source: trunk/source/geometry/magneticfield/test/testProElectroMagField.cc@ 1337

Last change on this file since 1337 was 1231, checked in by garnier, 16 years ago

update from CVS

File size: 20.0 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: testProElectroMagField.cc,v 1.16 2006/06/29 18:25:00 gunter Exp $
28// GEANT4 tag $Name: $
29//
30//
31//
32// Started from testG4Navigator1.cc,v 1.7 1996/08/29 15:42 pkent
33// Locate & Step within simple boxlike geometry, both
34// with and without voxels. Parameterised volumes are included.
35
36#include <assert.h>
37// #include "ApproxEqual.hh"
38
39// Global defs
40#include "globals.hh"
41
42#include "G4Navigator.hh"
43
44#include "G4LogicalVolume.hh"
45#include "G4VPhysicalVolume.hh"
46#include "G4PVPlacement.hh"
47#include "G4PVParameterised.hh"
48#include "G4VPVParameterisation.hh"
49#include "G4Box.hh"
50
51#include "G4GeometryManager.hh"
52
53#include "G4RotationMatrix.hh"
54#include "G4ThreeVector.hh"
55
56// #include "G4UniformMagField.hh"
57#include "G4UniformElectricField.hh"
58
59#include "G4ios.hh"
60#include <iomanip>
61
62// Sample Parameterisation
63class G4LinScale : public G4VPVParameterisation
64{
65 virtual void ComputeTransformation(const G4int n,
66 G4VPhysicalVolume* pRep) const
67 {
68 pRep->SetTranslation(G4ThreeVector(0,(n-1)*15,0));
69 }
70
71 virtual void ComputeDimensions(G4Box &pBox,
72 const G4int n,
73 const G4VPhysicalVolume*) const
74 {
75 pBox.SetXHalfLength(10);
76 pBox.SetYHalfLength(5+n);
77 pBox.SetZHalfLength(5+n);
78 }
79
80 virtual void ComputeDimensions(G4Tubs &,
81 const G4int ,
82 const G4VPhysicalVolume*) const {}
83 virtual void ComputeDimensions(G4Trd &,
84 const G4int,
85 const G4VPhysicalVolume*) const {}
86 virtual void ComputeDimensions(G4Cons &,
87 const G4int ,
88 const G4VPhysicalVolume*) const {}
89 virtual void ComputeDimensions(G4Trap &,
90 const G4int ,
91 const G4VPhysicalVolume*) const {}
92 virtual void ComputeDimensions(G4Hype &,
93 const G4int ,
94 const G4VPhysicalVolume*) const {}
95 virtual void ComputeDimensions(G4Orb &,
96 const G4int ,
97 const G4VPhysicalVolume*) const {}
98 virtual void ComputeDimensions(G4Sphere &,
99 const G4int ,
100 const G4VPhysicalVolume*) const {}
101 virtual void ComputeDimensions(G4Torus &,
102 const G4int ,
103 const G4VPhysicalVolume*) const {}
104 virtual void ComputeDimensions(G4Para &,
105 const G4int ,
106 const G4VPhysicalVolume*) const {}
107 // virtual void ComputeDimensions(G4Polycone &, const G4int , const G4VPhysicalVolume*) const {}
108 // virtual void ComputeDimensions(G4Polyhedra &, const G4int , const G4VPhysicalVolume*) const {}
109};
110G4LinScale myParam;
111
112// Build simple geometry:
113// 4 small cubes + 1 slab (all G4Boxes) are positioned inside a larger cuboid
114G4VPhysicalVolume* BuildGeometry()
115{
116
117 G4Box *myHugeBox= new G4Box("huge box",15*m,15*m,25*m);
118 G4Box *myBigBox= new G4Box("big cube",10*m,10*m,10*m);
119 G4Box *mySmallBox= new G4Box("smaller cube",2.5*m,2.5*m,2.5*m);
120 G4Box *myTinyBox= new G4Box("tiny cube",.25*m,.25*m,.25*m);
121
122 // G4Box *myVariableBox=
123 new G4Box("Variable Box",10,5,5);
124
125 // World Volume
126 //
127 G4LogicalVolume *worldLog=new G4LogicalVolume(myHugeBox,0,
128 "World",0,0,0);
129 // Logical with no material,field,
130 // sensitive detector or user limits
131
132 G4PVPlacement *worldPhys=
133 new G4PVPlacement(0,G4ThreeVector(0,0,0), "World",worldLog,
134 0,false,0);
135 // Note: no mother pointer set
136
137// Create the logical Volumes
138//
139// G4LogicalVolume(*pSolid, *pMaterial, Name, *pField, *pSDetector, *pULimits)
140//
141 G4LogicalVolume *BigBoxLog=new G4LogicalVolume(myBigBox,0,
142 "Crystal Box (large)",0,0,0);
143 G4LogicalVolume *smallBoxLog=new G4LogicalVolume(mySmallBox,0,
144 "Crystal Box (small)");
145 G4LogicalVolume *tinyBoxLog=new G4LogicalVolume(myTinyBox,0,
146 "Crystal Box (tiny)");
147
148
149// Place them.
150//
151// 1) Two big boxes in the world volume
152//
153 // G4PVPlacement *BigTg1Phys=
154 new G4PVPlacement(0,G4ThreeVector(0,0,-15*m),
155 "Big Target 1",BigBoxLog,
156 worldPhys,false,0);
157 // G4PVPlacement *BigTg2Phys=
158 new G4PVPlacement(0,G4ThreeVector(0,0, 15*m),
159 "Big Target 2",BigBoxLog,
160 worldPhys,false,0);
161
162// 2) Four (medium) boxes in X & Y near the origin of the world volume
163//
164 // G4PVPlacement *MedTg3a_Phys=
165 new G4PVPlacement(0,G4ThreeVector(0, 7.5*m,0),
166 "Target 3a",smallBoxLog,
167 worldPhys,false,0);
168 // G4PVPlacement *MedTg3b_Phys=
169 new G4PVPlacement(0,G4ThreeVector(0,-7.5*m,0),
170 "Target 3b",smallBoxLog,
171 worldPhys,false,0);
172 // G4PVPlacement *MedTg3c_Phys=
173 new G4PVPlacement(0,G4ThreeVector(-7.5*m,0,0),
174 "Target 3c",smallBoxLog,
175 worldPhys,false,0);
176 new G4PVPlacement(0,G4ThreeVector( 7.5*m,0,0),
177 "Target 3d",smallBoxLog,
178 worldPhys,false,0);
179
180
181// 3) Eight small boxes around the origin of the world volume
182// (in +-X, +-Y & +-Z)
183//
184 new G4PVPlacement
185 (0,G4ThreeVector( 0.3*m, 0.3*m,0.3*m), "Target 4a",tinyBoxLog,
186 worldPhys,false,0);
187 new G4PVPlacement
188 (0,G4ThreeVector( 0.3*m,-0.3*m,0.3*m), "Target 4b",tinyBoxLog,
189 worldPhys,false,0);
190 new G4PVPlacement
191 (0,G4ThreeVector(-0.3*m,-0.3*m,0.3*m), "Target 4c",tinyBoxLog,
192 worldPhys,false,0);
193 new G4PVPlacement
194 (0,G4ThreeVector(-0.3*m, 0.3*m,0.3*m), "Target 4d",tinyBoxLog,
195 worldPhys,false,0);
196
197 new G4PVPlacement
198 (0,G4ThreeVector( 0.3*m, 0.3*m,-0.3*m), "Target 4e",tinyBoxLog,
199 worldPhys,false,0);
200 new G4PVPlacement
201 (0,G4ThreeVector( 0.3*m,-0.3*m,-0.3*m), "Target 4f",tinyBoxLog,
202 worldPhys,false,0);
203 new G4PVPlacement
204 (0,G4ThreeVector(-0.3*m,-0.3*m,-0.3*m), "Target 4g",tinyBoxLog,
205 worldPhys,false,0);
206 new G4PVPlacement
207 (0,G4ThreeVector(-0.3*m, 0.3*m,-0.3*m), "Target 4h",tinyBoxLog,
208 worldPhys,false,0);
209
210 return worldPhys;
211}
212
213#include "G4ChordFinder.hh"
214#include "G4PropagatorInField.hh"
215#include "G4MagneticField.hh"
216#include "G4FieldManager.hh"
217#include "G4TransportationManager.hh"
218#include "G4HelixExplicitEuler.hh"
219#include "G4HelixSimpleRunge.hh"
220#include "G4HelixImplicitEuler.hh"
221#include "G4ExplicitEuler.hh"
222#include "G4ImplicitEuler.hh"
223#include "G4SimpleRunge.hh"
224#include "G4SimpleHeum.hh"
225#include "G4ClassicalRK4.hh"
226#include "G4Mag_UsualEqRhs.hh"
227#include "G4EqMagElectricField.hh"
228#include "G4CashKarpRKF45.hh"
229#include "G4RKG3_Stepper.hh"
230
231// G4UniformMagField myMagField(10.*tesla, 0., 0.);
232
233G4UniformElectricField myElectricField(10.*kilovolt/cm, 0., 0.);
234
235
236G4FieldManager* SetupField(G4int type)
237{
238 G4FieldManager *pFieldMgr;
239 G4ChordFinder *pChordFinder;
240
241 // G4Mag_UsualEqRhs *fEquation = new G4Mag_UsualEqRhs(&myMagField);
242
243 G4EqMagElectricField *fEquation = new G4EqMagElectricField(&myElectricField);
244
245 G4MagIntegratorStepper *pStepper;
246
247 G4int nvar = 8; // Use 8 variable in order to integrate Time!!
248
249 switch ( type )
250 {
251 case 0: pStepper = new G4ExplicitEuler( fEquation, nvar ); break;
252 case 1: pStepper = new G4ImplicitEuler( fEquation, nvar ); break;
253 case 2: pStepper = new G4SimpleRunge( fEquation, nvar ); break;
254 case 3: pStepper = new G4SimpleHeum( fEquation, nvar ); break;
255 case 4: pStepper = new G4ClassicalRK4( fEquation, nvar ); break;
256 case 8: pStepper = new G4CashKarpRKF45( fEquation, nvar ); break;
257 // --- case 9: pStepper = new G4RKG3_Stepper( fEquation, nvar ); break;
258 default: pStepper = 0;
259 G4cout << "Chosen stepper " << type << " does not exist. " << G4endl;
260 G4Exception("SetupField: incorrect argument for type");
261 }
262
263 pFieldMgr= G4TransportationManager::GetTransportationManager()->
264 GetFieldManager();
265
266 pFieldMgr->SetDetectorField( &myElectricField );
267
268 G4double stepMinimum= 1.0e-2 * mm; // hmin
269 G4MagInt_Driver* pIntgrDriver = new G4MagInt_Driver(stepMinimum, pStepper,
270 pStepper->GetNumberOfVariables() );
271 pChordFinder = new G4ChordFinder( pIntgrDriver );
272
273 pFieldMgr->SetChordFinder( pChordFinder );
274
275 return pFieldMgr;
276}
277
278G4PropagatorInField* SetupPropagator( G4int type)
279{
280 // G4FieldManager* fieldMgr=
281 SetupField( type) ;
282
283 // G4ChordFinder theChordFinder( &MagField, 0.05*mm ); // Default stepper
284
285 G4PropagatorInField *thePropagator =
286 G4TransportationManager::GetTransportationManager()->
287 GetPropagatorInField ();
288
289 return thePropagator;
290}
291
292// This is Done only for this test program ... the transportation does it.
293// The method is now obsolete -- as propagator in Field has this method,
294// in order to message the correct field manager's chord finder.
295//
296void ObsoleteSetChargeMomentumMass(G4double charge, G4double MomentumXc, G4double Mass)
297{
298 G4ChordFinder* pChordFinder;
299
300 pChordFinder= G4TransportationManager::GetTransportationManager()->
301 GetFieldManager()->GetChordFinder();
302
303 // pMagFieldPropagator->set_magnetic_field();
304 pChordFinder->SetChargeMomentumMass(
305 charge, // charge in e+ units
306 MomentumXc, // Momentum in Mev/c ?
307 Mass );
308}
309
310//
311// Test Stepping
312//
313G4bool testG4PropagatorInField(G4VPhysicalVolume *pTopNode, G4int type)
314{
315 void report_endPV(G4ThreeVector Position,
316 G4ThreeVector UnitVelocity,
317 G4double step_len,
318 G4double physStep,
319 G4double safety,
320 G4ThreeVector EndPosition,
321 G4ThreeVector EndUnitVelocity,
322 G4int Step,
323 G4VPhysicalVolume* startVolume);
324
325 // G4UniformMagField MagField(10.*tesla, 0., 0.); // Tesla Defined ?
326 G4Navigator *pNavig= G4TransportationManager::
327 GetTransportationManager()-> GetNavigatorForTracking();
328 G4PropagatorInField *pMagFieldPropagator= SetupPropagator(type);
329
330 pMagFieldPropagator->SetChargeMomentumMass(
331 +1., // charge in e+ units
332 0.5 * proton_mass_c2, // Momentum in Mev/c ?
333 proton_mass_c2 );
334 pNavig->SetWorldVolume(pTopNode);
335
336
337 G4VPhysicalVolume *located;
338 G4double step_len, physStep, safety;
339 G4ThreeVector xHat(1,0,0),yHat(0,1,0),zHat(0,0,1);
340 G4ThreeVector mxHat(-1,0,0),myHat(0,-1,0),mzHat(0,0,-1);
341
342 // physStep=kInfinity;
343 G4ThreeVector Position(0.,0.,0.);
344 G4ThreeVector UnitMomentum(0.,0.6,0.8);
345 G4ThreeVector EndPosition, EndUnitMomentum;
346
347//
348// Test location & Step computation
349//
350 /* assert(located->GetName()=="World"); */
351 if( std::fabs(UnitMomentum.mag() - 1.0) > 1.e-8 )
352 {
353 G4cerr << "UnitMomentum.mag() - 1.0 = " << UnitMomentum.mag() - 1.0 <<
354 G4endl;
355 }
356
357 G4cout << G4endl;
358
359 for( int iparticle=0; iparticle < 2; iparticle++ )
360 {
361 physStep= 2.5 * mm ; // millimeters
362 Position = G4ThreeVector(0.,0.,0.)
363 + iparticle * G4ThreeVector(0.2, 0.3, 0.4);
364 UnitMomentum = (G4ThreeVector(0.,0.6,0.8)
365 + (float)iparticle * G4ThreeVector(0.1, 0.2, 0.3)).unit();
366
367 G4double momentum = (0.5+iparticle*10.0) * proton_mass_c2;
368
369 G4double kineticEnergy = momentum*momentum /
370 ( std::sqrt( momentum*momentum + proton_mass_c2 * proton_mass_c2 )
371 + proton_mass_c2 );
372 G4double velocity = momentum / ( proton_mass_c2 + kineticEnergy );
373 G4double labTof= 10.0*ns, properTof= 0.1*ns;
374 G4ThreeVector Spin(1.0, 0.0, 0.0);
375 // Momentum in Mev/c ?
376 pMagFieldPropagator->SetChargeMomentumMass(
377 +1, // charge in e+ units
378 momentum,
379 proton_mass_c2);
380 G4cout << G4endl;
381 G4cout << "***********************" << G4endl
382 << " Starting New Particle with Position " << Position << G4endl
383 << " and UnitVelocity " << UnitMomentum << G4endl;
384 G4cout << " Momentum in GeV/c is "<< (0.5+iparticle*10.0)*proton_mass_c2;
385 G4cout << G4endl;
386
387
388 for( int istep=0; istep < 14; istep++ ){
389 // // G4cerr << "UnitMomentum Magnitude is " << UnitMomentum.mag() << G4endl;
390 located= pNavig->LocateGlobalPointAndSetup(Position);
391 // Is the following better ?? It would need "changes"
392 // located= pMagFieldPropagator->LocateGlobalPointAndSetup(Position);
393 // G4cerr << "Starting Step " << istep << " in volume "
394 // << located->GetName() << G4endl;
395
396 G4FieldTrack initTrack( Position,
397 UnitMomentum,
398 0.0, // starting S curve len
399 kineticEnergy,
400 proton_mass_c2,
401 velocity,
402 labTof,
403 properTof,
404 0 // or &Spin
405 );
406
407 step_len=pMagFieldPropagator->ComputeStep( initTrack,
408 physStep,
409 safety
410#ifdef G4MAG_CHECK_VOLUME
411 ,located);
412#else
413 );
414#endif
415 // --------------------
416 EndPosition= pMagFieldPropagator->EndPosition();
417 EndUnitMomentum= pMagFieldPropagator->EndMomentumDir();
418 // --------
419
420 if( std::fabs(EndUnitMomentum.mag2() - 1.0) > 1.e-8 )
421 G4cerr << "EndUnitMomentum.mag2() - 1.0 = " <<
422 EndUnitMomentum.mag2() - 1.0 << G4endl;
423
424 G4ThreeVector MoveVec = EndPosition - Position;
425 assert( MoveVec.mag() < physStep*(1.+1.e-9) );
426
427 // G4cout << " testPropagatorInField: After stepI " << istep << " : " << G4endl;
428 report_endPV(Position, UnitMomentum, step_len, physStep, safety,
429 EndPosition, EndUnitMomentum, istep, located );
430
431 assert(safety>=0);
432 pNavig->SetGeometricallyLimitedStep();
433 // pMagFieldPropagator->SetGeometricallyLimitedStep();
434
435 Position= EndPosition;
436 UnitMomentum= EndUnitMomentum;
437 physStep *= 2.;
438 } // ........................... end for ( istep )
439 } // .............................. end for ( iparticle )
440
441 return(1);
442}
443
444// int main(int argc, char** argv)
445int main(int argc, char **argv)
446{
447 G4VPhysicalVolume *myTopNode;
448 G4int type;
449 G4cout << "------------------ Test PropagateElectroMagField: ------------------" << G4endl;
450
451 myTopNode=BuildGeometry(); // Build the geometry
452 G4GeometryManager::GetInstance()->CloseGeometry(false);
453
454 type = 4 ;
455
456 if( argc == 2 )
457 type = atoi(argv[1]);
458
459 testG4PropagatorInField(myTopNode, type);
460
461// Repeat tests but with full voxels
462 G4GeometryManager::GetInstance()->OpenGeometry();
463 G4GeometryManager::GetInstance()->CloseGeometry(true);
464
465 testG4PropagatorInField(myTopNode, type);
466
467 G4GeometryManager::GetInstance()->OpenGeometry();
468
469 G4cout << G4endl; // Add a final newline
470 return 0;
471}
472
473
474void report_endPV(G4ThreeVector Position,
475 G4ThreeVector, // UnitVelocity,
476 G4double step_len,
477 G4double physStep,
478 G4double safety,
479 G4ThreeVector EndPosition,
480 G4ThreeVector EndUnitVelocity,
481 G4int Step,
482 G4VPhysicalVolume* startVolume)
483 // G4VPhysicalVolume* endVolume)
484{
485 const G4int verboseLevel=1;
486
487 if( Step == 0 && verboseLevel <= 3 )
488 {
489 G4cout.precision(3);
490 // G4cout.setf(ios_base::fixed,ios_base::floatfield);
491 G4cout << std::setw( 5) << "Step#" << " "
492 << std::setw( 9) << "X(mm)" << " "
493 << std::setw( 9) << "Y(mm)" << " "
494 << std::setw( 9) << "Z(mm)" << " "
495 << std::setw( 7) << " N_x " << " "
496 << std::setw( 7) << " N_y " << " "
497 << std::setw( 7) << " N_z " << " "
498 // << std::setw( 9) << "KinE(MeV)" << " "
499 // << std::setw( 9) << "dE(MeV)" << " "
500 << std::setw( 9) << "StepLen" << " "
501 << std::setw( 9) << "PhsStep" << " "
502 << std::setw( 9) << "Safety" << " "
503 << std::setw(18) << "NextVolume" << " "
504 << G4endl;
505 }
506 //
507 //
508 if( verboseLevel > 3 )
509 {
510 G4cout << "End Position is " << EndPosition << G4endl
511 << " and UnitVelocity is " << EndUnitVelocity << G4endl;
512 G4cout << "Step taken was " << step_len
513 << " out of PhysicalStep= " << physStep << G4endl;
514 G4cout << "Final safety is: " << safety << G4endl;
515
516 G4cout << "Chord length = " << (EndPosition-Position).mag() << G4endl;
517 G4cout << G4endl;
518 }
519 else // if( verboseLevel > 0 )
520 {
521 G4cout.precision(3);
522 G4cout << std::setw( 5) << Step << " "
523 << std::setw( 9) << Position.x() << " "
524 << std::setw( 9) << Position.y() << " "
525 << std::setw( 9) << Position.z() << " "
526 << std::setw( 7) << EndUnitVelocity.x() << " "
527 << std::setw( 7) << EndUnitVelocity.y() << " "
528 << std::setw( 7) << EndUnitVelocity.z() << " "
529 // << std::setw( 9) << KineticEnergy << " "
530 // << std::setw( 9) << EnergyDifference << " "
531 << std::setw( 9) << step_len << " "
532 << std::setw( 9) << physStep << " "
533 << std::setw( 9) << safety << " ";
534 if( startVolume != 0) {
535 G4cout << std::setw(12) << startVolume->GetName() << " ";
536 } else {
537 G4cout << std::setw(12) << "OutOfWorld" << " ";
538 }
539
540#if 0
541 if( endVolume != 0)
542 {
543 G4cout << std::setw(12) << endVolume()->GetName() << " ";
544 }
545 else
546 {
547 G4cout << std::setw(12) << "OutOfWorld" << " ";
548 }
549#endif
550 G4cout << G4endl;
551 }
552}
553
554int readin_particle( )
555{
556 static const
557 double pmass[5] = {
558 0.00051099906 , // electron
559 0.105658389 , // muon
560 0.13956995 , // pion
561 0.493677 , // kaon
562 0.93827231 // proton
563 } ;
564 const double cSpeed = 299792458.0 ; // light speed in m/s
565 const double pi = 3.141592653589793238 ;
566 int pCharge, i ;
567 double pMomentum, pTeta, pPhi, h ;
568 G4cout<<"Enter particle type: 0 - electron, 1 - muon, 2 - pion, \n"
569 <<"3 - kaon, 4 - proton "<< G4endl ;
570 G4cin>>i ;
571 double pMass = pmass[i] ;
572 G4cout<<"Enter particle charge in units of the positron charge "<< G4endl ;
573 G4cin>>pCharge ;
574 G4cout<<"Enter particle momentum in GeV/c"<<G4endl ;
575 G4cin>>pMomentum ;
576 G4cout<<"Enter particle teta & phi in degrees"<<G4endl ;
577 G4cin>>pTeta ;
578 G4cin>>pPhi ;
579 G4cout<<"Enter particle Step in centimeters"<<G4endl ;
580 G4cin>>h ;
581
582 h *= 10.; // G4 units are in millimeters.
583
584 double betaGamma = pMomentum/pMass ;
585 double pSpeed = betaGamma*cSpeed/std::sqrt(1 + betaGamma*betaGamma) ;
586 double pEnergy = pMomentum*cSpeed/pSpeed ;
587 pEnergy *= 1.60217733e-10 ; // energy in J (SI units)
588 pTeta *= pi/180 ;
589 pPhi *= pi/180 ;
590
591#if 0
592 for(i=0;i<3;i++) ystart[i] = 0 ; // initial coordinates
593 ystart[3] = pSpeed*std::sin(pTeta)*std::cos(pPhi) ; // and speeds
594 ystart[4] = pSpeed*std::sin(pTeta)*std::sin(pPhi) ;
595 ystart[5] = pSpeed*std::cos(pTeta) ;
596#endif
597
598 return 1;
599}
600
601
Note: See TracBrowser for help on using the repository browser.