// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4MonopoleEq.cc,v 1.2 2010/03/18 10:23:29 japost Exp $ // GEANT4 tag $Name: field-V09-03-03 $ // // // This is the right-hand side for equation of motion for a // magnetic charge in a combined Electro-Magnetic field // // d(p_c)/ds=g{c-energyB_ - p_c x E}/pc // // 17.11.09 V.Grichine // // ------------------------------------------------------------------- #include "G4MonopoleEq.hh" #include "globals.hh" void G4MonopoleEq::SetChargeMomentumMass(G4double particleCharge, // e+ units G4double, G4double particleMass) { fElectroMagCof = eplus*particleCharge; // no *c_light as for ususal q fElectroMagCof /= 2*fine_structure_const; fMassCof = particleMass*particleMass ; } void G4MonopoleEq::EvaluateRhsGivenB(const G4double y[], const G4double Field[], G4double dydx[] ) const { // Components of y: // 0-2 dr/ds, // 3-5 d(pc)/ds - momentum derivatives G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ; G4double Energy = std::sqrt( pSquared + fMassCof ); G4double cof2 = Energy*c_light ; G4double pModuleInverse = 1.0/std::sqrt(pSquared) ; // G4double inverse_velocity = Energy * c_light * pModuleInverse; G4double inverse_velocity = Energy * pModuleInverse / c_light; G4double cof1 = fElectroMagCof*pModuleInverse ; // G4double vDotE = y[3]*Field[3] + y[4]*Field[4] + y[5]*Field[5] ; dydx[0] = y[3]*pModuleInverse ; dydx[1] = y[4]*pModuleInverse ; dydx[2] = y[5]*pModuleInverse ; dydx[3] = cof1*(cof2*Field[0] - (y[4]*Field[5] - y[5]*Field[4])) ; dydx[4] = cof1*(cof2*Field[1] - (y[5]*Field[3] - y[3]*Field[5])) ; dydx[5] = cof1*(cof2*Field[2] - (y[3]*Field[4] - y[4]*Field[3])) ; dydx[6] = 0.;//not used // Lab Time of flight dydx[7] = inverse_velocity; return ; }