// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4Mag_UsualEqRhs.cc,v 1.13 2010/07/14 10:00:36 gcosmo Exp $ // GEANT4 tag $Name: field-V09-03-03 $ // // // This is the 'standard' right-hand side for the equation of motion // of a charged particle in a magnetic field. // // Initial version: J. Apostolakis, January 13th, 1997 // // -------------------------------------------------------------------- #include "G4Mag_UsualEqRhs.hh" #include "G4MagneticField.hh" G4Mag_UsualEqRhs::G4Mag_UsualEqRhs( G4MagneticField* MagField ) : G4Mag_EqRhs( MagField ), fInvCurrentMomentumXc(0.) {} G4Mag_UsualEqRhs::~G4Mag_UsualEqRhs() {} void G4Mag_UsualEqRhs::EvaluateRhsGivenB( const G4double y[], const G4double B[3], G4double dydx[] ) const { G4double momentum_mag_square = y[3]*y[3] + y[4]*y[4] + y[5]*y[5]; G4double inv_momentum_magnitude = 1.0 / std::sqrt( momentum_mag_square ); G4double cof = FCof()*inv_momentum_magnitude; dydx[0] = y[3]*inv_momentum_magnitude; // (d/ds)x = Vx/V dydx[1] = y[4]*inv_momentum_magnitude; // (d/ds)y = Vy/V dydx[2] = y[5]*inv_momentum_magnitude; // (d/ds)z = Vz/V dydx[3] = cof*(y[4]*B[2] - y[5]*B[1]) ; // Ax = a*(Vy*Bz - Vz*By) dydx[4] = cof*(y[5]*B[0] - y[3]*B[2]) ; // Ay = a*(Vz*Bx - Vx*Bz) dydx[5] = cof*(y[3]*B[1] - y[4]*B[0]) ; // Az = a*(Vx*By - Vy*Bx) return ; } void G4Mag_UsualEqRhs:: SetChargeMomentumMass( G4double particleCharge, // in e+ units G4double MomentumXc, G4double mass) { fInvCurrentMomentumXc= 1.0 / MomentumXc; G4Mag_EqRhs::SetChargeMomentumMass( particleCharge, MomentumXc, mass); }