// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: MyMollerBhabhaModel.cc,v 1.1 2007/10/15 16:20:23 maire Exp $ // GEANT4 tag $Name: geant4-09-04-beta-01 $ // //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... #include "MyMollerBhabhaModel.hh" //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... using namespace std; MyMollerBhabhaModel::MyMollerBhabhaModel(const G4ParticleDefinition* p, const G4String& nam) : G4MollerBhabhaModel(p,nam) {} //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... MyMollerBhabhaModel::~MyMollerBhabhaModel() {} //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...... G4double MyMollerBhabhaModel::ComputeDEDXPerVolume( const G4Material* material, const G4ParticleDefinition* p, G4double kineticEnergy, G4double cutEnergy) { if(!particle) SetParticle(p); // calculate the dE/dx due to the ionization by Seltzer-Berger formula G4double electronDensity = material->GetElectronDensity(); G4double Zeff = electronDensity/material->GetTotNbOfAtomsPerVolume(); G4double th = 0.25*sqrt(Zeff)*keV; G4double tkin = kineticEnergy; G4bool lowEnergy = false; if (kineticEnergy < th) { tkin = th; lowEnergy = true; } G4double tau = tkin/electron_mass_c2; G4double gam = tau + 1.0; G4double gamma2= gam*gam; G4double beta2 = 1. - 1./gamma2; //G4double bg2 = beta2*gamma2; G4double eexc = material->GetIonisation()->GetMeanExcitationEnergy(); eexc /= electron_mass_c2; G4double eexc2 = eexc*eexc; G4double d = min(cutEnergy, MaxSecondaryEnergy(p, tkin))/electron_mass_c2; G4double dedx; // electron if (isElectron) { dedx = log(2.0*(tau + 2.0)/eexc2) - 1.0 - beta2 + log((tau-d)*d) + tau/(tau-d) + (0.5*d*d + (2.0*tau + 1.)*log(1. - d/tau))/gamma2; //positron } else { G4double d2 = d*d*0.5; G4double d3 = d2*d/1.5; G4double d4 = d3*d*3.75; G4double y = 1.0/(1.0 + gam); dedx = log(2.0*(tau + 2.0)/eexc2) + log(tau*d) - beta2*(tau + 2.0*d - y*(3.0*d2 + y*(d - d3 + y*(d2 - tau*d3 + d4))))/tau; } //do not apply density correction //G4double cden = material->GetIonisation()->GetCdensity(); //G4double mden = material->GetIonisation()->GetMdensity(); //G4double aden = material->GetIonisation()->GetAdensity(); //G4double x0den = material->GetIonisation()->GetX0density(); //G4double x1den = material->GetIonisation()->GetX1density(); //G4double x = log(bg2)/twoln10; //if (x >= x0den) { // dedx -= twoln10*x - cden; // if (x < x1den) dedx -= aden*pow(x1den-x, mden); //} // now you can compute the total ionization loss dedx *= twopi_mc2_rcl2*electronDensity/beta2; if (dedx < 0.0) dedx = 0.0; // lowenergy extrapolation if (lowEnergy) { if (kineticEnergy >= lowLimit) dedx *= sqrt(tkin/kineticEnergy); else dedx *= sqrt(tkin*kineticEnergy)/lowLimit; } return dedx; } //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......