| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4CashKarpRKF45.cc,v 1.15 2008/01/11 18:11:44 japost Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-02-cand-01 $
|
|---|
| 29 | //
|
|---|
| 30 | // The Cash-Karp Runge-Kutta-Fehlberg 4/5 method is an embedded fourth
|
|---|
| 31 | // order method (giving fifth-order accuracy) for the solution of an ODE.
|
|---|
| 32 | // Two different fourth order estimates are calculated; their difference
|
|---|
| 33 | // gives an error estimate. [ref. Numerical Recipes in C, 2nd Edition]
|
|---|
| 34 | // It is used to integrate the equations of the motion of a particle
|
|---|
| 35 | // in a magnetic field.
|
|---|
| 36 | //
|
|---|
| 37 | // [ref. Numerical Recipes in C, 2nd Edition]
|
|---|
| 38 | //
|
|---|
| 39 | // -------------------------------------------------------------------
|
|---|
| 40 |
|
|---|
| 41 | #include "G4CashKarpRKF45.hh"
|
|---|
| 42 | #include "G4LineSection.hh"
|
|---|
| 43 |
|
|---|
| 44 | /////////////////////////////////////////////////////////////////////
|
|---|
| 45 | //
|
|---|
| 46 | // Constructor
|
|---|
| 47 |
|
|---|
| 48 | G4CashKarpRKF45::G4CashKarpRKF45(G4EquationOfMotion *EqRhs,
|
|---|
| 49 | G4int noIntegrationVariables,
|
|---|
| 50 | G4bool primary)
|
|---|
| 51 | : G4MagIntegratorStepper(EqRhs, noIntegrationVariables)
|
|---|
| 52 | {
|
|---|
| 53 | // unsigned int noVariables= std::max(numberOfVariables,8); // For Time .. 7+1
|
|---|
| 54 | const G4int numberOfVariables = noIntegrationVariables;
|
|---|
| 55 |
|
|---|
| 56 | ak2 = new G4double[numberOfVariables] ;
|
|---|
| 57 | ak3 = new G4double[numberOfVariables] ;
|
|---|
| 58 | ak4 = new G4double[numberOfVariables] ;
|
|---|
| 59 | ak5 = new G4double[numberOfVariables] ;
|
|---|
| 60 | ak6 = new G4double[numberOfVariables] ;
|
|---|
| 61 | ak7 = 0;
|
|---|
| 62 | yTemp = new G4double[numberOfVariables] ;
|
|---|
| 63 | yIn = new G4double[numberOfVariables] ;
|
|---|
| 64 |
|
|---|
| 65 | fLastInitialVector = new G4double[numberOfVariables] ;
|
|---|
| 66 | fLastFinalVector = new G4double[numberOfVariables] ;
|
|---|
| 67 | fLastDyDx = new G4double[numberOfVariables];
|
|---|
| 68 |
|
|---|
| 69 | fMidVector = new G4double[numberOfVariables];
|
|---|
| 70 | fMidError = new G4double[numberOfVariables];
|
|---|
| 71 | fAuxStepper = 0;
|
|---|
| 72 | if( primary )
|
|---|
| 73 | fAuxStepper = new G4CashKarpRKF45(EqRhs, numberOfVariables, !primary);
|
|---|
| 74 |
|
|---|
| 75 | }
|
|---|
| 76 |
|
|---|
| 77 | /////////////////////////////////////////////////////////////////////
|
|---|
| 78 | //
|
|---|
| 79 | // Destructor
|
|---|
| 80 |
|
|---|
| 81 | G4CashKarpRKF45::~G4CashKarpRKF45()
|
|---|
| 82 | {
|
|---|
| 83 | delete[] ak2;
|
|---|
| 84 | delete[] ak3;
|
|---|
| 85 | delete[] ak4;
|
|---|
| 86 | delete[] ak5;
|
|---|
| 87 | delete[] ak6;
|
|---|
| 88 | // delete[] ak7;
|
|---|
| 89 | delete[] yTemp;
|
|---|
| 90 | delete[] yIn;
|
|---|
| 91 |
|
|---|
| 92 | delete[] fLastInitialVector;
|
|---|
| 93 | delete[] fLastFinalVector;
|
|---|
| 94 | delete[] fLastDyDx;
|
|---|
| 95 | delete[] fMidVector;
|
|---|
| 96 | delete[] fMidError;
|
|---|
| 97 |
|
|---|
| 98 | delete fAuxStepper;
|
|---|
| 99 | }
|
|---|
| 100 |
|
|---|
| 101 | //////////////////////////////////////////////////////////////////////
|
|---|
| 102 | //
|
|---|
| 103 | // Given values for n = 6 variables yIn[0,...,n-1]
|
|---|
| 104 | // known at x, use the fifth-order Cash-Karp Runge-
|
|---|
| 105 | // Kutta-Fehlberg-4-5 method to advance the solution over an interval
|
|---|
| 106 | // Step and return the incremented variables as yOut[0,...,n-1]. Also
|
|---|
| 107 | // return an estimate of the local truncation error yErr[] using the
|
|---|
| 108 | // embedded 4th-order method. The user supplies routine
|
|---|
| 109 | // RightHandSide(y,dydx), which returns derivatives dydx for y .
|
|---|
| 110 |
|
|---|
| 111 | void
|
|---|
| 112 | G4CashKarpRKF45::Stepper(const G4double yInput[],
|
|---|
| 113 | const G4double dydx[],
|
|---|
| 114 | G4double Step,
|
|---|
| 115 | G4double yOut[],
|
|---|
| 116 | G4double yErr[])
|
|---|
| 117 | {
|
|---|
| 118 | // const G4int nvar = 6 ;
|
|---|
| 119 | // const G4double a2 = 0.2 , a3 = 0.3 , a4 = 0.6 , a5 = 1.0 , a6 = 0.875;
|
|---|
| 120 | G4int i;
|
|---|
| 121 |
|
|---|
| 122 | const G4double b21 = 0.2 ,
|
|---|
| 123 | b31 = 3.0/40.0 , b32 = 9.0/40.0 ,
|
|---|
| 124 | b41 = 0.3 , b42 = -0.9 , b43 = 1.2 ,
|
|---|
| 125 |
|
|---|
| 126 | b51 = -11.0/54.0 , b52 = 2.5 , b53 = -70.0/27.0 ,
|
|---|
| 127 | b54 = 35.0/27.0 ,
|
|---|
| 128 |
|
|---|
| 129 | b61 = 1631.0/55296.0 , b62 = 175.0/512.0 ,
|
|---|
| 130 | b63 = 575.0/13824.0 , b64 = 44275.0/110592.0 ,
|
|---|
| 131 | b65 = 253.0/4096.0 ,
|
|---|
| 132 |
|
|---|
| 133 | c1 = 37.0/378.0 , c3 = 250.0/621.0 , c4 = 125.0/594.0 ,
|
|---|
| 134 | c6 = 512.0/1771.0 ,
|
|---|
| 135 | dc5 = -277.0/14336.0 ;
|
|---|
| 136 |
|
|---|
| 137 | const G4double dc1 = c1 - 2825.0/27648.0 , dc3 = c3 - 18575.0/48384.0 ,
|
|---|
| 138 | dc4 = c4 - 13525.0/55296.0 , dc6 = c6 - 0.25 ;
|
|---|
| 139 |
|
|---|
| 140 | // Initialise time to t0, needed when it is not updated by the integration.
|
|---|
| 141 | // [ Note: Only for time dependent fields (usually electric)
|
|---|
| 142 | // is it neccessary to integrate the time.]
|
|---|
| 143 | yOut[7] = yTemp[7] = yIn[7];
|
|---|
| 144 |
|
|---|
| 145 | const G4int numberOfVariables= this->GetNumberOfVariables();
|
|---|
| 146 | // The number of variables to be integrated over
|
|---|
| 147 |
|
|---|
| 148 | // Saving yInput because yInput and yOut can be aliases for same array
|
|---|
| 149 |
|
|---|
| 150 | for(i=0;i<numberOfVariables;i++)
|
|---|
| 151 | {
|
|---|
| 152 | yIn[i]=yInput[i];
|
|---|
| 153 | }
|
|---|
| 154 | // RightHandSide(yIn, dydx) ; // 1st Step
|
|---|
| 155 |
|
|---|
| 156 | for(i=0;i<numberOfVariables;i++)
|
|---|
| 157 | {
|
|---|
| 158 | yTemp[i] = yIn[i] + b21*Step*dydx[i] ;
|
|---|
| 159 | }
|
|---|
| 160 | RightHandSide(yTemp, ak2) ; // 2nd Step
|
|---|
| 161 |
|
|---|
| 162 | for(i=0;i<numberOfVariables;i++)
|
|---|
| 163 | {
|
|---|
| 164 | yTemp[i] = yIn[i] + Step*(b31*dydx[i] + b32*ak2[i]) ;
|
|---|
| 165 | }
|
|---|
| 166 | RightHandSide(yTemp, ak3) ; // 3rd Step
|
|---|
| 167 |
|
|---|
| 168 | for(i=0;i<numberOfVariables;i++)
|
|---|
| 169 | {
|
|---|
| 170 | yTemp[i] = yIn[i] + Step*(b41*dydx[i] + b42*ak2[i] + b43*ak3[i]) ;
|
|---|
| 171 | }
|
|---|
| 172 | RightHandSide(yTemp, ak4) ; // 4th Step
|
|---|
| 173 |
|
|---|
| 174 | for(i=0;i<numberOfVariables;i++)
|
|---|
| 175 | {
|
|---|
| 176 | yTemp[i] = yIn[i] + Step*(b51*dydx[i] + b52*ak2[i] + b53*ak3[i] +
|
|---|
| 177 | b54*ak4[i]) ;
|
|---|
| 178 | }
|
|---|
| 179 | RightHandSide(yTemp, ak5) ; // 5th Step
|
|---|
| 180 |
|
|---|
| 181 | for(i=0;i<numberOfVariables;i++)
|
|---|
| 182 | {
|
|---|
| 183 | yTemp[i] = yIn[i] + Step*(b61*dydx[i] + b62*ak2[i] + b63*ak3[i] +
|
|---|
| 184 | b64*ak4[i] + b65*ak5[i]) ;
|
|---|
| 185 | }
|
|---|
| 186 | RightHandSide(yTemp, ak6) ; // 6th Step
|
|---|
| 187 |
|
|---|
| 188 | for(i=0;i<numberOfVariables;i++)
|
|---|
| 189 | {
|
|---|
| 190 | // Accumulate increments with proper weights
|
|---|
| 191 |
|
|---|
| 192 | yOut[i] = yIn[i] + Step*(c1*dydx[i] + c3*ak3[i] + c4*ak4[i] + c6*ak6[i]) ;
|
|---|
| 193 |
|
|---|
| 194 | // Estimate error as difference between 4th and
|
|---|
| 195 | // 5th order methods
|
|---|
| 196 |
|
|---|
| 197 | yErr[i] = Step*(dc1*dydx[i] + dc3*ak3[i] + dc4*ak4[i] +
|
|---|
| 198 | dc5*ak5[i] + dc6*ak6[i]) ;
|
|---|
| 199 |
|
|---|
| 200 | // Store Input and Final values, for possible use in calculating chord
|
|---|
| 201 | fLastInitialVector[i] = yIn[i] ;
|
|---|
| 202 | fLastFinalVector[i] = yOut[i];
|
|---|
| 203 | fLastDyDx[i] = dydx[i];
|
|---|
| 204 | }
|
|---|
| 205 | // NormaliseTangentVector( yOut ); // Not wanted
|
|---|
| 206 |
|
|---|
| 207 | fLastStepLength =Step;
|
|---|
| 208 |
|
|---|
| 209 | return ;
|
|---|
| 210 | }
|
|---|
| 211 |
|
|---|
| 212 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 213 |
|
|---|
| 214 | void
|
|---|
| 215 | G4CashKarpRKF45::StepWithEst( const G4double*,
|
|---|
| 216 | const G4double*,
|
|---|
| 217 | G4double,
|
|---|
| 218 | G4double*,
|
|---|
| 219 | G4double&,
|
|---|
| 220 | G4double&,
|
|---|
| 221 | const G4double*,
|
|---|
| 222 | G4double* )
|
|---|
| 223 | {
|
|---|
| 224 | G4Exception("G4CashKarpRKF45::StepWithEst()", "ObsoleteMethod",
|
|---|
| 225 | FatalException, "Method no longer used.");
|
|---|
| 226 | return ;
|
|---|
| 227 | }
|
|---|
| 228 |
|
|---|
| 229 | /////////////////////////////////////////////////////////////////
|
|---|
| 230 |
|
|---|
| 231 | G4double G4CashKarpRKF45::DistChord() const
|
|---|
| 232 | {
|
|---|
| 233 | G4double distLine, distChord;
|
|---|
| 234 | G4ThreeVector initialPoint, finalPoint, midPoint;
|
|---|
| 235 |
|
|---|
| 236 | // Store last initial and final points (they will be overwritten in self-Stepper call!)
|
|---|
| 237 | initialPoint = G4ThreeVector( fLastInitialVector[0],
|
|---|
| 238 | fLastInitialVector[1], fLastInitialVector[2]);
|
|---|
| 239 | finalPoint = G4ThreeVector( fLastFinalVector[0],
|
|---|
| 240 | fLastFinalVector[1], fLastFinalVector[2]);
|
|---|
| 241 |
|
|---|
| 242 | // Do half a step using StepNoErr
|
|---|
| 243 |
|
|---|
| 244 | fAuxStepper->Stepper( fLastInitialVector, fLastDyDx, 0.5 * fLastStepLength,
|
|---|
| 245 | fMidVector, fMidError );
|
|---|
| 246 |
|
|---|
| 247 | midPoint = G4ThreeVector( fMidVector[0], fMidVector[1], fMidVector[2]);
|
|---|
| 248 |
|
|---|
| 249 | // Use stored values of Initial and Endpoint + new Midpoint to evaluate
|
|---|
| 250 | // distance of Chord
|
|---|
| 251 |
|
|---|
| 252 |
|
|---|
| 253 | if (initialPoint != finalPoint)
|
|---|
| 254 | {
|
|---|
| 255 | distLine = G4LineSection::Distline( midPoint, initialPoint, finalPoint );
|
|---|
| 256 | distChord = distLine;
|
|---|
| 257 | }
|
|---|
| 258 | else
|
|---|
| 259 | {
|
|---|
| 260 | distChord = (midPoint-initialPoint).mag();
|
|---|
| 261 | }
|
|---|
| 262 | return distChord;
|
|---|
| 263 | }
|
|---|
| 264 |
|
|---|
| 265 |
|
|---|