source: trunk/source/geometry/magneticfield/src/G4HelixExplicitEuler.cc@ 1347

Last change on this file since 1347 was 1337, checked in by garnier, 15 years ago

tag geant4.9.4 beta 1 + modifs locales

File size: 3.9 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4HelixExplicitEuler.cc,v 1.8 2007/12/10 16:29:49 gunter Exp $
28// GEANT4 tag $Name: geant4-09-04-beta-01 $
29//
30//
31// Helix Explicit Euler: x_1 = x_0 + helix(h)
32// with helix(h) being a helix piece of length h
33// most simple approach for solving linear differential equations.
34// Take the current derivative and add it to the current position.
35//
36// W.Wander <wwc@mit.edu> 12/09/97
37// -------------------------------------------------------------------
38
39#include "G4HelixExplicitEuler.hh"
40#include "G4ThreeVector.hh"
41
42
43void G4HelixExplicitEuler::Stepper( const G4double yInput[7],
44 const G4double*,
45 G4double Step,
46 G4double yOut[7],
47 G4double yErr[])
48
49{
50
51 //Estimation of the Stepping Angle
52
53 G4ThreeVector Bfld;
54 MagFieldEvaluate(yInput, Bfld);
55
56 const G4int nvar = 6 ;
57 G4int i;
58 G4double yTemp[7], yIn[7] ;
59 G4ThreeVector Bfld_midpoint;
60 // Saving yInput because yInput and yOut can be aliases for same array
61 for(i=0;i<nvar;i++) yIn[i]=yInput[i];
62
63 G4double h = Step * 0.5;
64
65 // Do full step and two half steps
66 G4double yTemp2[7];
67 AdvanceHelix(yIn, Bfld, h, yTemp2,yTemp);
68 MagFieldEvaluate(yTemp2, Bfld_midpoint) ;
69 AdvanceHelix(yTemp2, Bfld_midpoint, h, yOut);
70
71 // Error estimation
72 for(i=0;i<nvar;i++) {
73 yErr[i] = yOut[i] - yTemp[i] ;
74 }
75
76}
77
78G4double G4HelixExplicitEuler::DistChord() const
79{
80 // Implementation : must check whether h/R > 2 pi !!
81 // If( h/R < pi) use G4LineSection::DistLine
82 // Else DistChord=R_helix
83 //
84 G4double distChord;
85 G4double Ang_curve=GetAngCurve();
86
87
88 if(Ang_curve<=pi){
89 distChord=GetRadHelix()*(1-std::cos(0.5*Ang_curve));
90 }
91 else
92 if(Ang_curve<twopi){
93 distChord=GetRadHelix()*(1+std::cos(0.5*(twopi-Ang_curve)));
94 }
95 else{
96 distChord=2.*GetRadHelix();
97 }
98
99 return distChord;
100
101}
102void
103G4HelixExplicitEuler::DumbStepper( const G4double yIn[],
104 G4ThreeVector Bfld,
105 G4double h,
106 G4double yOut[])
107{
108
109 AdvanceHelix(yIn, Bfld, h, yOut);
110
111}
Note: See TracBrowser for help on using the repository browser.