source: trunk/source/geometry/magneticfield/src/G4EqEMFieldWithEDM.cc@ 1347

Last change on this file since 1347 was 1340, checked in by garnier, 15 years ago

update ti head

File size: 5.9 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4EqEMFieldWithEDM.cc,v 1.3 2010/07/14 10:00:36 gcosmo Exp $
28// GEANT4 tag $Name: field-V09-03-03 $
29//
30//
31// This is the standard right-hand side for equation of motion.
32//
33// 19.02.2009 Kevin Lynch, based on G4EqEMFieldWithSpin
34// 06.11.2009 Hiromi Iinuma see:
35// http://hypernews.slac.stanford.edu/HyperNews/geant4/get/emfields/161.html
36//
37// -------------------------------------------------------------------
38
39#include "G4EqEMFieldWithEDM.hh"
40#include "G4ElectroMagneticField.hh"
41#include "G4ThreeVector.hh"
42#include "globals.hh"
43
44G4EqEMFieldWithEDM::G4EqEMFieldWithEDM(G4ElectroMagneticField *emField )
45 : G4EquationOfMotion( emField ), fElectroMagCof(0.), fMassCof(0.),
46 omegac(0.), anomaly(0.0011659208), eta(0.), pcharge(0.), E(0.),
47 gamma(0.), beta(0.)
48{
49}
50
51G4EqEMFieldWithEDM::~G4EqEMFieldWithEDM()
52{
53}
54
55void
56G4EqEMFieldWithEDM::SetChargeMomentumMass(G4double particleCharge, // e+ units
57 G4double MomentumXc,
58 G4double particleMass)
59{
60 fElectroMagCof = eplus*particleCharge*c_light ;
61 fMassCof = particleMass*particleMass ;
62
63 omegac = 0.105658387*GeV/particleMass * 2.837374841e-3*(rad/cm/kilogauss);
64
65 pcharge = particleCharge;
66
67 E = std::sqrt(sqr(MomentumXc)+sqr(particleMass));
68 beta = MomentumXc/E;
69 gamma = E/particleMass;
70
71}
72
73void
74G4EqEMFieldWithEDM::EvaluateRhsGivenB(const G4double y[],
75 const G4double Field[],
76 G4double dydx[] ) const
77{
78
79 // Components of y:
80 // 0-2 dr/ds,
81 // 3-5 dp/ds - momentum derivatives
82 // 9-11 dSpin/ds = (1/beta) dSpin/dt - spin derivatives
83
84 // The BMT equation, following J.D.Jackson, Classical
85 // Electrodynamics, Second Edition, with additions for EDM
86 // evolution from
87 // M.Nowakowski, et.al. Eur.J.Phys.26, pp 545-560, (2005)
88 // or
89 // Silenko, Phys.Rev.ST Accel.Beams 9:034003, (2006)
90
91 // dS/dt = (e/m) S \cross
92 // MDM: [ (g/2-1 +1/\gamma) B
93 // -(g/2-1)\gamma/(\gamma+1) (\beta \cdot B)\beta
94 // -(g/2-\gamma/(\gamma+1) \beta \cross E
95 //
96 // EDM: eta/2( E - gamma/(gamma+1) \beta (\beta \cdot E)
97 // + \beta \cross B ) ]
98 //
99 // where
100 // S = \vec{s}, where S^2 = 1
101 // B = \vec{B}
102 // \beta = \vec{\beta} = \beta \vec{u} with u^2 = 1
103 // E = \vec{E}
104
105 G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ;
106
107 G4double Energy = std::sqrt( pSquared + fMassCof );
108 G4double cof2 = Energy/c_light ;
109
110 G4double pModuleInverse = 1.0/std::sqrt(pSquared) ;
111
112 G4double inverse_velocity = Energy * pModuleInverse / c_light;
113
114 G4double cof1 = fElectroMagCof*pModuleInverse ;
115
116 dydx[0] = y[3]*pModuleInverse ;
117 dydx[1] = y[4]*pModuleInverse ;
118 dydx[2] = y[5]*pModuleInverse ;
119
120 dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field[2] - y[5]*Field[1])) ;
121
122 dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field[0] - y[3]*Field[2])) ;
123
124 dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field[1] - y[4]*Field[0])) ;
125
126 dydx[6] = dydx[8] = 0.;//not used
127
128 // Lab Time of flight
129 dydx[7] = inverse_velocity;
130
131 G4ThreeVector BField(Field[0],Field[1],Field[2]);
132 G4ThreeVector EField(Field[3],Field[4],Field[5]);
133
134 EField /= c_light;
135
136 G4ThreeVector u(y[3], y[4], y[5]);
137 u *= pModuleInverse;
138
139 G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u);
140 G4double ucb = (anomaly+1./gamma)/beta;
141 G4double uce = anomaly + 1./(gamma+1.);
142 G4double ude = beta*gamma/(1.+gamma)*(EField*u);
143
144 G4ThreeVector Spin(y[9],y[10],y[11]);
145
146 G4ThreeVector dSpin
147 = pcharge*omegac*( ucb*(Spin.cross(BField))-udb*(Spin.cross(u))
148 // from Jackson
149 // -uce*Spin.cross(u.cross(EField)) )
150 // but this form has one less operation
151 - uce*(u*(Spin*EField) - EField*(Spin*u))
152 + eta/2.*(Spin.cross(EField) - ude*(Spin.cross(u))
153 // +Spin.cross(u.cross(Bfield))
154 + (u*(Spin*BField) - BField*(Spin*u)) ) );
155
156 dydx[ 9] = dSpin.x();
157 dydx[10] = dSpin.y();
158 dydx[11] = dSpin.z();
159
160 return ;
161}
Note: See TracBrowser for help on using the repository browser.