source: trunk/source/geometry/magneticfield/test/field03/src/F03DetectorConstruction.cc@ 1311

Last change on this file since 1311 was 1199, checked in by garnier, 16 years ago

nvx fichiers dans CVS

File size: 22.0 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: F03DetectorConstruction.cc,v 1.2 2006/06/29 18:30:01 gunter Exp $
28// GEANT4 tag $Name: HEAD $
29//
30//
31
32#include "F03DetectorConstruction.hh"
33#include "F03DetectorMessenger.hh"
34
35#include "F03CalorimeterSD.hh"
36#include "F03ElectroMagneticField.hh"
37
38#include "G4VClusterModel.hh"
39#include "G4PAIclusterModel.hh"
40
41#include "G4Material.hh"
42#include "G4Tubs.hh"
43#include "G4LogicalVolume.hh"
44#include "G4PVPlacement.hh"
45#include "G4UniformMagField.hh"
46#include "G4FieldManager.hh"
47#include "G4TransportationManager.hh"
48#include "G4SDManager.hh"
49#include "G4RunManager.hh"
50
51#include "G4ios.hh"
52
53/////////////////////////////////////////////////////////////////////////////
54//
55//
56
57F03DetectorConstruction::F03DetectorConstruction()
58:solidWorld(NULL),logicWorld(NULL),physiWorld(NULL),
59 solidAbsorber(NULL),logicAbsorber(NULL),physiAbsorber(NULL),
60 AbsorberMaterial(NULL),WorldMaterial(NULL),fRadiatorMat(NULL),
61 magField(NULL),calorimeterSD(NULL),worldchanged(false),fEmField(NULL)
62{
63 // default parameter values of the calorimeter
64
65 G4double inch = 2.54*cm ;
66 G4double mil = inch/1000.0 ;
67
68 WorldSizeZ = 44000.*mm;
69 WorldSizeR = 22000.*mm;
70
71 AbsorberThickness = 1.0*mm;
72
73 AbsorberRadius = 20000.*mm;
74
75 zAbsorber = 21990.0*mm ;
76
77 fWindowThick = 51.0*micrometer ;
78 fElectrodeThick = 10.0*micrometer ;
79 fGapThick = 1.0*mm ;
80
81 fRadThickness = 100*mm ; // 0.5*mil ;
82 fGasGap = 100*mm ; // 30*mil ;
83 fFoilNumber = 1 ;
84
85 fDetThickness = 40.0*mm ;
86 fDetLength = 200.0*cm ;
87 fDetGap = 1.0*mm ;
88
89 fStartR = 40*cm ;
90 fStartZ = 10.0*mm ;
91
92 fModuleNumber = 1 ;
93
94 // create commands for interactive definition of the calorimeter
95
96 detectorMessenger = new F03DetectorMessenger(this);
97
98 fEmField = new F03ElectroMagneticField() ;
99}
100
101//////////////////////////////////////////////////////////////////////////
102//
103//
104
105F03DetectorConstruction::~F03DetectorConstruction()
106{
107 delete detectorMessenger;
108 if (fEmField) delete fEmField ;
109}
110
111//////////////////////////////////////////////////////////////////////////
112//
113//
114
115G4VPhysicalVolume* F03DetectorConstruction::Construct()
116{
117 DefineMaterials();
118 return ConstructCalorimeter();
119}
120
121//////////////////////////////////////////////////////////////////////////////
122//
123//
124
125void F03DetectorConstruction::DefineMaterials()
126{
127 //This function illustrates the possible ways to define materials
128
129G4String name, symbol ; //a=mass of a mole;
130G4double a, z, density ; //z=mean number of protons;
131G4int iz, n, nel ; //iz=number of protons in an isotope;
132 // n=number of nucleons in an isotope;
133
134G4int ncomponents, natoms;
135G4double abundance, fractionmass;
136G4double temperature, pressure;
137
138//
139// define Elements
140//
141
142 a = 1.01*g/mole;
143 G4Element* elH = new G4Element(name="Hydrogen",symbol="H" , z= 1., a);
144
145 a = 6.01*g/mole;
146 G4Element* elC = new G4Element(name="Carbon", symbol="C", z=6., a);
147
148 a = 14.01*g/mole;
149 G4Element* elN = new G4Element(name="Nitrogen",symbol="N" , z= 7., a);
150
151 a = 16.00*g/mole;
152 G4Element* elO = new G4Element(name="Oxygen" ,symbol="O" , z= 8., a);
153
154 a = 39.948*g/mole;
155 G4Element* elAr = new G4Element(name="Argon", symbol="Ar", z=18., a);
156
157 a = 131.29*g/mole;
158 G4Element* elXe = new G4Element(name="Xenon", symbol="Xe", z=54., a);
159
160 a = 19.00*g/mole;
161 G4Element* elF = new G4Element(name="Fluorine", symbol="F", z=9., a);
162
163
164//
165// define simple materials
166//
167
168 /* ******************************************************************
169
170density = 1.848*g/cm3;
171a = 9.01*g/mole;
172G4Material* Be = new G4Material(name="Beryllium", z=4., a, density);
173
174
175density = 1.390*g/cm3;
176a = 39.95*g/mole;
177G4Material* lAr = new G4Material(name="liquidArgon", z=18., a, density);
178
179density = 7.870*g/cm3;
180a = 55.85*g/mole;
181G4Material* Fe = new G4Material(name="Iron" , z=26., a, density);
182
183density = 8.960*g/cm3;
184a = 63.55*g/mole;
185G4Material* Cu = new G4Material(name="Copper" , z=29., a, density);
186
187density = 19.32*g/cm3;
188a =196.97*g/mole;
189G4Material* Au = new G4Material(name="Gold" , z=79., a, density);
190
191density = 11.35*g/cm3;
192a = 207.19*g/mole;
193G4Material* Pb = new G4Material(name="Lead" , z=82., a, density);
194
195//
196// define a material from elements. case 1: chemical molecule
197//
198
199density = 1.000*g/cm3;
200G4Material* H2O = new G4Material(name="Water", density, ncomponents=2);
201H2O->AddElement(elH, natoms=2);
202H2O->AddElement(elO, natoms=1);
203
204 // Kapton (polyimide) ??? since = Mylar C5H4O2
205
206 density = 1.39*g/cm3;
207 G4Material* Kapton = new G4Material(name="Kapton", density, nel=3);
208 Kapton->AddElement(elO,2);
209 Kapton->AddElement(elC,5);
210 Kapton->AddElement(elH,4);
211
212 // Silicon as detector material
213
214 density = 2.330*g/cm3;
215 a = 28.09*g/mole;
216 G4Material* Si = new G4Material(name="Silicon", z=14., a, density);
217
218 // Carbon dioxide
219
220 density = 1.977*mg/cm3;
221 G4Material* CO2 = new G4Material(name="CO2", density, nel=2,
222 kStateGas,273.15*kelvin,1.*atmosphere);
223 CO2->AddElement(elC,1);
224 CO2->AddElement(elO,2);
225
226
227 // TRT_CH2
228
229 density = 0.935*g/cm3;
230 G4Material* TRT_CH2 = new G4Material(name="TRT_CH2",density, nel=2);
231 TRT_CH2->AddElement(elC,1);
232 TRT_CH2->AddElement(elH,2);
233
234 // Radiator
235
236 density = 0.059*g/cm3;
237 G4Material* Radiator = new G4Material(name="Radiator",density, nel=2);
238 Radiator->AddElement(elC,1);
239 Radiator->AddElement(elH,2);
240
241 // Carbon Fiber
242
243 density = 0.145*g/cm3;
244 G4Material* CarbonFiber = new G4Material(name="CarbonFiber",density, nel=1);
245 CarbonFiber->AddElement(elC,1);
246
247 density = 1.290*mg/cm3; // old air from elements
248 G4Material* air = new G4Material(name="air" , density, ncomponents=2);
249 Air->AddElement(elN, fractionmass=0.7);
250 Air->AddElement(elO, fractionmass=0.3);
251
252
253 density = 1.25053*mg/cm3 ; // STP
254 a = 14.01*g/mole ; // get atomic weight !!!
255 // a = 28.016*g/mole;
256 G4Material* N2 = new G4Material(name="Nitrogen", z= 7.,a,density) ;
257
258 density = 1.25053*mg/cm3 ; // STP
259 G4Material* anotherN2 = new G4Material(name="anotherN2", density,ncomponents=2);
260 anotherN2->AddElement(elN, 1);
261 anotherN2->AddElement(elN, 1);
262
263************************ */
264
265 // Al for electrodes
266
267 density = 2.700*g/cm3;
268 a = 26.98*g/mole;
269 G4Material* Al = new G4Material(name="Aluminium", z=13., a, density);
270
271 // Mylar
272
273 density = 1.39*g/cm3;
274 G4Material* Mylar = new G4Material(name="Mylar", density, nel=3);
275 Mylar->AddElement(elO,2);
276 Mylar->AddElement(elC,5);
277 Mylar->AddElement(elH,4);
278
279 // Polypropelene
280
281 G4Material* CH2 = new G4Material ("Polypropelene" , 0.91*g/cm3, 2);
282 CH2->AddElement(elH,2);
283 CH2->AddElement(elC,1);
284
285
286
287 // Krypton as detector gas, STP
288
289 density = 3.700*mg/cm3 ;
290 a = 83.80*g/mole ;
291 G4Material* Kr = new G4Material(name="Kr",z=36., a, density );
292
293 // Metane, STP
294
295 // density = 0.7174*mg/cm3 ;
296 // G4Material* metane = new G4Material(name="CH4",density,nel=2) ;
297 // metane->AddElement(elC,1) ;
298 // metane->AddElement(elH,4) ;
299
300
301 // Dry air (average composition)
302
303 density = 1.7836*mg/cm3 ; // STP
304 G4Material* Argon = new G4Material(name="Argon" , density, ncomponents=1);
305 Argon->AddElement(elAr, 1);
306
307 density = 1.25053*mg/cm3 ; // STP
308 G4Material* Nitrogen = new G4Material(name="N2" , density, ncomponents=1);
309 Nitrogen->AddElement(elN, 2);
310
311 density = 1.4289*mg/cm3 ; // STP
312 G4Material* Oxygen = new G4Material(name="O2" , density, ncomponents=1);
313 Oxygen->AddElement(elO, 2);
314
315
316 density = 1.2928*mg/cm3 ; // STP
317 density *= 1.0e-8 ; // pumped vacuum
318 G4Material* Air = new G4Material(name="Air" , density, ncomponents=3);
319 Air->AddMaterial( Nitrogen, fractionmass = 0.7557 ) ;
320 Air->AddMaterial( Oxygen, fractionmass = 0.2315 ) ;
321 Air->AddMaterial( Argon, fractionmass = 0.0128 ) ;
322
323 // 93% Ar + 7% CH4, STP
324
325 // density = 1.709*mg/cm3 ;
326 // G4Material* Ar7CH4 = new G4Material(name="Ar7CH4" , density,
327 // ncomponents=2);
328 // Ar7CH4->AddMaterial( Argon, fractionmass = 0.971 ) ;
329 // Ar7CH4->AddMaterial( metane, fractionmass = 0.029 ) ;
330
331 // 93% Kr + 7% CH4, STP
332
333 // density = 3.491*mg/cm3 ;
334 // G4Material* Kr7CH4 = new G4Material(name="Kr7CH4" , density,
335 // ncomponents=2);
336 // Kr7CH4->AddMaterial( Kr, fractionmass = 0.986 ) ;
337 // Kr7CH4->AddMaterial( metane, fractionmass = 0.014 ) ;
338
339 /* **************
340
341 G4double TRT_Xe_density = 5.485*mg/cm3;
342 G4Material* TRT_Xe = new G4Material(name="TRT_Xe", TRT_Xe_density, nel=1,
343 kStateGas,293.15*kelvin,1.*atmosphere);
344 TRT_Xe->AddElement(elXe,1);
345
346 G4double TRT_CO2_density = 1.842*mg/cm3;
347 G4Material* TRT_CO2 = new G4Material(name="TRT_CO2", TRT_CO2_density, nel=2,
348 kStateGas,293.15*kelvin,1.*atmosphere);
349 TRT_CO2->AddElement(elC,1);
350 TRT_CO2->AddElement(elO,2);
351
352 G4double TRT_CF4_density = 3.9*mg/cm3;
353 G4Material* TRT_CF4 = new G4Material(name="TRT_CF4", TRT_CF4_density, nel=2,
354 kStateGas,293.15*kelvin,1.*atmosphere);
355 TRT_CF4->AddElement(elC,1);
356 TRT_CF4->AddElement(elF,4);
357
358 // ATLAS TRT straw tube gas mixture (20 C, 1 atm)
359
360 G4double XeCO2CF4_density = 4.76*mg/cm3;
361 G4Material* XeCO2CF4 = new G4Material(name="XeCO2CF4", XeCO2CF4_density,
362 ncomponents=3,
363 kStateGas,293.15*kelvin,1.*atmosphere);
364 XeCO2CF4->AddMaterial(TRT_Xe,0.807);
365 XeCO2CF4->AddMaterial(TRT_CO2,0.039);
366 XeCO2CF4->AddMaterial(TRT_CF4,0.154);
367
368 *********** */
369
370 // Xenon as detector gas, STP
371
372 density = 5.858*mg/cm3 ;
373 a = 131.29*g/mole ;
374 G4Material* Xe = new G4Material(name="Xenon",z=54., a, density );
375
376 // Carbon dioxide, STP
377
378 density = 1.977*mg/cm3;
379 G4Material* CarbonDioxide = new G4Material(name="CO2", density, nel=2);
380 CarbonDioxide->AddElement(elC,1);
381 CarbonDioxide->AddElement(elO,2);
382
383 // 80% Ar + 20% CO2, STP
384
385// density = 1.8223*mg/cm3 ;
386// G4Material* Ar_80CO2_20 = new G4Material(name="ArCO2" , density,
387// ncomponents=2);
388// Ar_80CO2_20->AddMaterial( Argon, fractionmass = 0.783 ) ;
389// Ar_80CO2_20->AddMaterial( CarbonDioxide, fractionmass = 0.217 ) ;
390
391 // 80% Xe + 20% CO2, STP
392
393 density = 5.0818*mg/cm3 ;
394 G4Material* Xe20CO2 = new G4Material(name="Xe20CO2" , density, ncomponents=2);
395 Xe20CO2->AddMaterial( Xe, fractionmass = 0.922 ) ;
396 Xe20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.078 ) ;
397
398 // 80% Kr + 20% CO2, STP
399
400 density = 3.601*mg/cm3 ;
401 G4Material* Kr20CO2 = new G4Material(name="Kr20CO2" , density,
402 ncomponents=2);
403 Kr20CO2->AddMaterial( Kr, fractionmass = 0.89 ) ;
404 Kr20CO2->AddMaterial( CarbonDioxide, fractionmass = 0.11 ) ;
405
406
407 G4cout << *(G4Material::GetMaterialTable()) << G4endl;
408
409 //default materials of the calorimeter and TR radiator
410
411 fRadiatorMat = Air ; // CH2 ; // Mylar ;
412
413 fWindowMat = Mylar ;
414 fElectrodeMat = Al ;
415
416 AbsorberMaterial = Air ; // Kr20CO2 ; // XeCO2CF4 ;
417 fGapMat = Air ; // Kr20CO2 ;
418
419 WorldMaterial = Air ;
420}
421
422/////////////////////////////////////////////////////////////////////////
423//
424//
425
426G4VPhysicalVolume* F03DetectorConstruction::ConstructCalorimeter()
427{
428 G4int i, j ;
429 G4double zModule, zRadiator, rModule, rRadiator ;
430
431 // complete the Calor parameters definition and Print
432
433 ComputeCalorParameters();
434 PrintCalorParameters();
435
436 // World
437
438 if(solidWorld) delete solidWorld ;
439 if(logicWorld) delete logicWorld ;
440 if(physiWorld) delete physiWorld ;
441
442 solidWorld = new G4Tubs("World", //its name
443 0.,WorldSizeR,WorldSizeZ/2.,0.,twopi) ;//its size
444
445 logicWorld = new G4LogicalVolume(solidWorld, //its solid
446 WorldMaterial, //its material
447 "World"); //its name
448
449 physiWorld = new G4PVPlacement(0, //no rotation
450 G4ThreeVector(), //at (0,0,0)
451 "World", //its name
452 logicWorld, //its logical volume
453 NULL, //its mother volume
454 false, //no boolean operation
455 0); //copy number
456
457 // TR radiator envelope
458
459 // /* *******************************************************
460
461 G4double radThick = fFoilNumber*(fRadThickness + fGasGap) + fDetGap ;
462
463 G4double zRad = zAbsorber - 20*cm - 0.5*radThick ;
464 G4cout<<"zRad = "<<zRad/mm<<" mm"<<G4endl ;
465
466 radThick *= 1.02 ;
467 G4cout<<"radThick = "<<radThick/mm<<" mm"<<G4endl ;
468 G4cout<<"fFoilNumber = "<<fFoilNumber<<G4endl ;
469 G4cout<<"fRadiatorMat = "<<fRadiatorMat->GetName()<<G4endl ;
470 G4cout<<"WorldMaterial = "<<WorldMaterial->GetName()<<G4endl ;
471
472 if(solidRadiator) delete solidRadiator;
473 if(logicRadiator) delete logicRadiator;
474 if(physiRadiator) delete physiRadiator;
475
476 solidRadiator = new G4Tubs("Radiator",0.0,
477 1.01*AbsorberRadius,
478 0.5*radThick,0.0,twopi ) ;
479
480 logicRadiator = new G4LogicalVolume(solidRadiator,
481 WorldMaterial,
482 "Radiator");
483
484 // Set local field manager and local field in radiator and its daughters:
485
486 G4bool allLocal = true ;
487
488 logicRadiator->SetFieldManager( fEmField->GetLocalFieldManager(),
489 allLocal ) ;
490
491
492 physiRadiator = new G4PVPlacement(0,
493 G4ThreeVector(0,0,zRad),
494 "Radiator", logicRadiator,
495 physiWorld, false, 0 );
496
497 if(fSolidRadSlice) delete fSolidRadSlice;
498 if(fLogicRadSlice) delete fLogicRadSlice;
499 if(fPhysicRadSlice) delete fPhysicRadSlice;
500
501 fSolidRadSlice = new G4Tubs("RadSlice",0.0,
502 AbsorberRadius,0.5*fRadThickness,0.0,twopi ) ;
503
504 fLogicRadSlice = new G4LogicalVolume(fSolidRadSlice,fRadiatorMat,
505 "RadSlice",0,0,0);
506
507 zModule = zRad + 0.5*radThick/1.02 ; // ??? + fRadThickness ;
508 G4cout<<"zModule = "<<zModule/mm<<" mm"<<G4endl ;
509
510 for(j=0;j<fFoilNumber;j++)
511 {
512
513 zRadiator = zModule - j*(fRadThickness + fGasGap) ;
514 G4cout<<zRadiator/mm<<" mm"<<"\t" ;
515 // G4cout<<"j = "<<j<<"\t" ;
516
517 fPhysicRadSlice = new G4PVPlacement(0,G4ThreeVector(0.,0.,zRadiator-zRad),
518 "RadSlice",fLogicRadSlice,
519 physiRadiator,false,j);
520 }
521 G4cout<<G4endl ;
522
523 // ************************************************* */
524
525 // Absorber
526
527 if (AbsorberThickness > 0.)
528 {
529 if(solidAbsorber) delete solidAbsorber ;
530 if(logicAbsorber) delete logicAbsorber ;
531 if(physiAbsorber) delete physiAbsorber ;
532
533 solidAbsorber = new G4Tubs("Absorber", 1.0*mm,
534 AbsorberRadius,
535 AbsorberThickness/2.,
536 0.0,twopi);
537
538 logicAbsorber = new G4LogicalVolume(solidAbsorber,
539 AbsorberMaterial,
540 "Absorber");
541
542 physiAbsorber = new G4PVPlacement(0,
543 G4ThreeVector(0.,0.,zAbsorber),
544 "Absorber",
545 logicAbsorber,
546 physiWorld,
547 false,
548 0);
549
550 }
551
552 // Sensitive Detectors: Absorber
553
554 G4SDManager* SDman = G4SDManager::GetSDMpointer();
555
556 if(!calorimeterSD)
557 {
558 calorimeterSD = new F03CalorimeterSD("CalorSD",this);
559 SDman->AddNewDetector( calorimeterSD );
560 }
561 if (logicAbsorber) logicAbsorber->SetSensitiveDetector(calorimeterSD);
562
563 return physiWorld;
564}
565
566////////////////////////////////////////////////////////////////////////////
567//
568//
569
570void F03DetectorConstruction::PrintCalorParameters()
571{
572 G4cout << "\n The WORLD is made of "
573 << WorldSizeZ/mm << "mm of " << WorldMaterial->GetName() ;
574 G4cout << ", the transverse size (R) of the world is " << WorldSizeR/mm << " mm. " << G4endl;
575 G4cout << " The ABSORBER is made of "
576 << AbsorberThickness/mm << "mm of " << AbsorberMaterial->GetName() ;
577 G4cout << ", the transverse size (R) is " << AbsorberRadius/mm << " mm. " << G4endl;
578 G4cout << " Z position of the (middle of the) absorber " << zAbsorber/mm << " mm." << G4endl;
579 G4cout << G4endl;
580}
581
582///////////////////////////////////////////////////////////////////////////
583//
584//
585
586void F03DetectorConstruction::SetAbsorberMaterial(G4String materialChoice)
587{
588 // get the pointer to the material table
589 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
590
591 // search the material by its name
592 G4Material* pttoMaterial;
593 for (G4int J=0 ; J<theMaterialTable->length() ; J++)
594 { pttoMaterial = (*theMaterialTable)(J);
595 if(pttoMaterial->GetName() == materialChoice)
596 {AbsorberMaterial = pttoMaterial;
597 logicAbsorber->SetMaterial(pttoMaterial);
598 // PrintCalorParameters();
599 }
600 }
601}
602
603////////////////////////////////////////////////////////////////////////////
604//
605//
606
607void F03DetectorConstruction::SetWorldMaterial(G4String materialChoice)
608{
609 // get the pointer to the material table
610 const G4MaterialTable* theMaterialTable = G4Material::GetMaterialTable();
611
612 // search the material by its name
613 G4Material* pttoMaterial;
614 for (G4int J=0 ; J<theMaterialTable->length() ; J++)
615 { pttoMaterial = (*theMaterialTable)(J);
616 if(pttoMaterial->GetName() == materialChoice)
617 {WorldMaterial = pttoMaterial;
618 logicWorld->SetMaterial(pttoMaterial);
619 // PrintCalorParameters();
620 }
621 }
622}
623
624///////////////////////////////////////////////////////////////////////////
625//
626//
627
628void F03DetectorConstruction::SetAbsorberThickness(G4double val)
629{
630 // change Absorber thickness and recompute the calorimeter parameters
631 AbsorberThickness = val;
632 ComputeCalorParameters();
633}
634
635/////////////////////////////////////////////////////////////////////////////
636//
637//
638
639void F03DetectorConstruction::SetAbsorberRadius(G4double val)
640{
641 // change the transverse size and recompute the calorimeter parameters
642 AbsorberRadius = val;
643 ComputeCalorParameters();
644}
645
646////////////////////////////////////////////////////////////////////////////
647//
648//
649
650void F03DetectorConstruction::SetWorldSizeZ(G4double val)
651{
652 worldchanged=true;
653 WorldSizeZ = val;
654 ComputeCalorParameters();
655}
656
657///////////////////////////////////////////////////////////////////////////
658//
659//
660
661void F03DetectorConstruction::SetWorldSizeR(G4double val)
662{
663 worldchanged=true;
664 WorldSizeR = val;
665 ComputeCalorParameters();
666}
667
668//////////////////////////////////////////////////////////////////////////////
669//
670//
671
672void F03DetectorConstruction::SetAbsorberZpos(G4double val)
673{
674 zAbsorber = val;
675 ComputeCalorParameters();
676}
677
678//////////////////////////////////////////////////////////////////////////////
679//
680//
681
682void F03DetectorConstruction::SetMagField(G4double fieldValue)
683{
684 //apply a global uniform magnetic field along X axis
685
686 /* *********************************************************
687
688 G4FieldManager* fieldMgr
689 = G4TransportationManager::GetTransportationManager()->GetFieldManager();
690
691 if(magField) delete magField; //delete the existing magn field
692
693 if(fieldValue!=0.) // create a new one if non nul
694 {
695 magField = new G4UniformMagField(G4ThreeVector(fieldValue,0.,0.));
696 fieldMgr->SetDetectorField(magField);
697 fieldMgr->CreateChordFinder(magField);
698 }
699 else
700 {
701 magField = NULL;
702 fieldMgr->SetDetectorField(magField);
703 }
704
705 *************************************************************** */
706
707}
708
709///////////////////////////////////////////////////////////////////////////////
710//
711//
712
713void F03DetectorConstruction::UpdateGeometry()
714{
715 G4RunManager::GetRunManager()->DefineWorldVolume(ConstructCalorimeter());
716}
717
718//
719//
720////////////////////////////////////////////////////////////////////////////
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
Note: See TracBrowser for help on using the repository browser.