// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4EqEMFieldWithSpin.cc,v 1.4 2008/11/21 21:17:03 gum Exp $ // GEANT4 tag $Name: geant4-09-02-cand-01 $ // // // This is the standard right-hand side for equation of motion. // // The only case another is required is when using a moving reference // frame ... or extending the class to include additional Forces, // eg an electric field // // 30.08.2007 Chris Gong, Peter Gumplinger // // ------------------------------------------------------------------- #include "G4EqEMFieldWithSpin.hh" #include "G4ElectroMagneticField.hh" #include "G4ThreeVector.hh" #include "globals.hh" G4EqEMFieldWithSpin::G4EqEMFieldWithSpin(G4ElectroMagneticField *emField ) : G4EquationOfMotion( emField ) { anomaly = 0.0011659208; } G4EqEMFieldWithSpin::~G4EqEMFieldWithSpin() { } void G4EqEMFieldWithSpin::SetChargeMomentumMass(G4double particleCharge, // e+ units G4double MomentumXc, G4double particleMass) { fElectroMagCof = eplus*particleCharge*c_light ; fMassCof = particleMass*particleMass ; omegac = 0.105658387*GeV/particleMass * 2.837374841e-3*(rad/cm/kilogauss); ParticleCharge = particleCharge; E = std::sqrt(sqr(MomentumXc)+sqr(particleMass)); beta = MomentumXc/E; gamma = E/particleMass; } void G4EqEMFieldWithSpin::EvaluateRhsGivenB(const G4double y[], const G4double Field[], G4double dydx[] ) const { // Components of y: // 0-2 dr/ds, // 3-5 dp/ds - momentum derivatives G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ; G4double Energy = std::sqrt( pSquared + fMassCof ); G4double cof2 = Energy/c_light ; G4double pModuleInverse = 1.0/std::sqrt(pSquared) ; // G4double inverse_velocity = Energy * c_light * pModuleInverse; G4double inverse_velocity = Energy * pModuleInverse / c_light; G4double cof1 = fElectroMagCof*pModuleInverse ; // G4double vDotE = y[3]*Field[3] + y[4]*Field[4] + y[5]*Field[5] ; dydx[0] = y[3]*pModuleInverse ; dydx[1] = y[4]*pModuleInverse ; dydx[2] = y[5]*pModuleInverse ; dydx[3] = cof1*(cof2*Field[3] + (y[4]*Field[2] - y[5]*Field[1])) ; dydx[4] = cof1*(cof2*Field[4] + (y[5]*Field[0] - y[3]*Field[2])) ; dydx[5] = cof1*(cof2*Field[5] + (y[3]*Field[1] - y[4]*Field[0])) ; dydx[6] = dydx[8] = 0.;//not used // Lab Time of flight dydx[7] = inverse_velocity; G4ThreeVector BField(Field[0],Field[1],Field[2]); G4ThreeVector u(y[3], y[4], y[5]); u *= pModuleInverse; G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u); G4double ucb = (anomaly+1./gamma)/beta; G4ThreeVector Spin(y[9],y[10],y[11]); if (Spin.mag() > 0.) Spin = Spin.unit(); G4ThreeVector dSpin; dSpin = ParticleCharge*omegac*(ucb*(Spin.cross(BField))-udb*(Spin.cross(u))); dydx[ 9] = dSpin.x(); dydx[10] = dSpin.y(); dydx[11] = dSpin.z(); return ; }