source: trunk/source/error_propagation/src/G4ErrorFreeTrajState.cc @ 1202

Last change on this file since 1202 was 1058, checked in by garnier, 15 years ago

file release beta

File size: 30.8 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26// $Id: G4ErrorFreeTrajState.cc,v 1.7 2007/09/24 16:25:57 arce Exp $
27// GEANT4 tag $Name: geant4-09-02-ref-02 $
28//
29// ------------------------------------------------------------
30//      GEANT 4 class implementation file
31// ------------------------------------------------------------
32//
33#include "G4ErrorFreeTrajState.hh"
34#include "G4ErrorFreeTrajParam.hh"
35#include "G4ErrorSurfaceTrajState.hh"
36
37#include "G4ErrorMatrix.hh"
38#include <iomanip>
39
40#include "G4Field.hh"
41#include "G4FieldManager.hh"
42#include "G4TransportationManager.hh"
43#include "G4GeometryTolerance.hh"
44#include "G4Material.hh"
45#include "G4ErrorPropagatorData.hh"
46
47//------------------------------------------------------------------------
48G4ErrorFreeTrajState::G4ErrorFreeTrajState( const G4String& partType, const G4Point3D& pos, const G4Vector3D& mom, const G4ErrorTrajErr& errmat) : G4ErrorTrajState( partType, pos, mom, errmat )
49{
50  fTrajParam = G4ErrorFreeTrajParam( pos, mom );
51  Init();
52}
53
54
55//------------------------------------------------------------------------
56G4ErrorFreeTrajState::G4ErrorFreeTrajState( const G4ErrorSurfaceTrajState& tpSD ) : G4ErrorTrajState( tpSD.GetParticleType(), tpSD.GetPosition(), tpSD.GetMomentum() )
57{
58  //  G4ThreeVector planeNormal = tpSD.GetPlaneNormal();
59  // G4double fPt = tpSD.GetMomentum()*planeNormal;//mom projected on normal to plane 
60  //  G4ErrorSurfaceTrajParam tpSDparam = tpSD.GetParameters();
61  //  G4ThreeVector Psc = fPt * planeNormal + tpSDparam.GetPU()*tpSDparam.GetVectorU() + tpSD.GetPV()*tpSD.GetVectorW();
62
63  fTrajParam = G4ErrorFreeTrajParam( fPosition, fMomentum );
64  Init();
65
66  //----- Get the error matrix in SC coordinates
67  G4ErrorSurfaceTrajParam tpSDparam = tpSD.GetParameters();
68  G4double mom = fMomentum.mag();
69  G4double mom2 = fMomentum.mag2();
70  G4double TVW1 = std::sqrt( mom2 / ( mom2 + tpSDparam.GetPV()*tpSDparam.GetPV() + tpSDparam.GetPV()*tpSDparam.GetPV()) );
71  G4ThreeVector vTVW( TVW1, tpSDparam.GetPV()/mom * TVW1, tpSDparam.GetPW()/mom * TVW1 );
72  G4Vector3D vectorU = tpSDparam.GetVectorV().cross(  tpSDparam.GetVectorW() );
73  G4Vector3D vTN = vTVW.x()*vectorU + vTVW.y()*tpSDparam.GetVectorV() + vTVW.z()*tpSDparam.GetVectorW();
74
75#ifdef G4EVERBOSE
76   if( iverbose >= 5){
77     G4double pc2 = std::asin( vTN.z() );
78     G4double pc3 = std::atan (vTN.y()/vTN.x());
79 
80     G4cout << " CHECK: pc2 " << pc2 << " = " << GetParameters().GetLambda() <<  " diff " << pc2-GetParameters().GetLambda() << G4endl;
81     G4cout << " CHECK: pc3 " << pc3 << " = " << GetParameters().GetPhi() <<  " diff " << pc3-GetParameters().GetPhi() << G4endl;
82   }
83#endif
84
85  //--- Get the unit vectors perp to P
86  G4double cosl = std::cos( GetParameters().GetLambda() ); 
87  if (cosl < 1.E-30) cosl = 1.E-30;
88  G4double cosl1 = 1./cosl;
89  G4Vector3D vUN(-vTN.y()*cosl1, vTN.x()*cosl1, 0. );
90  G4Vector3D vVN(-vTN.z()*vUN.y(), vTN.z()*vUN.x(), cosl );
91
92  G4Vector3D vUperp = G4Vector3D( -fMomentum.y(), fMomentum.x(), 0.);
93  G4Vector3D vVperp = vUperp.cross( fMomentum );
94  vUperp *= 1./vUperp.mag();
95  vVperp *= 1./vVperp.mag();
96
97#ifdef G4EVERBOSE
98   if( iverbose >= 5){
99     G4cout << " CHECK: vUN " << vUN << " = " << vUperp <<  " diff " << (vUN-vUperp).mag() << G4endl;
100     G4cout << " CHECK: vVN " << vVN << " = " << vVperp <<  " diff " << (vVN-vVperp).mag() << G4endl;
101   }
102#endif
103
104  //get the dot products of vectors perpendicular to direction and vector defining SD plane
105  G4double dUU = vUperp * tpSD.GetVectorV();
106  G4double dUV = vUperp * tpSD.GetVectorW();
107  G4double dVU = vVperp * tpSD.GetVectorV();
108  G4double dVV = vVperp * tpSD.GetVectorW();
109
110
111  //--- Get transformation first
112  G4ErrorMatrix transfM(5, 5, 1 );
113  //--- Get magnetic field
114  const G4Field* field = G4TransportationManager::GetTransportationManager()->GetFieldManager()->GetDetectorField();
115  G4ThreeVector dir = fTrajParam.GetDirection();
116  G4double invCosTheta = 1./std::cos( dir.theta() );
117
118  if( fCharge != 0 
119&& field ) {
120    G4double pos1[3]; pos1[0] = fPosition.x()*cm; pos1[1] = fPosition.y()*cm; pos1[2] = fPosition.z()*cm;
121    G4double h1[3];
122    field->GetFieldValue( pos1, h1 );
123    G4ThreeVector HPre = G4ThreeVector( h1[0], h1[1], h1[2] ) / tesla *10.;
124    G4double magHPre = HPre.mag();
125    G4double invP = 1./fMomentum.mag();
126    G4double magHPreM = magHPre * invP;
127    if( magHPre != 0. ) {
128      G4double magHPreM2 = fCharge / magHPre;
129
130      G4double Q = -magHPreM * c_light;
131      G4double sinz = -HPre*vUperp * magHPreM2;
132      G4double cosz =  HPre*vVperp * magHPreM2;
133
134      transfM[1][3] = -Q*dir.y()*sinz;
135      transfM[1][4] = -Q*dir.z()*sinz;
136      transfM[2][3] = -Q*dir.y()*cosz*invCosTheta;
137      transfM[2][4] = -Q*dir.z()*cosz*invCosTheta;
138    }
139  }
140
141  transfM[0][0] = 1.;
142  transfM[1][1] = dir.x()*dVU;
143  transfM[1][2] = dir.x()*dVV;
144  transfM[2][1] = dir.x()*dUU*invCosTheta;
145  transfM[2][2] = dir.x()*dUV*invCosTheta;
146  transfM[3][3] = dUU;
147  transfM[3][4] = dUV;
148  transfM[4][3] = dVU;
149  transfM[4][4] = dVV;
150
151  fError = G4ErrorTrajErr( tpSD.GetError().similarity( transfM ) );
152
153#ifdef G4EVERBOSE
154  if( iverbose >= 1) G4cout << "error matrix SD2SC " << fError << G4endl;
155  if( iverbose >= 4) G4cout << "G4ErrorFreeTrajState from SD " << *this << G4endl;
156#endif
157}
158
159
160//------------------------------------------------------------------------
161void G4ErrorFreeTrajState::Init()
162{
163  theTSType = G4eTS_FREE;
164  BuildCharge();
165  theTransfMat = G4ErrorMatrix(5,5,0);
166  //-  theFirstStep = true;
167}
168
169//------------------------------------------------------------------------
170void G4ErrorFreeTrajState::Dump( std::ostream& out ) const
171{
172  out << *this;
173}
174
175//------------------------------------------------------------------------
176G4int G4ErrorFreeTrajState::Update( const G4Track* aTrack )
177{
178  G4int ierr = 0;
179  fTrajParam.Update( aTrack );
180  UpdatePosMom( aTrack->GetPosition(), aTrack->GetMomentum() );
181  return ierr;
182
183}
184
185
186//------------------------------------------------------------------------
187std::ostream& operator<<(std::ostream& out, const G4ErrorFreeTrajState& ts)
188{
189  out.setf(std::ios::fixed,std::ios::floatfield);
190
191 
192  ts.DumpPosMomError( out );
193 
194  out << " G4ErrorFreeTrajState: Params: " << ts.fTrajParam << G4endl;
195
196  return out;
197
198}
199
200
201//------------------------------------------------------------------------
202G4int G4ErrorFreeTrajState::PropagateError( const G4Track* aTrack )
203{
204  G4double stepLengthCm = aTrack->GetStep()->GetStepLength()/cm;
205  G4double kCarTolerance = G4GeometryTolerance::GetInstance()->GetSurfaceTolerance();
206
207  if( std::fabs(stepLengthCm) <= kCarTolerance/cm ) return 0;
208 
209#ifdef G4EVERBOSE
210  if( iverbose >= 2 )G4cout << "  G4ErrorFreeTrajState::PropagateError " << G4endl;
211#endif
212
213  // * *** ERROR PROPAGATION ON A HELIX ASSUMING SC VARIABLES
214  G4Point3D vposPost = aTrack->GetPosition()/cm;
215  G4Vector3D vpPost = aTrack->GetMomentum()/GeV;
216  //  G4Point3D vposPre = fPosition/cm;
217  //  G4Vector3D vpPre = fMomentum/GeV;
218  G4Point3D vposPre = aTrack->GetStep()->GetPreStepPoint()->GetPosition()/cm;
219  G4Vector3D vpPre = aTrack->GetStep()->GetPreStepPoint()->GetMomentum()/GeV;
220  //correct to avoid propagation along Z
221  if( vpPre.mag() == vpPre.z() ) vpPre.setX( 1.E-6*MeV );
222  if( vpPost.mag() == vpPost.z() ) vpPost.setX( 1.E-6*MeV );
223
224  G4double pPre = vpPre.mag();
225  G4double pPost = vpPost.mag();
226#ifdef G4EVERBOSE
227  if( iverbose >= 2 ) {
228    G4cout << "G4EP: vposPre " << vposPre << G4endl
229              << "G4EP: vposPost " << vposPost << G4endl;
230    G4cout << "G4EP: vpPre " << vpPre << G4endl
231              << "G4EP: vpPost " << vpPost << G4endl;
232    G4cout << " err start step " << fError << G4endl;
233    G4cout << "G4EP: stepLengthCm " << stepLengthCm << G4endl;
234  }
235#endif
236
237  if( pPre == 0. || pPost == 0 ) return 2;
238  G4double pInvPre = 1./pPre;
239  G4double pInvPost = 1./pPost;
240  G4double deltaPInv = pInvPost - pInvPre;
241
242  G4Vector3D vpPreNorm = vpPre * pInvPre;
243  G4Vector3D vpPostNorm = vpPost * pInvPost;
244  //  if( iverbose >= 2 ) G4cout << "G4EP: vpPreNorm " << vpPreNorm << " vpPostNorm " << vpPostNorm << G4endl;
245  //return if propagation along Z?? 
246  if( 1. - std::fabs(vpPostNorm.z()) < kCarTolerance ) return 4;
247  G4double sinpPre = std::sin( vpPreNorm.theta() ); //cosine perpendicular to pPre = sine pPre
248  G4double sinpPost = std::sin( vpPostNorm.theta() ); //cosine perpendicular to pPost = sine pPost
249  G4double sinpPostInv = 1./std::sin( vpPreNorm.theta() );
250
251#ifdef G4EVERBOSE
252  if( iverbose >= 2 ) G4cout << "G4EP: cosl " << sinpPre << " cosl0 " << sinpPost << G4endl;
253#endif
254  //* *** DEFINE TRANSFORMATION MATRIX BETWEEN X1 AND X2 FOR
255  //* *** NEUTRAL PARTICLE OR FIELDFREE REGION
256  G4ErrorMatrix transf(5, 5, 0 );
257
258  transf[3][2] = stepLengthCm * sinpPost;
259  transf[4][1] = stepLengthCm;
260  for( size_t ii=0;ii < 5; ii++ ){
261    transf[ii][ii] = 1.;
262  }
263#ifdef G4EVERBOSE
264  if( iverbose >= 2 ) {
265    G4cout << "G4EP: transf matrix neutral " << transf;
266  }
267#endif
268
269  //  charge X propagation direction
270  G4double charge = aTrack->GetDynamicParticle()->GetCharge();
271  if( G4ErrorPropagatorData::GetErrorPropagatorData()->GetMode() == G4ErrorMode_PropBackwards ) {
272    charge *= -1.; 
273  }
274  //  G4cout << " charge " << charge << G4endl;
275  //t check if particle has charge
276  //t  if( charge == 0 ) goto 45;
277  // check if the magnetic field is = 0.
278
279  //position is from geant4, it is assumed to be in mm (for debugging, eventually it will not be transformed)
280  G4double pos1[3]; pos1[0] = vposPre.x()*cm; pos1[1] = vposPre.y()*cm; pos1[2] = vposPre.z()*cm;
281  G4double pos2[3]; pos2[0] = vposPost.x()*cm; pos2[1] = vposPost.y()*cm; pos2[2] = vposPost.z()*cm;
282  G4double h1[3], h2[3];
283
284  const G4Field* field = G4TransportationManager::GetTransportationManager()->GetFieldManager()->GetDetectorField();
285  if( !field ) return 0; //goto 45
286 
287  // calculate transformation except it NEUTRAL PARTICLE OR FIELDFREE REGION
288  if( charge != 0. && field ) {
289
290    field->GetFieldValue( pos1, h1 );
291    field->GetFieldValue( pos2, h2 );
292    G4ThreeVector HPre = G4ThreeVector( h1[0], h1[1], h1[2] ) / tesla *10.; //10. is to get same dimensions as GEANT3 (kilogauss)
293    G4ThreeVector HPost= G4ThreeVector( h2[0], h2[1], h2[2] ) / tesla *10.;
294    G4double magHPre = HPre.mag();
295    G4double magHPost = HPost.mag();
296#ifdef G4EVERBOSE
297    if( iverbose >= 2 ) G4cout << "G4EP: HPre " << HPre << G4endl
298                            << "G4EP: HPost " << HPost << G4endl;
299#endif
300   
301  if( magHPre + magHPost != 0. ) {
302     
303   //* *** CHECK WHETHER H*ALFA/P IS TOO DIFFERENT AT X1 AND X2
304    G4double gam;
305    if( magHPost != 0. ){ 
306      gam = HPost * vpPostNorm / magHPost;
307    }else {
308      gam = HPre * vpPreNorm / magHPre;
309    }
310   
311    // G4eMagneticLimitsProcess will limit the step, but based on an straight line trajectory
312    G4double alphaSqr = 1. - gam * gam;
313    G4double diffHSqr = ( HPre * pInvPre - HPost * pInvPost ).mag2();
314    G4double delhp6Sqr = 300.*300.; 
315#ifdef G4EVERBOSE
316    if( iverbose >= 2 ) G4cout << " G4EP: gam " << gam << " alphaSqr " << alphaSqr << " diffHSqr " << diffHSqr << G4endl;
317#endif
318    if( diffHSqr * alphaSqr > delhp6Sqr ) return 3;
319
320
321    //* *** DEFINE AVERAGE MAGNETIC FIELD AND GRADIENT
322    G4double pInvAver = 1./(pInvPre + pInvPost );
323    G4double CFACT8 = 2.997925E-4; 
324    //G4double HAver
325    G4ThreeVector vHAverNorm( (HPre*pInvPre + HPost*pInvPost ) * pInvAver * charge * CFACT8 );
326    G4double HAver = vHAverNorm.mag();
327    G4double invHAver = 1./HAver;
328    vHAverNorm *= invHAver;
329#ifdef G4EVERBOSE
330    if( iverbose >= 2 ) G4cout << " G4EP: HaverNorm " << vHAverNorm << " magHAver " << HAver << " charge " << charge<< G4endl;
331#endif
332
333    G4double pAver = (pPre+pPost)*0.5;
334    G4double QAver = -HAver/pAver;
335    G4double thetaAver = QAver * stepLengthCm;
336    G4double sinThetaAver = std::sin(thetaAver);
337    G4double cosThetaAver = std::cos(thetaAver);
338    G4double gamma = vHAverNorm * vpPostNorm;
339    G4ThreeVector AN2 = vHAverNorm.cross( vpPostNorm );
340   
341#ifdef G4EVERBOSE
342    if( iverbose >= 2 ) G4cout << " G4EP: AN2 " << AN2 << G4endl;
343#endif
344    G4double AU = 1./vpPreNorm.perp();
345    //t  G4ThreeVector vU( vpPreNorm.cross( G4ThreeVector(0.,0.,1.) ) * AU );
346    G4ThreeVector vUPre( -AU*vpPreNorm.y(), 
347                      AU*vpPreNorm.x(), 
348                      0. );
349    G4ThreeVector vVPre( -vpPreNorm.z()*vUPre.y(), 
350                      vpPreNorm.z()*vUPre.x(), 
351                      vpPreNorm.x()*vUPre.y() - vpPreNorm.y()*vUPre.x() );
352   
353    //
354    AU = 1./vpPostNorm.perp();
355    //t  G4ThreeVector vU( vpPostNorm.cross( G4ThreeVector(0.,0.,1.) ) * AU );
356    G4ThreeVector vUPost( -AU*vpPostNorm.y(), 
357                       AU*vpPostNorm.x(), 
358                       0. );
359    G4ThreeVector vVPost( -vpPostNorm.z()*vUPost.y(), 
360                       vpPostNorm.z()*vUPost.x(), 
361                       vpPostNorm.x()*vUPost.y() - vpPostNorm.y()*vUPost.x() );
362#ifdef G4EVERBOSE
363    //-    G4cout << " vpPostNorm " << vpPostNorm << G4endl;
364    if( iverbose >= 2 ) G4cout << " G4EP: AU " << AU << " vUPre " << vUPre << " vVPre " << vVPre << " vUPost " << vUPost << " vVPost " << vVPost << G4endl;
365#endif
366    G4Point3D deltaPos( vposPre - vposPost );
367
368    // * *** COMPLETE TRANSFORMATION MATRIX BETWEEN ERRORS AT X1 AND X2
369    // * *** FIELD GRADIENT PERPENDICULAR TO TRACK IS PRESENTLY NOT
370    // * *** TAKEN INTO ACCOUNT
371   
372    G4double QP = QAver * pAver; // = -HAver
373#ifdef G4EVERBOSE
374    if( iverbose >= 2) G4cout << " G4EP: QP " << QP << " QAver " << QAver << " pAver " << pAver << G4endl;
375#endif
376    G4double ANV = -( vHAverNorm.x()*vUPost.x() + vHAverNorm.y()*vUPost.y() );
377    G4double ANU = ( vHAverNorm.x()*vVPost.x() + vHAverNorm.y()*vVPost.y() + vHAverNorm.z()*vVPost.z() );
378    G4double OMcosThetaAver = 1. - cosThetaAver;
379#ifdef G4EVERBOSE
380    if( iverbose >= 2) G4cout << "G4EP: OMcosThetaAver " << OMcosThetaAver << " cosThetaAver " << cosThetaAver << " thetaAver " << thetaAver << " QAver " << QAver << " stepLengthCm " << stepLengthCm << G4endl;
381#endif
382    G4double TMSINT = thetaAver - sinThetaAver;
383#ifdef G4EVERBOSE
384    if( iverbose >= 2 ) G4cout << " G4EP: ANV " << ANV << " ANU " << ANU << G4endl;
385#endif
386   
387    G4ThreeVector vHUPre( -vHAverNorm.z() * vUPre.y(),
388                          vHAverNorm.z() * vUPre.x(),
389                          vHAverNorm.x() * vUPre.y() - vHAverNorm.y() * vUPre.x() );
390#ifdef G4EVERBOSE
391    //    if( iverbose >= 2 ) G4cout << "G4EP: HUPre(1) " << vHUPre.x() << " " << vHAverNorm.z() << " " << vUPre.y() << G4endl;
392#endif
393    G4ThreeVector vHVPre( vHAverNorm.y() * vVPre.z() - vHAverNorm.z() * vVPre.y(),
394                          vHAverNorm.z() * vVPre.x() - vHAverNorm.x() * vVPre.z(),
395                          vHAverNorm.x() * vVPre.y() - vHAverNorm.y() * vVPre.x() );
396#ifdef G4EVERBOSE
397    if( iverbose >= 2 ) G4cout << " G4EP: HUPre " << vHUPre << " HVPre " << vHVPre << G4endl;
398#endif
399   
400    //------------------- COMPUTE MATRIX
401    //---------- 1/P
402   
403    transf[0][0] = 1.-deltaPInv*pAver*(1.+(vpPostNorm.x()*deltaPos.x()+vpPostNorm.y()*deltaPos.y()+vpPostNorm.z()*deltaPos.z())/stepLengthCm)
404      +2.*deltaPInv*pAver;
405   
406    transf[0][1] =  -deltaPInv/thetaAver*
407      ( TMSINT*gamma*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) +
408        sinThetaAver*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z()) +
409        OMcosThetaAver*(vHVPre.x()*vpPostNorm.x()+vHVPre.y()*vpPostNorm.y()+vHVPre.z()*vpPostNorm.z()) );
410   
411    transf[0][2] =  -sinpPre*deltaPInv/thetaAver*
412      ( TMSINT*gamma*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y()            ) +
413        sinThetaAver*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y()            ) +
414        OMcosThetaAver*(vHUPre.x()*vpPostNorm.x()+vHUPre.y()*vpPostNorm.y()+vHUPre.z()*vpPostNorm.z()) );
415   
416    transf[0][3] =  -deltaPInv/stepLengthCm*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y()            );
417   
418    transf[0][4] =  -deltaPInv/stepLengthCm*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z());
419   
420    // ***   Lambda
421    transf[1][0] = -QP*ANV*(vpPostNorm.x()*deltaPos.x()+vpPostNorm.y()*deltaPos.y()+vpPostNorm.z()*deltaPos.z())
422      *(1.+deltaPInv*pAver);
423#ifdef G4EVERBOSE
424     if(iverbose >= 3) G4cout << "ctransf10= " << transf[1][0]  << " " <<  -QP<< " " << ANV<< " " << vpPostNorm.x()<< " " << deltaPos.x()<< " " << vpPostNorm.y()<< " " << deltaPos.y()<< " " << vpPostNorm.z()<< " " << deltaPos.z()
425      << " " << deltaPInv<< " " << pAver << G4endl;
426#endif
427   
428    transf[1][1] = cosThetaAver*(vVPre.x()*vVPost.x()+vVPre.y()*vVPost.y()+vVPre.z()*vVPost.z()) +
429      sinThetaAver*(vHVPre.x()*vVPost.x()+vHVPre.y()*vVPost.y()+vHVPre.z()*vVPost.z()) +
430      OMcosThetaAver*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z())*
431      (vHAverNorm.x()*vVPost.x()+vHAverNorm.y()*vVPost.y()+vHAverNorm.z()*vVPost.z()) +
432      ANV*( -sinThetaAver*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z()) +
433            OMcosThetaAver*(vVPre.x()*AN2.x()+vVPre.y()*AN2.y()+vVPre.z()*AN2.z()) -
434            TMSINT*gamma*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) );
435   
436    transf[1][2] = cosThetaAver*(vUPre.x()*vVPost.x()+vUPre.y()*vVPost.y()            ) +
437      sinThetaAver*(vHUPre.x()*vVPost.x()+vHUPre.y()*vVPost.y()+vHUPre.z()*vVPost.z()) +
438      OMcosThetaAver*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y()            )*
439      (vHAverNorm.x()*vVPost.x()+vHAverNorm.y()*vVPost.y()+vHAverNorm.z()*vVPost.z()) +
440      ANV*( -sinThetaAver*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y()            ) +
441            OMcosThetaAver*(vUPre.x()*AN2.x()+vUPre.y()*AN2.y()             ) -
442            TMSINT*gamma*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y()            ) );
443    transf[1][2] = sinpPre*transf[1][2];
444   
445    transf[1][3] = -QAver*ANV*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y()            );
446   
447    transf[1][4] = -QAver*ANV*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z());
448   
449    // ***   Phi
450   
451    transf[2][0] = -QP*ANU*(vpPostNorm.x()*deltaPos.x()+vpPostNorm.y()*deltaPos.y()+vpPostNorm.z()*deltaPos.z())*sinpPostInv
452      *(1.+deltaPInv*pAver);
453#ifdef G4EVERBOSE
454   if(iverbose >= 3)G4cout <<"ctransf20= " << transf[2][0] <<" "<< -QP<<" "<<ANU<<" "<<vpPostNorm.x()<<" "<<deltaPos.x()<<" "<<vpPostNorm.y()<<" "<<deltaPos.y()<<" "<<vpPostNorm.z()<<" "<<deltaPos.z()<<" "<<sinpPostInv
455         <<" "<<deltaPInv<<" "<<pAver<< G4endl;
456#endif
457    transf[2][1] = cosThetaAver*(vVPre.x()*vUPost.x()+vVPre.y()*vUPost.y()            ) +
458      sinThetaAver*(vHVPre.x()*vUPost.x()+vHVPre.y()*vUPost.y()             ) +
459      OMcosThetaAver*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z())*
460      (vHAverNorm.x()*vUPost.x()+vHAverNorm.y()*vUPost.y()            ) +
461      ANU*( -sinThetaAver*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z()) +
462            OMcosThetaAver*(vVPre.x()*AN2.x()+vVPre.y()*AN2.y()+vVPre.z()*AN2.z()) -
463            TMSINT*gamma*(vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) );
464    transf[2][1] = sinpPostInv*transf[2][1];
465   
466    transf[2][2] = cosThetaAver*(vUPre.x()*vUPost.x()+vUPre.y()*vUPost.y()            ) +
467      sinThetaAver*(vHUPre.x()*vUPost.x()+vHUPre.y()*vUPost.y()             ) +
468      OMcosThetaAver*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y()            )*
469      (vHAverNorm.x()*vUPost.x()+vHAverNorm.y()*vUPost.y()            ) +
470      ANU*( -sinThetaAver*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y()            ) +
471            OMcosThetaAver*(vUPre.x()*AN2.x()+vUPre.y()*AN2.y()             ) -
472            TMSINT*gamma*(vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y()            ) );
473    transf[2][2] = sinpPostInv*sinpPre*transf[2][2];
474   
475    transf[2][3] = -QAver*ANU*(vUPre.x()*vpPostNorm.x()+vUPre.y()*vpPostNorm.y()            )*sinpPostInv;
476#ifdef G4EVERBOSE
477    if(iverbose >= 3)G4cout <<"ctransf23= " << transf[2][3] <<" "<< -QAver<<" "<<ANU<<" "<<vUPre.x()<<" "<<vpPostNorm.x()<<" "<< vUPre.y()<<" "<<vpPostNorm.y()<<" "<<sinpPostInv<<G4endl;
478#endif
479   
480    transf[2][4] = -QAver*ANU*(vVPre.x()*vpPostNorm.x()+vVPre.y()*vpPostNorm.y()+vVPre.z()*vpPostNorm.z())*sinpPostInv;
481   
482    // ***   Yt
483   
484    transf[3][0] = pAver*(vUPost.x()*deltaPos.x()+vUPost.y()*deltaPos.y() )
485      *(1.+deltaPInv*pAver);
486#ifdef G4EVERBOSE
487   if(iverbose >= 3) G4cout <<"ctransf30= " << transf[3][0] <<" "<< pAver<<" "<<vUPost.x()<<" "<<deltaPos.x()<<" "<<vUPost.y()<<" "<<deltaPos.y() 
488      <<" "<<deltaPInv<<" "<<pAver<<G4endl;
489#endif
490
491    transf[3][1] = (   sinThetaAver*(vVPre.x()*vUPost.x()+vVPre.y()*vUPost.y()            ) +
492                       OMcosThetaAver*(vHVPre.x()*vUPost.x()+vHVPre.y()*vUPost.y()             ) +
493                       TMSINT*(vHAverNorm.x()*vUPost.x()+vHAverNorm.y()*vUPost.y()            )*
494                       (vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) )/QAver;
495   
496    transf[3][2] = (   sinThetaAver*(vUPre.x()*vUPost.x()+vUPre.y()*vUPost.y()            ) +
497                       OMcosThetaAver*(vHUPre.x()*vUPost.x()+vHUPre.y()*vUPost.y()             ) +
498                       TMSINT*(vHAverNorm.x()*vUPost.x()+vHAverNorm.y()*vUPost.y()            )*
499                       (vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y()            ) )*sinpPre/QAver;
500#ifdef G4EVERBOSE
501   if(iverbose >= 3) G4cout <<"ctransf32= " << transf[3][2] <<" "<< sinThetaAver<<" "<<vUPre.x()<<" "<<vUPost.x()<<" "<<vUPre.y()<<" "<<vUPost.y() <<" "<<
502                       OMcosThetaAver<<" "<<vHUPre.x()<<" "<<vUPost.x()<<" "<<vHUPre.y()<<" "<<vUPost.y() <<" "<<
503                       TMSINT<<" "<<vHAverNorm.x()<<" "<<vUPost.x()<<" "<<vHAverNorm.y()<<" "<<vUPost.y() <<" "<<
504      vHAverNorm.x()<<" "<<vUPre.x()<<" "<<vHAverNorm.y()<<" "<<vUPre.y() <<" "<<sinpPre<<" "<<QAver<<G4endl;
505#endif
506   
507    transf[3][3] = (vUPre.x()*vUPost.x()+vUPre.y()*vUPost.y()            );
508   
509    transf[3][4] = (vVPre.x()*vUPost.x()+vVPre.y()*vUPost.y()            );
510
511    // ***   Zt
512    transf[4][0] = pAver*(vVPost.x()*deltaPos.x()+vVPost.y()*deltaPos.y()+vVPost.z()*deltaPos.z())
513      *(1.+deltaPInv*pAver);
514   
515    transf[4][1] = (   sinThetaAver*(vVPre.x()*vVPost.x()+vVPre.y()*vVPost.y()+vVPre.z()*vVPost.z()) +
516                       OMcosThetaAver*(vHVPre.x()*vVPost.x()+vHVPre.y()*vVPost.y()+vHVPre.z()*vVPost.z()) +
517                       TMSINT*(vHAverNorm.x()*vVPost.x()+vHAverNorm.y()*vVPost.y()+vHAverNorm.z()*vVPost.z())*
518                       (vHAverNorm.x()*vVPre.x()+vHAverNorm.y()*vVPre.y()+vHAverNorm.z()*vVPre.z()) )/QAver;
519#ifdef G4EVERBOSE
520    if(iverbose >= 3)G4cout <<"ctransf41= " << transf[4][1] <<" "<< sinThetaAver<<" "<< OMcosThetaAver <<" "<<TMSINT<<" "<< vVPre <<" "<<vVPost <<" "<<vHVPre<<" "<<vHAverNorm <<" "<< QAver<<G4endl;
521#endif
522   
523    transf[4][2] = (   sinThetaAver*(vUPre.x()*vVPost.x()+vUPre.y()*vVPost.y()            ) +
524                       OMcosThetaAver*(vHUPre.x()*vVPost.x()+vHUPre.y()*vVPost.y()+vHUPre.z()*vVPost.z()) +
525                       TMSINT*(vHAverNorm.x()*vVPost.x()+vHAverNorm.y()*vVPost.y()+vHAverNorm.z()*vVPost.z())*
526                       (vHAverNorm.x()*vUPre.x()+vHAverNorm.y()*vUPre.y()            ) )*sinpPre/QAver;
527
528    transf[4][3] = (vUPre.x()*vVPost.x()+vUPre.y()*vVPost.y()  );
529
530    transf[4][4] = (vVPre.x()*vVPost.x()+vVPre.y()*vVPost.y()+vVPre.z()*vVPost.z()); 
531    //   if(iverbose >= 3) G4cout <<"ctransf44= " << transf[4][4] <<" "<< vVPre.x()  <<" "<<vVPost.x() <<" "<< vVPre.y() <<" "<< vVPost.y() <<" "<< vVPre.z() <<" "<< vVPost.z() << G4endl;
532
533 
534#ifdef G4EVERBOSE
535    if( iverbose >= 1 ) G4cout << "G4EP: transf matrix computed " << transf << G4endl;
536#endif
537    /*    for( G4int ii=0;ii<5;ii++){
538      for( G4int jj=0;jj<5;jj++){
539        G4cout << transf[ii][jj] << " ";
540      }
541      G4cout << G4endl;
542      } */
543   }
544  }
545  // end of calculate transformation except it NEUTRAL PARTICLE OR FIELDFREE REGION
546  /*  if( iverbose >= 1 ) G4cout << "G4EP: transf not updated but initialized " << theFirstStep << G4endl;
547  if( theFirstStep ) {
548    theTransfMat = transf;
549    theFirstStep = false;
550  }else{
551    theTransfMat = theTransfMat * transf;
552    if( iverbose >= 1 ) G4cout << "G4EP: transf matrix accumulated" << theTransfMat << G4endl;
553  }
554  */
555    theTransfMat = transf;
556#ifdef G4EVERBOSE
557    if( iverbose >= 1 ) G4cout << "G4EP: error matrix before transformation " << fError << G4endl;
558    if( iverbose >= 2 ) G4cout << " tf * err " << theTransfMat * fError << G4endl
559                                  << " transf matrix " << theTransfMat.T() << G4endl;
560#endif
561   
562    fError = fError.similarity(theTransfMat).T();
563    //-    fError = transf * fError * transf.T();
564#ifdef G4EVERBOSE
565    if( iverbose >= 1 ) G4cout << "G4EP: error matrix propagated " << fError << G4endl;
566#endif
567
568    //? S = B*S*BT S.similarity(B)
569    //? R = S
570    // not needed * *** TRANSFORM ERROR MATRIX FROM INTERNAL TO EXTERNAL VARIABLES;
571   
572    PropagateErrorMSC( aTrack );
573   
574    PropagateErrorIoni( aTrack );
575   
576    return 0;
577}
578
579
580//------------------------------------------------------------------------
581G4int G4ErrorFreeTrajState::PropagateErrorMSC( const G4Track* aTrack )
582{ 
583  G4ThreeVector vpPre = aTrack->GetMomentum()/GeV;
584  G4double pPre = vpPre.mag();
585  G4double pBeta = pPre*pPre / (aTrack->GetTotalEnergy()/GeV);
586  G4double  stepLengthCm = aTrack->GetStep()->GetStepLength()/cm;
587
588  G4Material* mate = aTrack->GetVolume()->GetLogicalVolume()->GetMaterial();
589  G4double effZ, effA;
590  CalculateEffectiveZandA( mate, effZ, effA );
591
592#ifdef G4EVERBOSE
593  if( iverbose >= 4 ) G4cout << "material " << mate->GetName() 
594                     //<< " " << mate->GetZ() << " "  << mate->GetA()
595                        << " " << effZ << " " << effA
596                        << " "  << mate->GetDensity()/g*mole << " " << mate->GetRadlen()/cm << " " << mate->GetNuclearInterLength()/cm << G4endl;
597#endif
598
599  G4double RI = stepLengthCm / (mate->GetRadlen()/cm);
600#ifdef G4EVERBOSE
601  if( iverbose >= 4 ) G4cout << std::setprecision(6) << std::setw(6) << "G4EP:MSC: RI " << RI << " stepLengthCm " << stepLengthCm << " radlen " << (mate->GetRadlen()/cm) << " " << RI*1.e10 << G4endl;
602#endif
603  G4double charge = aTrack->GetDynamicParticle()->GetCharge();
604  G4double DD = 1.8496E-4*RI*(charge/pBeta * charge/pBeta );
605#ifdef G4EVERBOSE
606  if( iverbose >= 3 ) G4cout << "G4EP:MSC: D*1E6= " << DD*1.E6 <<" pBeta " << pBeta << G4endl;
607#endif
608  G4double S1 = DD*stepLengthCm*stepLengthCm/3.;
609  G4double S2 = DD;
610  G4double S3 = DD*stepLengthCm/2.;
611
612  G4double CLA = std::sqrt( vpPre.x() * vpPre.x() + vpPre.y() * vpPre.y() )/pPre;
613#ifdef G4EVERBOSE
614  if( iverbose >= 2 ) G4cout << std::setw(6) << "G4EP:MSC: RI " << RI << " S1 " << S1 << " S2 "  << S2 << " S3 "  << S3 << " CLA " << CLA << G4endl;
615#endif
616  fError[1][1] += S2;
617  fError[1][4] -= S3;
618  fError[2][2] += S2/CLA/CLA;
619  fError[2][3] += S3/CLA;
620  fError[3][3] += S1;
621  fError[4][4] += S1;
622
623#ifdef G4EVERBOSE
624  if( iverbose >= 2 ) G4cout << "G4EP:MSC: error matrix propagated msc " << fError << G4endl;
625#endif
626
627  return 0;
628}
629
630
631//------------------------------------------------------------------------
632void G4ErrorFreeTrajState::CalculateEffectiveZandA( const G4Material* mate, G4double& effZ, G4double& effA )
633{ 
634  effZ = 0.;
635  effA = 0.;
636  G4int ii, nelem = mate->GetNumberOfElements();
637  const G4double* fracVec = mate->GetFractionVector();
638  for(ii=0; ii < nelem; ii++ ) {
639    effZ += mate->GetElement( ii )->GetZ() * fracVec[ii];
640    effA += mate->GetElement( ii )->GetA() * fracVec[ii] /g*mole;
641  }
642
643}
644
645
646//------------------------------------------------------------------------
647G4int G4ErrorFreeTrajState::PropagateErrorIoni( const G4Track* aTrack )
648{ 
649  G4double stepLengthCm = aTrack->GetStep()->GetStepLength()/cm;
650  G4double DEDX2;
651  if( stepLengthCm < 1.E-7 ) {
652    DEDX2=0.;
653  }
654  //  *     Calculate xi factor (KeV).
655  G4Material* mate = aTrack->GetVolume()->GetLogicalVolume()->GetMaterial();
656  G4double effZ, effA;
657  CalculateEffectiveZandA( mate, effZ, effA );
658
659  G4double Etot = aTrack->GetTotalEnergy()/GeV;
660  G4double beta = aTrack->GetMomentum().mag()/GeV / Etot;
661  G4double mass = aTrack->GetDynamicParticle()->GetMass() / GeV;
662  G4double gamma = Etot / mass;
663 
664  // *     Calculate xi factor (KeV).
665  G4double XI = 153.5*effZ*stepLengthCm*(mate->GetDensity()/mg*mole) / 
666    (effA*beta*beta);
667
668#ifdef G4EVERBOSE
669  if( iverbose >= 2 ){
670    G4cout << "G4EP:IONI: XI " << XI << " beta " << beta << " gamma " << gamma << G4endl;
671    G4cout << " density " << (mate->GetDensity()/mg*mole) << " effA " << effA << " step " << stepLengthCm << G4endl;
672  }
673#endif
674  // *     Maximum energy transfer to atomic electron (KeV).
675  G4double eta = beta*gamma;
676  G4double etasq = eta*eta;
677  G4double eMass = 0.51099906/GeV;
678  G4double massRatio = eMass / mass;
679  G4double F1 = 2*eMass*etasq;
680  G4double F2 = 1. + 2. * massRatio * gamma + massRatio * massRatio;
681  G4double Emax = 1.E+6*F1/F2;
682
683  //  * *** and now sigma**2  in GeV
684  G4double dedxSq = XI*Emax*(1.-(beta*beta/2.))*1.E-12;
685#ifdef G4EVERBOSE
686  if( iverbose >= 2 ) G4cout << "G4EP:IONI: DEDX2 " << dedxSq << " emass " << eMass << " Emax " << Emax << G4endl;
687#endif
688
689  //  if( iverbose >= 2 ) G4cout << "G4EP:IONI: Etot " << Etot << " DEDX2 " << dedxSq << " emass " << eMass << G4endl;
690 
691  G4double pPre6 = (aTrack->GetStep()->GetPreStepPoint()->GetMomentum()/GeV).mag();
692  pPre6 = std::pow(pPre6, 6 );
693  //Apply it to error
694  fError[0][0] += Etot*Etot*dedxSq / pPre6;
695#ifdef G4EVERBOSE
696  if( iverbose >= 2 ) G4cout << "G4:IONI getot " << Etot << " dedx2 " << dedxSq << " p " << pPre6 << G4endl;
697  if( iverbose >= 2 ) G4cout << "G4EP:IONI: error_from_ionisation " << (Etot*Etot*dedxSq) / pPre6 << G4endl;
698#endif
699
700  return 0;
701}
702
Note: See TracBrowser for help on using the repository browser.