| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // -- Bogus -- BaBar Object-Oriented Geant-based Unified Simulation
|
|---|
| 28 | //
|
|---|
| 29 | // NTSTLooperDeath
|
|---|
| 30 | //
|
|---|
| 31 | // Description:
|
|---|
| 32 | // This is a simple GEANT4 process that destroys any particle below
|
|---|
| 33 | // the specified total kinetic energy that reverse direction (loops 180
|
|---|
| 34 | // degress) in the x/y plane.
|
|---|
| 35 | //
|
|---|
| 36 | // Based on BgsChargedLowEnergyDeath
|
|---|
| 37 | //
|
|---|
| 38 | // Author List:
|
|---|
| 39 | // David Williams
|
|---|
| 40 | //
|
|---|
| 41 | // Modification History:
|
|---|
| 42 | //
|
|---|
| 43 | //-----------------------------------------------------------------------------
|
|---|
| 44 |
|
|---|
| 45 | #include "NTSTLooperDeath.hh"
|
|---|
| 46 |
|
|---|
| 47 | #include "G4TransportationManager.hh"
|
|---|
| 48 | #include "G4FieldManager.hh"
|
|---|
| 49 | #include "G4MagneticField.hh"
|
|---|
| 50 |
|
|---|
| 51 | //
|
|---|
| 52 | // Constructor
|
|---|
| 53 | //
|
|---|
| 54 | NTSTLooperDeath::NTSTLooperDeath( G4double theMinMomentum,
|
|---|
| 55 | const char* name,
|
|---|
| 56 | G4ProcessType type )
|
|---|
| 57 | : G4VProcess( name, type ), minMomentum( theMinMomentum )
|
|---|
| 58 | {;}
|
|---|
| 59 |
|
|---|
| 60 | NTSTLooperDeath::~NTSTLooperDeath(){;}
|
|---|
| 61 | //
|
|---|
| 62 | // PostStepGetPhysicalInteractionLength
|
|---|
| 63 | //
|
|---|
| 64 | G4double NTSTLooperDeath::PostStepGetPhysicalInteractionLength(
|
|---|
| 65 | const G4Track& track,
|
|---|
| 66 | G4double , // previousStepSize,
|
|---|
| 67 | G4ForceCondition* condition )
|
|---|
| 68 | {
|
|---|
| 69 | const G4DynamicParticle *particle = track.GetDynamicParticle();
|
|---|
| 70 |
|
|---|
| 71 | *condition = NotForced;
|
|---|
| 72 |
|
|---|
| 73 | //
|
|---|
| 74 | // We don't touch any particle above the cut momentum
|
|---|
| 75 | //
|
|---|
| 76 | if (particle->GetTotalMomentum() > minMomentum) return DBL_MAX;
|
|---|
| 77 |
|
|---|
| 78 | //
|
|---|
| 79 | // Nor do we touch any particle with small transverse component
|
|---|
| 80 | // to their momentum. Here the cutoff is somewhat arbitrary.
|
|---|
| 81 | //
|
|---|
| 82 | G4double vperp = track.GetMomentumDirection().perp();
|
|---|
| 83 | if (vperp < 0.1) return DBL_MAX;
|
|---|
| 84 |
|
|---|
| 85 | //
|
|---|
| 86 | // How far in azimuthal angle do we need to go before the
|
|---|
| 87 | // particle loops back on itself?
|
|---|
| 88 | //
|
|---|
| 89 | G4ThreeVector initialDir(track.GetVertexMomentumDirection());
|
|---|
| 90 | G4ThreeVector dx = track.GetPosition() - track.GetVertexPosition();
|
|---|
| 91 | G4double dxPerp = dx.perp();
|
|---|
| 92 | if (dxPerp < 1E-6) return DBL_MAX;
|
|---|
| 93 |
|
|---|
| 94 | G4double dot = ( initialDir.x()*dx.x() + initialDir.y()*dx.y() )/dxPerp;
|
|---|
| 95 |
|
|---|
| 96 | if (dot < 0) return 0; // Already done so
|
|---|
| 97 |
|
|---|
| 98 | G4double phi = pi - std::acos(dot);
|
|---|
| 99 |
|
|---|
| 100 | if (phi < 0) return 0;
|
|---|
| 101 |
|
|---|
| 102 | //
|
|---|
| 103 | // What is the radius of curvature?
|
|---|
| 104 | //
|
|---|
| 105 | // Only use the z component of the field to calculate this.
|
|---|
| 106 | //
|
|---|
| 107 | G4FieldManager *fieldManager = G4TransportationManager::GetTransportationManager()->GetFieldManager();
|
|---|
| 108 |
|
|---|
| 109 | if (!fieldManager->DoesFieldExist()) return DBL_MAX;
|
|---|
| 110 |
|
|---|
| 111 | //
|
|---|
| 112 | // Assume the field is a magnetic field (i.e. returns
|
|---|
| 113 | // a vector of three doubles of unit Telsa).
|
|---|
| 114 | //
|
|---|
| 115 | // There is no good way I know to confirm this, so it is purely
|
|---|
| 116 | // a matter of faith. *** BEWARE ***
|
|---|
| 117 | //
|
|---|
| 118 | G4MagneticField *field = (G4MagneticField *)fieldManager->GetDetectorField();
|
|---|
| 119 | G4double b[3];
|
|---|
| 120 | G4ThreeVector pos(track.GetPosition());
|
|---|
| 121 | G4double posv[3] = { pos.x(), pos.y(), pos.z() };
|
|---|
| 122 | field->GetFieldValue( posv, b );
|
|---|
| 123 |
|
|---|
| 124 | //
|
|---|
| 125 | // No field? Forget it!
|
|---|
| 126 | //
|
|---|
| 127 | if (std::fabs(b[2]) < 0.00001) return DBL_MAX;
|
|---|
| 128 |
|
|---|
| 129 | //
|
|---|
| 130 | // Calculate radius of curvature, the usual way.
|
|---|
| 131 | // Note G4 default units: mm, Telsa, MeV
|
|---|
| 132 | //
|
|---|
| 133 | // G4 suggestion: the constant below should be added to
|
|---|
| 134 | // the geant4 list.
|
|---|
| 135 | //
|
|---|
| 136 | G4double radius = std::fabs(track.GetMomentum().perp()/299.79251/b[2]);
|
|---|
| 137 |
|
|---|
| 138 | //
|
|---|
| 139 | // Convert this to a distance
|
|---|
| 140 | //
|
|---|
| 141 | return radius*phi/vperp;
|
|---|
| 142 | }
|
|---|
| 143 |
|
|---|
| 144 |
|
|---|
| 145 | //
|
|---|
| 146 | // PostStepDoit
|
|---|
| 147 | //
|
|---|
| 148 | G4VParticleChange *
|
|---|
| 149 | NTSTLooperDeath::PostStepDoIt( const G4Track &track, const G4Step & ) // step )
|
|---|
| 150 | {
|
|---|
| 151 | pParticleChange->Initialize(track);
|
|---|
| 152 |
|
|---|
| 153 | //
|
|---|
| 154 | // This is a tough one. What should happen when we kill off a looper?
|
|---|
| 155 | // For now: just deposit remaining energy (including mass).
|
|---|
| 156 | //
|
|---|
| 157 | const G4DynamicParticle *particle = track.GetDynamicParticle();
|
|---|
| 158 | G4double energyDeposited = particle->GetTotalEnergy();
|
|---|
| 159 |
|
|---|
| 160 | pParticleChange->ProposeTrackStatus( fStopAndKill );
|
|---|
| 161 | pParticleChange->SetNumberOfSecondaries( 0 );
|
|---|
| 162 | pParticleChange->ProposeLocalEnergyDeposit( energyDeposited );
|
|---|
| 163 | ClearNumberOfInteractionLengthLeft();
|
|---|
| 164 |
|
|---|
| 165 | return pParticleChange;
|
|---|
| 166 | }
|
|---|
| 167 |
|
|---|
| 168 |
|
|---|
| 169 |
|
|---|
| 170 |
|
|---|
| 171 |
|
|---|
| 172 |
|
|---|