// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: testPropagateSpin.cc,v 1.17 2006/06/29 18:25:06 gunter Exp $ // GEANT4 tag $Name: geant4-09-02-cand-01 $ // // // // Started from testG4Navigator1.cc,v 1.7 1996/08/29 15:42 pkent // Locate & Step within simple boxlike geometry, both // with and without voxels. Parameterised volumes are included. #include // #include "ApproxEqual.hh" // Global defs #include "globals.hh" #include "G4Navigator.hh" #include "G4LogicalVolume.hh" #include "G4VPhysicalVolume.hh" #include "G4PVPlacement.hh" #include "G4PVParameterised.hh" #include "G4VPVParameterisation.hh" #include "G4Box.hh" #include "G4GeometryManager.hh" #include "G4RotationMatrix.hh" #include "G4ThreeVector.hh" #include "G4UniformMagField.hh" #include "G4ios.hh" #include // Sample Parameterisation class G4LinScale : public G4VPVParameterisation { virtual void ComputeTransformation(const G4int n, G4VPhysicalVolume* pRep) const { pRep->SetTranslation(G4ThreeVector(0,(n-1)*15,0)); } virtual void ComputeDimensions(G4Box &pBox, const G4int n, const G4VPhysicalVolume*) const { pBox.SetXHalfLength(10); pBox.SetYHalfLength(5+n); pBox.SetZHalfLength(5+n); } virtual void ComputeDimensions(G4Tubs &, const G4int , const G4VPhysicalVolume*) const {} virtual void ComputeDimensions(G4Trd &, const G4int, const G4VPhysicalVolume*) const {} virtual void ComputeDimensions(G4Cons &, const G4int , const G4VPhysicalVolume*) const {} virtual void ComputeDimensions(G4Trap &, const G4int , const G4VPhysicalVolume*) const {} virtual void ComputeDimensions(G4Hype &, const G4int , const G4VPhysicalVolume*) const {} virtual void ComputeDimensions(G4Orb &, const G4int , const G4VPhysicalVolume*) const {} virtual void ComputeDimensions(G4Sphere &, const G4int , const G4VPhysicalVolume*) const {} virtual void ComputeDimensions(G4Torus &, const G4int , const G4VPhysicalVolume*) const {} virtual void ComputeDimensions(G4Para &, const G4int , const G4VPhysicalVolume*) const {} virtual void ComputeDimensions(G4Polycone &, const G4int , const G4VPhysicalVolume*) const {} virtual void ComputeDimensions(G4Polyhedra &, const G4int , const G4VPhysicalVolume*) const {} }; G4LinScale myParam; // Build simple geometry: // 4 small cubes + 1 slab (all G4Boxes) are positioned inside a larger cuboid G4VPhysicalVolume* BuildGeometry() { G4Box *myHugeBox= new G4Box("huge box",15*m,15*m,25*m); G4Box *myBigBox= new G4Box("big cube",10*m,10*m,10*m); G4Box *mySmallBox= new G4Box("smaller cube",2.5*m,2.5*m,2.5*m); G4Box *myTinyBox= new G4Box("tiny cube",.25*m,.25*m,.25*m); // World Volume // G4LogicalVolume *worldLog=new G4LogicalVolume(myHugeBox,0, "World",0,0,0); // Logical with no material,field, // sensitive detector or user limits G4PVPlacement *worldPhys=new G4PVPlacement(0,G4ThreeVector(0,0,0), "World",worldLog, 0,false,0); // Note: no mother pointer set // Create the logical Volumes // // G4LogicalVolume(*pSolid, *pMaterial, Name, *pField, *pSDetector, *pULimits) // G4LogicalVolume *BigBoxLog=new G4LogicalVolume(myBigBox,0, "Crystal Box (large)",0,0,0); G4LogicalVolume *smallBoxLog=new G4LogicalVolume(mySmallBox,0, "Crystal Box (small)"); G4LogicalVolume *tinyBoxLog=new G4LogicalVolume(myTinyBox,0, "Crystal Box (tiny)"); // Place them. // // 1) Two big boxes in the world volume // // G4PVPlacement *BigTg1Phys= new G4PVPlacement(0,G4ThreeVector(0,0,-15*m), "Big Target 1",BigBoxLog, worldPhys,false,0); // G4PVPlacement *BigTg2Phys= new G4PVPlacement(0,G4ThreeVector(0,0, 15*m), "Big Target 2",BigBoxLog, worldPhys,false,0); // 2) Four (medium) boxes in X & Y near the origin of the world volume // // G4PVPlacement *MedTg3a_Phys= new G4PVPlacement(0,G4ThreeVector(0, 7.5*m,0), "Target 3a",smallBoxLog, worldPhys,false,0); // G4PVPlacement *MedTg3b_Phys= new G4PVPlacement(0,G4ThreeVector(0,-7.5*m,0), "Target 3b",smallBoxLog, worldPhys,false,0); // G4PVPlacement *MedTg3c_Phys= new G4PVPlacement(0,G4ThreeVector(-7.5*m,0,0), "Target 3c",smallBoxLog, worldPhys,false,0); // G4PVPlacement *MedTg3d_Phys= new G4PVPlacement(0,G4ThreeVector( 7.5*m,0,0), "Target 3d",smallBoxLog, worldPhys,false,0); // 3) Eight small boxes around the origin of the world volume // (in +-X, +-Y & +-Z) // // G4PVPlacement *SmTg4a_Phys= new G4PVPlacement (0,G4ThreeVector( 0.3*m, 0.3*m,0.3*m), "Target 4a",tinyBoxLog, worldPhys,false,0); // G4PVPlacement *SmTg4b_Phys= new G4PVPlacement (0,G4ThreeVector( 0.3*m,-0.3*m,0.3*m), "Target 4b",tinyBoxLog, worldPhys,false,0); // G4PVPlacement *SmTg4c_Phys= new G4PVPlacement (0,G4ThreeVector(-0.3*m,-0.3*m,0.3*m), "Target 4c",tinyBoxLog, worldPhys,false,0); // G4PVPlacement *SmTg4d_Phys= new G4PVPlacement (0,G4ThreeVector(-0.3*m, 0.3*m,0.3*m), "Target 4d",tinyBoxLog, worldPhys,false,0); // G4PVPlacement *SmTg4e_Phys= new G4PVPlacement (0,G4ThreeVector( 0.3*m, 0.3*m,-0.3*m), "Target 4e",tinyBoxLog, worldPhys,false,0); // G4PVPlacement *SmTg4f_Phys= new G4PVPlacement (0,G4ThreeVector( 0.3*m,-0.3*m,-0.3*m), "Target 4f",tinyBoxLog, worldPhys,false,0); // G4PVPlacement *SmTg4g_Phys= new G4PVPlacement (0,G4ThreeVector(-0.3*m,-0.3*m,-0.3*m), "Target 4g",tinyBoxLog, worldPhys,false,0); // G4PVPlacement *SmTg4h_Phys= new G4PVPlacement (0,G4ThreeVector(-0.3*m, 0.3*m,-0.3*m), "Target 4h",tinyBoxLog, worldPhys,false,0); return worldPhys; } #include "G4ChordFinder.hh" #include "G4PropagatorInField.hh" #include "G4MagneticField.hh" #include "G4FieldManager.hh" #include "G4TransportationManager.hh" #include "G4HelixExplicitEuler.hh" #include "G4HelixSimpleRunge.hh" #include "G4HelixImplicitEuler.hh" #include "G4ExplicitEuler.hh" #include "G4ImplicitEuler.hh" #include "G4SimpleRunge.hh" #include "G4SimpleHeum.hh" #include "G4ClassicalRK4.hh" #include "G4Mag_SpinEqRhs.hh" #include "G4CashKarpRKF45.hh" #include "G4RKG3_Stepper.hh" G4UniformMagField myMagField(10.*tesla, 0., 0.); G4FieldManager* SetupField(G4int type) { G4FieldManager *pFieldMgr; G4ChordFinder *pChordFinder; G4Mag_SpinEqRhs *fEquation = new G4Mag_SpinEqRhs(&myMagField); G4MagIntegratorStepper *pStepper; const int ncompspin=12; switch ( type ) { case 0: pStepper = new G4ExplicitEuler( fEquation, ncompspin ); break; case 1: pStepper = new G4ImplicitEuler( fEquation, ncompspin ); break; case 2: pStepper = new G4SimpleRunge( fEquation, ncompspin ); break; case 3: pStepper = new G4SimpleHeum( fEquation, ncompspin ); break; case 4: pStepper = new G4ClassicalRK4( fEquation, ncompspin ); break; case 8: pStepper = new G4CashKarpRKF45( fEquation, ncompspin ); break; default: pStepper = new G4ClassicalRK4( fEquation, ncompspin ); break; } pFieldMgr= G4TransportationManager::GetTransportationManager()-> GetFieldManager(); pFieldMgr->SetDetectorField( &myMagField ); pChordFinder = new G4ChordFinder( &myMagField, 1.0e-2 * mm, pStepper); pChordFinder->SetVerbose(1); // ity(); pFieldMgr->SetChordFinder( pChordFinder ); return pFieldMgr; } G4PropagatorInField* SetupPropagator( G4int type) { // G4FieldManager* fieldMgr= SetupField( type) ; // G4ChordFinder theChordFinder( &MagField, 0.05*mm ); // Default stepper G4PropagatorInField *thePropagator = G4TransportationManager::GetTransportationManager()-> GetPropagatorInField (); // Let us test the new Minimum Epsilon Step functionality thePropagator -> SetMinimumEpsilonStep( 1.0e-7 ) ; thePropagator -> SetMaximumEpsilonStep( 1.0e-7 ) ; return thePropagator; } // This is Done only for this test program ... the transportation does it. // The method is now obsolete -- as propagator in Field has this method, // in order to message the correct field manager's chord finder. // void ObsoleteSetChargeMomentumMass(G4double charge, G4double MomentumXc, G4double Mass) { G4ChordFinder* pChordFinder; pChordFinder= G4TransportationManager::GetTransportationManager()-> GetFieldManager()->GetChordFinder(); pChordFinder->SetChargeMomentumMass( charge, // charge in e+ units MomentumXc, // Momentum in Mev/c ? Mass ); } G4PropagatorInField *pMagFieldPropagator; // // Test Stepping // G4bool testG4PropagatorInField(G4VPhysicalVolume*, // *pTopNode, G4int ) // type) { void report_endPV(G4ThreeVector Position, G4ThreeVector UnitVelocity, G4ThreeVector Spin, G4double step_len, G4double physStep, G4double safety, G4ThreeVector EndPosition, G4ThreeVector EndUnitVelocity, G4ThreeVector EndSpin, G4int Step, G4VPhysicalVolume* startVolume); G4UniformMagField MagField(10.*tesla, 0., 0.); // Tesla Defined ? G4TransportationManager* transpMgr = G4TransportationManager:: GetTransportationManager(); G4Navigator* pNavig= transpMgr-> GetNavigatorForTracking(); // pMagFieldPropagator= SetupPropagator(type); G4cout << "Test G4PropInFld with " << "optimise = " << ( pMagFieldPropagator->GetUseSafetyForOptimization() ? "on" : "off" ) // << " Eps min= " << pMagFieldPropagator->GetMinimumEpsilonStep() // << " & max= " << pMagFieldPropagator->GetMaximumEpsilonStep() << G4endl; const G4FieldManager* pFieldMgr= transpMgr->GetFieldManager(); G4cout << " The global field manager has the following parameters " << G4endl; G4cout << " Eps min= " << pFieldMgr->GetMinimumEpsilonStep() << " & max= " << pFieldMgr->GetMaximumEpsilonStep() << G4endl; G4cout << " Delta Intersection= " << pFieldMgr->GetDeltaIntersection() << " Delta One step = " << pFieldMgr->GetDeltaOneStep() << G4endl; pMagFieldPropagator->SetChargeMomentumMass( +1., // charge in e+ units 0.1*GeV, // Momentum in Mev/c ? 0.105658387*GeV ); // pNavig->SetWorldVolume(pTopNode); G4VPhysicalVolume *located; G4double step_len, physStep, safety; G4ThreeVector xHat(1,0,0),yHat(0,1,0),zHat(0,0,1); G4ThreeVector mxHat(-1,0,0),myHat(0,-1,0),mzHat(0,0,-1); // physStep=kInfinity; G4ThreeVector Position(0.,0.,0.); G4ThreeVector UnitMomentum(0.,0.6,0.8); G4ThreeVector EndPosition, EndUnitMomentum; // // Test location & Step computation // /* assert(located->GetName()=="World"); */ const G4double threshold= 1.e-6; if( std::fabs(UnitMomentum.mag() - 1.0) > threshold ) { G4cout << "UnitMomentum.mag() - 1.0 = " << UnitMomentum.mag() - 1.0 << G4endl; } G4cout << G4endl; for( int iparticle=0; iparticle < 2; iparticle++ ) { physStep= 2.5 * mm ; // millimeters Position = G4ThreeVector(0.,0.,0.) + iparticle * G4ThreeVector(0.2, 0.3, 0.4); // ->GetChordFinder().SetChargeAndMomentum( G4double momentum_val= (0.5+iparticle*1.0) * 0.1*GeV; // As energy/c G4double rest_mass = 0.105658387*GeV; // A muon G4double momentum_sq = momentum_val * momentum_val; G4double kineticEnergy = momentum_sq / ( std::sqrt( momentum_sq + rest_mass * rest_mass ) + rest_mass ); G4double labTof= 10.0*ns, properTof= 0.1*ns; pMagFieldPropagator->SetChargeMomentumMass( +1, // charge in e+ units momentum_val, rest_mass); UnitMomentum = (G4ThreeVector(0.,0.6,0.8) + (float)iparticle * G4ThreeVector(0.1, 0.2, 0.3)).unit(); G4double beta = momentum_val / std::sqrt( rest_mass*rest_mass + momentum_val*momentum_val ); G4double VelocityMag = beta * c_light; G4ThreeVector Velocity = VelocityMag * UnitMomentum ; G4cout << G4endl; G4cout << "Test PropagateMagField: ***********************" << G4endl << " Starting New Particle with Position " << Position << G4endl << " and UnitVelocity " << UnitMomentum << G4endl; G4cout << " Momentum in MeV/c is "<< (0.5+iparticle*1.0)*0.1*GeV/MeV; G4cout << G4endl; G4ThreeVector initialSpin = UnitMomentum; for( int istep=0; istep < 14; istep++ ){ // // G4cout << "UnitMomentum Magnitude is " << UnitMomentum.mag() << G4endl; located= pNavig->LocateGlobalPointAndSetup(Position); // Is the following better ?? It would need "changes" // located= pMagFieldPropagator->LocateGlobalPointAndSetup(Position); // G4cout << "Starting Step " << istep << " in volume " // << located->GetName() << G4endl; // G4FieldTrack stateVec( Position, Velocity, 0.0, 0.0, // 0.0, 0.0, &initialSpin ); G4FieldTrack stateVec( Position, UnitMomentum, 0.0, // starting S curve len kineticEnergy, rest_mass, VelocityMag, labTof, properTof, &initialSpin ); step_len=pMagFieldPropagator->ComputeStep( stateVec, physStep, safety ,located); // -------------------- EndPosition= pMagFieldPropagator->EndPosition(); EndUnitMomentum= pMagFieldPropagator->EndMomentumDir(); // -------- G4FieldTrack EndFieldTrack= pMagFieldPropagator->GetEndState(); G4ThreeVector EndSpin= EndFieldTrack.GetSpin(); G4ThreeVector EndUnitMomentum = EndFieldTrack.GetMomentumDir(); // G4cout << " EndPosition " << EndPosition << G4endl; // G4cout << " EndUnitMomentum " << EndUnitMomentum << G4endl; // G4cout << " initialSpin " << initialSpin.mag() << G4endl; // G4cout << " EndSpin " << EndSpin.mag() << G4endl; if( std::fabs(EndUnitMomentum.mag2() - 1.0) > threshold ) G4cout << "EndUnitMomentum.mag2() - 1.0 = " << EndUnitMomentum.mag2() - 1.0 << G4endl; // In this case spin should be parallel (equal) to momentum G4double magdiff= (EndUnitMomentum - EndSpin).mag(); if( magdiff > 1.e-8 ){ G4cout.precision(4); G4cout << " Spin is not equal to Momentum " << " Diff = " << magdiff << G4endl; } G4ThreeVector MoveVec = EndPosition - Position; assert( MoveVec.mag() < physStep*(1.+1.e-9) ); // G4cout << " testPropagatorInField: After stepI " << istep << " : " << G4endl; report_endPV(Position, UnitMomentum, initialSpin, step_len, physStep, safety, EndPosition, EndUnitMomentum, EndSpin, istep, located ); assert(safety>=0); pNavig->SetGeometricallyLimitedStep(); // pMagFieldPropagator->SetGeometricallyLimitedStep(); Position= EndPosition; UnitMomentum= EndUnitMomentum; initialSpin = EndSpin; physStep *= 2.; } // ........................... end for ( istep ) } // .............................. end for ( iparticle ) return(1); } void report_endPV(G4ThreeVector Position, G4ThreeVector, // UnitVelocity, G4ThreeVector, // Spin, G4double step_len, G4double physStep, G4double safety, G4ThreeVector EndPosition, G4ThreeVector EndUnitVelocity, G4ThreeVector EndSpin, G4int Step, G4VPhysicalVolume* startVolume) // G4VPhysicalVolume* endVolume) { const G4int verboseLevel=1; G4int oldPrec= G4cout.precision(4); if( Step == 0 && verboseLevel <= 3 ) { // G4cout.precision(6); // G4cout.setf(ios_base::fixed,ios_base::floatfield); G4cout << std::setw( 3) << "Stp#" << " " << std::setw( 7) << "X(mm)" << " " << std::setw( 7) << "Y(mm)" << " " << std::setw( 7) << "Z(mm)" << " " << std::setw( 7) << " N_x " << " " << std::setw( 7) << " N_y " << " " << std::setw( 7) << " N_z " << " " << std::setw( 7) << " S_x " << " " << std::setw( 7) << " S_y " << " " << std::setw( 7) << " S_z " << " " << std::setw( 9) << " |S-N|" << " " << std::setw( 9) << " (S_z-N_z) " << " " // << std::setw( 9) << "KinE(MeV)" << " " // << std::setw( 9) << "dE(MeV)" << " " << std::setw( 9) << "StepLen" << " " << std::setw( 9) << "PhsStep" << " " << std::setw( 9) << "Safety" << " " << std::setw(18) << "NextVolume" << " " << G4endl; } // // if( verboseLevel > 3 ) { G4cout << "End Position is " << EndPosition << G4endl << " and UnitVelocity is " << EndUnitVelocity << G4endl; G4cout << "Step taken was " << step_len << " out of PhysicalStep= " << physStep << G4endl; G4cout << "Final safety is: " << safety << G4endl; G4cout << "Chord length = " << (EndPosition-Position).mag() << G4endl; G4cout << G4endl; } else // if( verboseLevel > 0 ) { G4cout.precision(3); // 4 ? G4cout << std::setw( 3) << Step << " " << std::setw( 7) << Position.x() << " " << std::setw( 7) << Position.y() << " " << std::setw( 7) << Position.z() << " " << std::setw( 7) << EndUnitVelocity.x() << " " << std::setw( 7) << EndUnitVelocity.y() << " " << std::setw( 7) << EndUnitVelocity.z() << " " << std::setw( 7) << EndSpin.x() << " " << std::setw( 7) << EndSpin.y() << " " << std::setw( 7) << EndSpin.z() << " "; G4cout.precision(2); G4cout << std::setw( 8) << (EndSpin-EndUnitVelocity).mag() << " " << std::setw( 8) << EndSpin.z() - EndUnitVelocity.z() << " "; // << std::setw( 9) << KineticEnergy << " " // << std::setw( 9) << EnergyDifference << " " G4cout.precision(6); G4cout << std::setw( 9) << step_len << " " << std::setw( 9) << physStep << " "; G4cout.precision(3); // could be 4 ? G4cout << std::setw( 9) << safety << " "; if( startVolume != 0) { G4cout << std::setw(12) << startVolume->GetName() << " "; } else { G4cout << std::setw(12) << "OutOfWorld" << " "; } #if 0 if( endVolume != 0) { G4cout << std::setw(12) << endVolume()->GetName() << " "; } else { G4cout << std::setw(12) << "OutOfWorld" << " "; } #endif G4cout << G4endl; } G4cout.precision(oldPrec); } // Main program // ------------------------------- int main(int argc, char **argv) { G4VPhysicalVolume *myTopNode; G4int type, optim; G4bool optimise=true; type = 8 ; if( argc >= 2 ) type = atoi(argv[1]); if( argc >=3 ){ optim= atoi(argv[2]); if( optim == 0 ) { optimise = false; } } G4cout << " Testing with stepper number " << type; G4cout << " and PiF safety optimisation " ; if (optimise) G4cout << "on"; else G4cout << "off"; G4cout << G4endl; // Create the geometry & field myTopNode=BuildGeometry(); // Build the geometry G4Navigator *pNavig= G4TransportationManager:: GetTransportationManager()-> GetNavigatorForTracking(); pNavig->SetWorldVolume(myTopNode); G4GeometryManager::GetInstance()->CloseGeometry(false); // Setup the propagator (will be overwritten by testG4Propagator ...) pMagFieldPropagator= SetupPropagator(type); G4cout << " Using default values for " << " Min Eps = " << pMagFieldPropagator->GetMinimumEpsilonStep() << " and " << " MaxEps = " << pMagFieldPropagator->GetMaximumEpsilonStep() << G4endl; pMagFieldPropagator->SetUseSafetyForOptimization(optimise); // Do the tests without voxels G4cout << " Test with no voxels" << G4endl; testG4PropagatorInField(myTopNode, type); // Repeat tests but with full voxels G4cout << " Test with full voxels" << G4endl; G4GeometryManager::GetInstance()->OpenGeometry(); G4GeometryManager::GetInstance()->CloseGeometry(true); testG4PropagatorInField(myTopNode, type); G4GeometryManager::GetInstance()->OpenGeometry(); G4cout << G4endl << "----------------------------------------------------------" << G4endl; // Repeat tests with full voxels and modified parameters G4cout << "Test with more accurate parameters " << G4endl; G4double maxEpsStep= 0.001; G4double minEpsStep= 2.5e-8; G4cout << " Setting values for Min Eps = " << minEpsStep << " and MaxEps = " << maxEpsStep << G4endl; pMagFieldPropagator->SetMaximumEpsilonStep(maxEpsStep); pMagFieldPropagator->SetMinimumEpsilonStep(minEpsStep); G4GeometryManager::GetInstance()->OpenGeometry(); G4GeometryManager::GetInstance()->CloseGeometry(true); testG4PropagatorInField(myTopNode, type); G4GeometryManager::GetInstance()->OpenGeometry(); optimise = ! optimise; // Repeat tests but with the opposite optimisation choice G4cout << " Now test with safety optimisation " ; if (optimise) G4cout << "on"; else G4cout << "off"; G4cout << G4endl; pMagFieldPropagator->SetUseSafetyForOptimization(optimise); testG4PropagatorInField(myTopNode, type); G4GeometryManager::GetInstance()->OpenGeometry(); return 0; }