// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4Mag_SpinEqRhs.cc,v 1.13 2008/11/21 21:18:26 gum Exp $ // GEANT4 tag $Name: geant4-09-02-cand-01 $ // // This is the standard right-hand side for equation of motion. // This version of the right-hand side includes the three components // of the particle's spin. // // J. Apostolakis, February 8th, 1999 // P. Gumplinger, February 8th, 1999 // D. Cote-Ahern, P. Gumplinger, April 11th, 2001 // // -------------------------------------------------------------------- #include "G4Mag_SpinEqRhs.hh" #include "G4MagneticField.hh" #include "G4ThreeVector.hh" G4Mag_SpinEqRhs::G4Mag_SpinEqRhs( G4MagneticField* MagField ) : G4Mag_EqRhs( MagField ) { anomaly = 0.0011659208; } G4Mag_SpinEqRhs::~G4Mag_SpinEqRhs() {} void G4Mag_SpinEqRhs::SetChargeMomentumMass(G4double particleCharge, // in e+ units G4double MomentumXc, G4double particleMass) { // To set fCof_val G4Mag_EqRhs::SetChargeMomentumMass(particleCharge, MomentumXc, particleMass); omegac = 0.105658387*GeV/particleMass * 2.837374841e-3*(rad/cm/kilogauss); ParticleCharge = particleCharge; E = std::sqrt(sqr(MomentumXc)+sqr(particleMass)); beta = MomentumXc/E; gamma = E/particleMass; } void G4Mag_SpinEqRhs::EvaluateRhsGivenB( const G4double y[], const G4double B[3], G4double dydx[] ) const { G4double momentum_mag_square = sqr(y[3]) + sqr(y[4]) + sqr(y[5]); G4double inv_momentum_magnitude = 1.0 / std::sqrt( momentum_mag_square ); G4double cof = FCof()*inv_momentum_magnitude; dydx[0] = y[3] * inv_momentum_magnitude; // (d/ds)x = Vx/V dydx[1] = y[4] * inv_momentum_magnitude; // (d/ds)y = Vy/V dydx[2] = y[5] * inv_momentum_magnitude; // (d/ds)z = Vz/V dydx[3] = cof*(y[4]*B[2] - y[5]*B[1]) ; // Ax = a*(Vy*Bz - Vz*By) dydx[4] = cof*(y[5]*B[0] - y[3]*B[2]) ; // Ay = a*(Vz*Bx - Vx*Bz) dydx[5] = cof*(y[3]*B[1] - y[4]*B[0]) ; // Az = a*(Vx*By - Vy*Bx) G4ThreeVector u(y[3], y[4], y[5]); u *= inv_momentum_magnitude; G4ThreeVector BField(B[0],B[1],B[2]); G4double udb = anomaly*beta*gamma/(1.+gamma) * (BField * u); G4double ucb = (anomaly+1./gamma)/beta; // Initialise the values of dydx that we do not update. dydx[6] = dydx[7] = dydx[8] = 0.0; G4ThreeVector Spin(y[9],y[10],y[11]); if (Spin.mag() > 0.) Spin = Spin.unit(); G4ThreeVector dSpin; dSpin = ParticleCharge*omegac*(ucb*(Spin.cross(BField))-udb*(Spin.cross(u))); dydx[ 9] = dSpin.x(); dydx[10] = dSpin.y(); dydx[11] = dSpin.z(); return ; }