file tree->close(); // and closing the tree (and the file) delete tree; tree = 0; if(GetVerbose() > 0) G4cout << "\n----> Histogram Tree saved" << G4endl; #endif } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... void RunAction::SetBinSize(G4double size) { binLength = size; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... void RunAction::FillHisto(G4int ih, G4double x, G4double weight) { #ifdef G4ANALYSIS_USE if(histo[ih]) histo[ih]->fill(x, weight); #endif } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... void RunAction::BeginOfRunAction(const G4Run* aRun) { if(GetVerbose() > 0) G4cout << "### Run " << aRun->GetRunID() << " start." << G4endl; // save Rndm status G4RunManager::GetRunManager()->SetRandomNumberStore(true); CLHEP::HepRandom::showEngineStatus(); //initialize projected range, tallies, Ebeam, and book histograms projRange = projRange2 = 0.; kinematic->ResetEbeamCumul(); bookHisto(); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... void RunAction::EndOfRunAction(const G4Run* aRun) { G4int NbofEvents = aRun->GetNumberOfEvent(); if (NbofEvents == 0) return; //run conditions // G4Material* material = detector->GetAbsorMaterial(); G4double density = material->GetDensity(); G4String particle = kinematic->GetParticleGun()->GetParticleDefinition()->GetParticleName(); G4double energy = kinematic->GetParticleGun()->GetParticleEnergy(); if(GetVerbose() > 0){ G4cout << "\n The run consists of " << NbofEvents << " "<< particle << " of " << G4BestUnit(energy,"Energy") << " through " << G4BestUnit(detector->GetAbsorSizeX(),"Length") << " of " << material->GetName() << " (density: " << G4BestUnit(density,"Volumic Mass") << ")" << G4endl; }; //compute projected range and straggling projRange /= NbofEvents; projRange2 /= NbofEvents; G4double rms = projRange2 - projRange*projRange; if (rms>0.) rms = std::sqrt(rms); else rms = 0.; if(GetVerbose() > 0){ G4cout.precision(5); G4cout << "\n projected Range= " << G4BestUnit(projRange, "Length") << " rms= " << G4BestUnit(rms, "Length") << G4endl; }; G4double ekin[100], dedxproton[100], dedxmp[100]; G4EmCalculator calc; calc.SetVerbose(0); G4int i; for(i = 0; i < 100; i++) { ekin[i] = std::pow(10., 0.1*G4double(i)) * keV; dedxproton[i] = calc.ComputeElectronicDEDX(ekin[i], "proton", material->GetName()); dedxmp[i] = calc.ComputeElectronicDEDX(ekin[i], "monopole", material->GetName()); } if(GetVerbose() > 1){ G4cout << "### Stopping Powers" << G4endl; for(i=0; i<100; i++) { G4cout << " E(MeV)= " << ekin[i] << " dedxp= " << dedxproton[i] << " dedxmp= " << dedxmp[i] << G4endl; } }; #ifdef G4ANALYSIS_USE // normalize histogram G4double fac = (mm/MeV) / (NbofEvents * binLength); histo[0]->scale(fac); G4String matName = detector->GetAbsorMaterial()->GetName(); if(GetVerbose() > 0){ G4cout << "Range table for " << matName << G4endl; }; for(i=0; i<100; i++) { G4double e = std::log10(ekin[i] / MeV) + 0.05; histo[1]->fill(e, dedxproton[i]); histo[2]->fill(e, dedxmp[i]); histo[3]->fill(e, std::log10(calc.GetRange(ekin[i], "proton", matName) / mm)); histo[4]->fill(e, std::log10(calc.GetRange(ekin[i], "monopole", matName) / mm)); } #endif // save and clean histo saveHisto(); // show Rndm status CLHEP::HepRandom::showEngineStatus(); } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......