| [831] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4MagHelicalStepper.cc,v 1.23 2007/09/05 12:20:17 gcosmo Exp $
|
|---|
| [1231] | 28 | // GEANT4 tag $Name: $
|
|---|
| [831] | 29 | //
|
|---|
| 30 | // --------------------------------------------------------------------
|
|---|
| 31 |
|
|---|
| 32 | #include "G4MagHelicalStepper.hh"
|
|---|
| 33 | #include "G4LineSection.hh"
|
|---|
| 34 | #include "G4Mag_EqRhs.hh"
|
|---|
| 35 |
|
|---|
| 36 | // given a purely magnetic field a better approach than adding a straight line
|
|---|
| 37 | // (as in the normal runge-kutta-methods) is to add helix segments to the
|
|---|
| 38 | // current position
|
|---|
| 39 |
|
|---|
| 40 |
|
|---|
| 41 | // Constant for determining unit conversion when using normal as integrand.
|
|---|
| 42 | //
|
|---|
| 43 | const G4double G4MagHelicalStepper::fUnitConstant = 0.299792458*(GeV/(tesla*m));
|
|---|
| 44 |
|
|---|
| 45 |
|
|---|
| 46 | G4MagHelicalStepper::G4MagHelicalStepper(G4Mag_EqRhs *EqRhs)
|
|---|
| 47 | : G4MagIntegratorStepper(EqRhs, 6) // integrate over 6 variables only !!
|
|---|
| 48 | // position & velocity
|
|---|
| 49 | {
|
|---|
| 50 | fPtrMagEqOfMot = EqRhs;
|
|---|
| 51 | }
|
|---|
| 52 |
|
|---|
| 53 | G4MagHelicalStepper::~G4MagHelicalStepper()
|
|---|
| 54 | {
|
|---|
| 55 | }
|
|---|
| 56 |
|
|---|
| 57 | void
|
|---|
| 58 | G4MagHelicalStepper::AdvanceHelix( const G4double yIn[],
|
|---|
| 59 | G4ThreeVector Bfld,
|
|---|
| 60 | G4double h,
|
|---|
| 61 | G4double yHelix[],
|
|---|
| 62 | G4double yHelix2[] )
|
|---|
| 63 | {
|
|---|
| 64 | // const G4int nvar = 6;
|
|---|
| 65 |
|
|---|
| 66 | // OLD const G4double approc_limit = 0.05;
|
|---|
| 67 | // OLD approc_limit = 0.05 gives max.error=x^5/5!=(0.05)^5/5!=2.6*e-9
|
|---|
| 68 | // NEW approc_limit = 0.005 gives max.error=x^5/5!=2.6*e-14
|
|---|
| 69 |
|
|---|
| 70 | const G4double approc_limit = 0.005;
|
|---|
| 71 | G4ThreeVector Bnorm, B_x_P, vperp, vpar;
|
|---|
| 72 |
|
|---|
| 73 | G4double B_d_P;
|
|---|
| 74 | G4double B_v_P;
|
|---|
| 75 | G4double Theta;
|
|---|
| 76 | G4double R_1;
|
|---|
| 77 | G4double R_Helix;
|
|---|
| 78 | G4double CosT2, SinT2, CosT, SinT;
|
|---|
| 79 | G4ThreeVector positionMove, endTangent;
|
|---|
| 80 |
|
|---|
| 81 | G4double Bmag = Bfld.mag();
|
|---|
| 82 | const G4double *pIn = yIn+3;
|
|---|
| 83 | G4ThreeVector initVelocity= G4ThreeVector( pIn[0], pIn[1], pIn[2]);
|
|---|
| 84 | G4double velocityVal = initVelocity.mag();
|
|---|
| 85 | G4ThreeVector initTangent = (1.0/velocityVal) * initVelocity;
|
|---|
| 86 |
|
|---|
| 87 | R_1=GetInverseCurve(velocityVal,Bmag);
|
|---|
| 88 |
|
|---|
| 89 | // for too small magnetic fields there is no curvature
|
|---|
| 90 | // (include momentum here) FIXME
|
|---|
| 91 |
|
|---|
| 92 | if( (std::fabs(R_1) < 1e-10)||(Bmag<1e-12) )
|
|---|
| 93 | {
|
|---|
| 94 | LinearStep( yIn, h, yHelix );
|
|---|
| 95 |
|
|---|
| 96 | // Store and/or calculate parameters for chord distance
|
|---|
| 97 |
|
|---|
| 98 | SetAngCurve(1.);
|
|---|
| 99 | SetCurve(h);
|
|---|
| 100 | SetRadHelix(0.);
|
|---|
| 101 | }
|
|---|
| 102 | else
|
|---|
| 103 | {
|
|---|
| 104 | Bnorm = (1.0/Bmag)*Bfld;
|
|---|
| 105 |
|
|---|
| 106 | // calculate the direction of the force
|
|---|
| 107 |
|
|---|
| 108 | B_x_P = Bnorm.cross(initTangent);
|
|---|
| 109 |
|
|---|
| 110 | // parallel and perp vectors
|
|---|
| 111 |
|
|---|
| 112 | B_d_P = Bnorm.dot(initTangent); // this is the fraction of P parallel to B
|
|---|
| 113 |
|
|---|
| 114 | vpar = B_d_P * Bnorm; // the component parallel to B
|
|---|
| 115 | vperp= initTangent - vpar; // the component perpendicular to B
|
|---|
| 116 |
|
|---|
| 117 | B_v_P = std::sqrt( 1 - B_d_P * B_d_P); // Fraction of P perp to B
|
|---|
| 118 |
|
|---|
| 119 | // calculate the stepping angle
|
|---|
| 120 |
|
|---|
| 121 | Theta = R_1 * h; // * B_v_P;
|
|---|
| 122 |
|
|---|
| 123 | // Trigonometrix
|
|---|
| 124 |
|
|---|
| 125 | if( std::fabs(Theta) > approc_limit )
|
|---|
| 126 | {
|
|---|
| 127 | SinT = std::sin(Theta);
|
|---|
| 128 | CosT = std::cos(Theta);
|
|---|
| 129 | }
|
|---|
| 130 | else
|
|---|
| 131 | {
|
|---|
| 132 | G4double Theta2 = Theta*Theta;
|
|---|
| 133 | G4double Theta3 = Theta2 * Theta;
|
|---|
| 134 | G4double Theta4 = Theta2 * Theta2;
|
|---|
| 135 | SinT = Theta - 1.0/6.0 * Theta3;
|
|---|
| 136 | CosT = 1 - 0.5 * Theta2 + 1.0/24.0 * Theta4;
|
|---|
| 137 | }
|
|---|
| 138 |
|
|---|
| 139 | // the actual "rotation"
|
|---|
| 140 |
|
|---|
| 141 | G4double R = 1.0 / R_1;
|
|---|
| 142 |
|
|---|
| 143 | positionMove = R * ( SinT * vperp + (1-CosT) * B_x_P) + h * vpar;
|
|---|
| 144 | endTangent = CosT * vperp + SinT * B_x_P + vpar;
|
|---|
| 145 |
|
|---|
| 146 | // Store the resulting position and tangent
|
|---|
| 147 |
|
|---|
| 148 | yHelix[0] = yIn[0] + positionMove.x();
|
|---|
| 149 | yHelix[1] = yIn[1] + positionMove.y();
|
|---|
| 150 | yHelix[2] = yIn[2] + positionMove.z();
|
|---|
| 151 | yHelix[3] = velocityVal * endTangent.x();
|
|---|
| 152 | yHelix[4] = velocityVal * endTangent.y();
|
|---|
| 153 | yHelix[5] = velocityVal * endTangent.z();
|
|---|
| 154 |
|
|---|
| 155 | // Store 2*h step Helix if exist
|
|---|
| 156 |
|
|---|
| 157 | if(yHelix2)
|
|---|
| 158 | {
|
|---|
| 159 | SinT2 = 2.0 * SinT * CosT;
|
|---|
| 160 | CosT2 = 1.0 - 2.0 * SinT * SinT;
|
|---|
| 161 | endTangent = (CosT2 * vperp + SinT2 * B_x_P + vpar);
|
|---|
| 162 | positionMove = R * ( SinT2 * vperp + (1-CosT2) * B_x_P) + h*2 * vpar;
|
|---|
| 163 |
|
|---|
| 164 | yHelix2[0] = yIn[0] + positionMove.x();
|
|---|
| 165 | yHelix2[1] = yIn[1] + positionMove.y();
|
|---|
| 166 | yHelix2[2] = yIn[2] + positionMove.z();
|
|---|
| 167 | yHelix2[3] = velocityVal * endTangent.x();
|
|---|
| 168 | yHelix2[4] = velocityVal * endTangent.y();
|
|---|
| 169 | yHelix2[5] = velocityVal * endTangent.z();
|
|---|
| 170 | }
|
|---|
| 171 |
|
|---|
| 172 | // Store and/or calculate parameters for chord distance
|
|---|
| 173 |
|
|---|
| 174 | G4double ptan=velocityVal*B_v_P;
|
|---|
| 175 |
|
|---|
| 176 | G4double particleCharge = fPtrMagEqOfMot->FCof() / (eplus*c_light);
|
|---|
| 177 | R_Helix =std::abs( ptan/(fUnitConstant * particleCharge*Bmag));
|
|---|
| 178 |
|
|---|
| 179 | SetAngCurve(std::abs(Theta));
|
|---|
| 180 | SetCurve(std::abs(R));
|
|---|
| 181 | SetRadHelix(R_Helix);
|
|---|
| 182 | }
|
|---|
| 183 | }
|
|---|
| 184 |
|
|---|
| 185 | //
|
|---|
| 186 | // Use the midpoint method to get an error estimate and correction
|
|---|
| 187 | // modified from G4ClassicalRK4: W.Wander <wwc@mit.edu> 12/09/97
|
|---|
| 188 | //
|
|---|
| 189 |
|
|---|
| 190 | void
|
|---|
| 191 | G4MagHelicalStepper::Stepper( const G4double yInput[],
|
|---|
| 192 | const G4double*,
|
|---|
| 193 | G4double hstep,
|
|---|
| 194 | G4double yOut[],
|
|---|
| 195 | G4double yErr[] )
|
|---|
| 196 | {
|
|---|
| 197 | const G4int nvar = 6;
|
|---|
| 198 |
|
|---|
| 199 | G4int i;
|
|---|
| 200 |
|
|---|
| 201 | // correction for Richardson Extrapolation.
|
|---|
| 202 | // G4double correction = 1. / ( (1 << IntegratorOrder()) -1 );
|
|---|
| 203 |
|
|---|
| 204 | G4double yTemp[7], yIn[7] ;
|
|---|
| 205 | G4ThreeVector Bfld_initial, Bfld_midpoint;
|
|---|
| 206 |
|
|---|
| 207 | // Saving yInput because yInput and yOut can be aliases for same array
|
|---|
| 208 |
|
|---|
| 209 | for(i=0;i<nvar;i++) { yIn[i]=yInput[i]; }
|
|---|
| 210 |
|
|---|
| 211 | G4double h = hstep * 0.5;
|
|---|
| 212 |
|
|---|
| 213 | MagFieldEvaluate(yIn, Bfld_initial) ;
|
|---|
| 214 |
|
|---|
| 215 | // Do two half steps
|
|---|
| 216 |
|
|---|
| 217 | DumbStepper(yIn, Bfld_initial, h, yTemp);
|
|---|
| 218 | MagFieldEvaluate(yTemp, Bfld_midpoint) ;
|
|---|
| 219 | DumbStepper(yTemp, Bfld_midpoint, h, yOut);
|
|---|
| 220 |
|
|---|
| 221 | // Do a full Step
|
|---|
| 222 |
|
|---|
| 223 | h = hstep ;
|
|---|
| 224 | DumbStepper(yIn, Bfld_initial, h, yTemp);
|
|---|
| 225 |
|
|---|
| 226 | // Error estimation
|
|---|
| 227 |
|
|---|
| 228 | for(i=0;i<nvar;i++)
|
|---|
| 229 | {
|
|---|
| 230 | yErr[i] = yOut[i] - yTemp[i] ;
|
|---|
| 231 | }
|
|---|
| 232 |
|
|---|
| 233 | return;
|
|---|
| 234 | }
|
|---|
| 235 |
|
|---|
| 236 | G4double
|
|---|
| 237 | G4MagHelicalStepper::DistChord() const
|
|---|
| 238 | {
|
|---|
| 239 | // Check whether h/R > pi !!
|
|---|
| 240 | // Method DistLine is good only for < pi
|
|---|
| 241 |
|
|---|
| 242 | G4double Ang=GetAngCurve();
|
|---|
| 243 | if(Ang<=pi)
|
|---|
| 244 | {
|
|---|
| 245 | return GetRadHelix()*(1-std::cos(0.5*Ang));
|
|---|
| 246 | }
|
|---|
| 247 | else
|
|---|
| 248 | {
|
|---|
| 249 | if(Ang<twopi)
|
|---|
| 250 | {
|
|---|
| 251 | return GetRadHelix()*(1+std::cos(0.5*(twopi-Ang)));
|
|---|
| 252 | }
|
|---|
| 253 | else // return Diameter of projected circle
|
|---|
| 254 | {
|
|---|
| 255 | return 2*GetRadHelix();
|
|---|
| 256 | }
|
|---|
| 257 | }
|
|---|
| 258 | }
|
|---|