| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4ConstRK4.cc,v 1.2 2008/10/29 14:17:42 gcosmo Exp $
|
|---|
| 28 | // GEANT4 tag $Name: $
|
|---|
| 29 | //
|
|---|
| 30 | //
|
|---|
| 31 | // - 18.09.2008 - J.Apostolakis, T.Nikitina - Created
|
|---|
| 32 | // -------------------------------------------------------------------
|
|---|
| 33 |
|
|---|
| 34 | #include "G4ConstRK4.hh"
|
|---|
| 35 | #include "G4ThreeVector.hh"
|
|---|
| 36 | #include "G4LineSection.hh"
|
|---|
| 37 |
|
|---|
| 38 | //////////////////////////////////////////////////////////////////
|
|---|
| 39 | //
|
|---|
| 40 | // Constructor sets the number of variables (default = 8)
|
|---|
| 41 |
|
|---|
| 42 | G4ConstRK4::G4ConstRK4(G4Mag_EqRhs* EqRhs, G4int numberOfVariables)
|
|---|
| 43 | : G4MagErrorStepper(EqRhs, numberOfVariables)
|
|---|
| 44 | {
|
|---|
| 45 | if(numberOfVariables !=8 )
|
|---|
| 46 | {
|
|---|
| 47 | G4Exception("G4ConstRK4::G4ConstRK4()", "InvalidSetup", FatalException,
|
|---|
| 48 | "Valid only for number of variables=8. Use another Stepper!");
|
|---|
| 49 | }
|
|---|
| 50 | else
|
|---|
| 51 | {
|
|---|
| 52 | fEq=EqRhs;
|
|---|
| 53 | yMiddle= new G4double[8];
|
|---|
| 54 | dydxMid= new G4double[8];
|
|---|
| 55 | yInitial= new G4double[8];
|
|---|
| 56 | yOneStep= new G4double[8];
|
|---|
| 57 |
|
|---|
| 58 | dydxm = new G4double[8];
|
|---|
| 59 | dydxt = new G4double[8];
|
|---|
| 60 | yt = new G4double[8];
|
|---|
| 61 | Field[0]=0.;Field[1]=0.;Field[2]=0.;
|
|---|
| 62 | }
|
|---|
| 63 | }
|
|---|
| 64 |
|
|---|
| 65 | ////////////////////////////////////////////////////////////////
|
|---|
| 66 | //
|
|---|
| 67 | // Destructor
|
|---|
| 68 |
|
|---|
| 69 | G4ConstRK4::~G4ConstRK4()
|
|---|
| 70 | {
|
|---|
| 71 | delete [] yMiddle;
|
|---|
| 72 | delete [] dydxMid;
|
|---|
| 73 | delete [] yInitial;
|
|---|
| 74 | delete [] yOneStep;
|
|---|
| 75 | delete [] dydxm;
|
|---|
| 76 | delete [] dydxt;
|
|---|
| 77 | delete [] yt;
|
|---|
| 78 | }
|
|---|
| 79 |
|
|---|
| 80 | //////////////////////////////////////////////////////////////////////
|
|---|
| 81 | //
|
|---|
| 82 | // Given values for the variables y[0,..,n-1] and their derivatives
|
|---|
| 83 | // dydx[0,...,n-1] known at x, use the classical 4th Runge-Kutta
|
|---|
| 84 | // method to advance the solution over an interval h and return the
|
|---|
| 85 | // incremented variables as yout[0,...,n-1], which is not a distinct
|
|---|
| 86 | // array from y. The user supplies the routine RightHandSide(x,y,dydx),
|
|---|
| 87 | // which returns derivatives dydx at x. The source is routine rk4 from
|
|---|
| 88 | // NRC p. 712-713 .
|
|---|
| 89 |
|
|---|
| 90 | void G4ConstRK4::DumbStepper( const G4double yIn[],
|
|---|
| 91 | const G4double dydx[],
|
|---|
| 92 | G4double h,
|
|---|
| 93 | G4double yOut[])
|
|---|
| 94 | {
|
|---|
| 95 | G4double hh = h*0.5 , h6 = h/6.0 ;
|
|---|
| 96 |
|
|---|
| 97 | // 1st Step K1=h*dydx
|
|---|
| 98 | yt[5] = yIn[5] + hh*dydx[5] ;
|
|---|
| 99 | yt[4] = yIn[4] + hh*dydx[4] ;
|
|---|
| 100 | yt[3] = yIn[3] + hh*dydx[3] ;
|
|---|
| 101 | yt[2] = yIn[2] + hh*dydx[2] ;
|
|---|
| 102 | yt[1] = yIn[1] + hh*dydx[1] ;
|
|---|
| 103 | yt[0] = yIn[0] + hh*dydx[0] ;
|
|---|
| 104 | RightHandSideConst(yt,dydxt) ;
|
|---|
| 105 |
|
|---|
| 106 | // 2nd Step K2=h*dydxt
|
|---|
| 107 | yt[5] = yIn[5] + hh*dydxt[5] ;
|
|---|
| 108 | yt[4] = yIn[4] + hh*dydxt[4] ;
|
|---|
| 109 | yt[3] = yIn[3] + hh*dydxt[3] ;
|
|---|
| 110 | yt[2] = yIn[2] + hh*dydxt[2] ;
|
|---|
| 111 | yt[1] = yIn[1] + hh*dydxt[1] ;
|
|---|
| 112 | yt[0] = yIn[0] + hh*dydxt[0] ;
|
|---|
| 113 | RightHandSideConst(yt,dydxm) ;
|
|---|
| 114 |
|
|---|
| 115 | // 3rd Step K3=h*dydxm
|
|---|
| 116 | // now dydxm=(K2+K3)/h
|
|---|
| 117 | yt[5] = yIn[5] + h*dydxm[5] ;
|
|---|
| 118 | dydxm[5] += dydxt[5] ;
|
|---|
| 119 | yt[4] = yIn[4] + h*dydxm[4] ;
|
|---|
| 120 | dydxm[4] += dydxt[4] ;
|
|---|
| 121 | yt[3] = yIn[3] + h*dydxm[3] ;
|
|---|
| 122 | dydxm[3] += dydxt[3] ;
|
|---|
| 123 | yt[2] = yIn[2] + h*dydxm[2] ;
|
|---|
| 124 | dydxm[2] += dydxt[2] ;
|
|---|
| 125 | yt[1] = yIn[1] + h*dydxm[1] ;
|
|---|
| 126 | dydxm[1] += dydxt[1] ;
|
|---|
| 127 | yt[0] = yIn[0] + h*dydxm[0] ;
|
|---|
| 128 | dydxm[0] += dydxt[0] ;
|
|---|
| 129 | RightHandSideConst(yt,dydxt) ;
|
|---|
| 130 |
|
|---|
| 131 | // 4th Step K4=h*dydxt
|
|---|
| 132 | yOut[5] = yIn[5]+h6*(dydx[5]+dydxt[5]+2.0*dydxm[5]);
|
|---|
| 133 | yOut[4] = yIn[4]+h6*(dydx[4]+dydxt[4]+2.0*dydxm[4]);
|
|---|
| 134 | yOut[3] = yIn[3]+h6*(dydx[3]+dydxt[3]+2.0*dydxm[3]);
|
|---|
| 135 | yOut[2] = yIn[2]+h6*(dydx[2]+dydxt[2]+2.0*dydxm[2]);
|
|---|
| 136 | yOut[1] = yIn[1]+h6*(dydx[1]+dydxt[1]+2.0*dydxm[1]);
|
|---|
| 137 | yOut[0] = yIn[0]+h6*(dydx[0]+dydxt[0]+2.0*dydxm[0]);
|
|---|
| 138 |
|
|---|
| 139 | } // end of DumbStepper ....................................................
|
|---|
| 140 |
|
|---|
| 141 | ////////////////////////////////////////////////////////////////
|
|---|
| 142 | //
|
|---|
| 143 | // Stepper
|
|---|
| 144 |
|
|---|
| 145 | void
|
|---|
| 146 | G4ConstRK4::Stepper( const G4double yInput[],
|
|---|
| 147 | const G4double dydx[],
|
|---|
| 148 | G4double hstep,
|
|---|
| 149 | G4double yOutput[],
|
|---|
| 150 | G4double yError [] )
|
|---|
| 151 | {
|
|---|
| 152 | const G4int nvar = 8 ;
|
|---|
| 153 | const G4int maxvar= 8;
|
|---|
| 154 |
|
|---|
| 155 | G4int i;
|
|---|
| 156 |
|
|---|
| 157 | // Correction for Richardson extrapolation
|
|---|
| 158 | //
|
|---|
| 159 | G4double correction = 1. / ( (1 << IntegratorOrder()) -1 );
|
|---|
| 160 |
|
|---|
| 161 | // Saving yInput because yInput and yOutput can be aliases for same array
|
|---|
| 162 |
|
|---|
| 163 | for (i=0;i<nvar;i++) { yInitial[i]=yInput[i]; }
|
|---|
| 164 |
|
|---|
| 165 | yInitial[7]= yInput[7]; // Copy the time in case...even if not really needed
|
|---|
| 166 | yMiddle[7] = yInput[7]; // Copy the time from initial value
|
|---|
| 167 | yOneStep[7] = yInput[7]; // As it contributes to final value of yOutput ?
|
|---|
| 168 | yOutput[7] = yInput[7]; // -> dumb stepper does it too for RK4
|
|---|
| 169 | for (i=nvar;i<maxvar;i++) { yOutput[i]=yInput[i]; }
|
|---|
| 170 | yError[7] = 0.0;
|
|---|
| 171 |
|
|---|
| 172 | G4double halfStep = hstep * 0.5;
|
|---|
| 173 |
|
|---|
| 174 | // Do two half steps
|
|---|
| 175 | //
|
|---|
| 176 | GetConstField(yInitial,Field);
|
|---|
| 177 | DumbStepper (yInitial, dydx, halfStep, yMiddle);
|
|---|
| 178 | RightHandSideConst(yMiddle, dydxMid);
|
|---|
| 179 | DumbStepper (yMiddle, dydxMid, halfStep, yOutput);
|
|---|
| 180 |
|
|---|
| 181 | // Store midpoint, chord calculation
|
|---|
| 182 | //
|
|---|
| 183 | fMidPoint = G4ThreeVector( yMiddle[0], yMiddle[1], yMiddle[2]);
|
|---|
| 184 |
|
|---|
| 185 | // Do a full Step
|
|---|
| 186 | //
|
|---|
| 187 | DumbStepper(yInitial, dydx, hstep, yOneStep);
|
|---|
| 188 | for(i=0;i<nvar;i++)
|
|---|
| 189 | {
|
|---|
| 190 | yError [i] = yOutput[i] - yOneStep[i] ;
|
|---|
| 191 | yOutput[i] += yError[i]*correction ;
|
|---|
| 192 | // Provides accuracy increased by 1 order via the
|
|---|
| 193 | // Richardson extrapolation
|
|---|
| 194 | }
|
|---|
| 195 |
|
|---|
| 196 | fInitialPoint = G4ThreeVector( yInitial[0], yInitial[1], yInitial[2]);
|
|---|
| 197 | fFinalPoint = G4ThreeVector( yOutput[0], yOutput[1], yOutput[2]);
|
|---|
| 198 |
|
|---|
| 199 | return;
|
|---|
| 200 | }
|
|---|
| 201 |
|
|---|
| 202 | ////////////////////////////////////////////////////////////////
|
|---|
| 203 | //
|
|---|
| 204 | // Estimate the maximum distance from the curve to the chord
|
|---|
| 205 | //
|
|---|
| 206 | // We estimate this using the distance of the midpoint to chord.
|
|---|
| 207 | // The method below is good only for angle deviations < 2 pi;
|
|---|
| 208 | // this restriction should not be a problem for the Runge Kutta methods,
|
|---|
| 209 | // which generally cannot integrate accurately for large angle deviations
|
|---|
| 210 |
|
|---|
| 211 | G4double G4ConstRK4::DistChord() const
|
|---|
| 212 | {
|
|---|
| 213 | G4double distLine, distChord;
|
|---|
| 214 |
|
|---|
| 215 | if (fInitialPoint != fFinalPoint)
|
|---|
| 216 | {
|
|---|
| 217 | distLine= G4LineSection::Distline( fMidPoint, fInitialPoint, fFinalPoint );
|
|---|
| 218 | // This is a class method that gives distance of Mid
|
|---|
| 219 | // from the Chord between the Initial and Final points
|
|---|
| 220 | distChord = distLine;
|
|---|
| 221 | }
|
|---|
| 222 | else
|
|---|
| 223 | {
|
|---|
| 224 | distChord = (fMidPoint-fInitialPoint).mag();
|
|---|
| 225 | }
|
|---|
| 226 | return distChord;
|
|---|
| 227 | }
|
|---|