// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4LogicalVolume.cc,v 1.32 2006/11/30 10:39:28 gcosmo Exp $ // GEANT4 tag $Name: $ // // // class G4LogicalVolume Implementation // // History: // 01.03.05 G.Santin: Added flag for optional propagation of GetMass() // 17.05.02 G.Cosmo: Added flag for optional optimisation // 12.02.99 S.Giani: Default initialization of voxelization quality // 04.08.97 P.M.DeFreitas: Added methods for parameterised simulation // 19.08.96 P.Kent: Modified for G4VSensitive Detector // 11.07.95 P.Kent: Initial version // -------------------------------------------------------------------- #include "G4LogicalVolume.hh" #include "G4LogicalVolumeStore.hh" #include "G4VSolid.hh" #include "G4Material.hh" #include "G4VPVParameterisation.hh" #include "G4VisAttributes.hh" #include "G4UnitsTable.hh" // ******************************************************************** // Constructor - sets member data and adds to logical Store, // voxel pointer for optimisation set to 0 by default. // Initialises daughter vector to 0 length. // ******************************************************************** // G4LogicalVolume::G4LogicalVolume( G4VSolid* pSolid, G4Material* pMaterial, const G4String& name, G4FieldManager* pFieldMgr, G4VSensitiveDetector* pSDetector, G4UserLimits* pULimits, G4bool optimise ) : fDaughters(0,(G4VPhysicalVolume*)0), fFieldManager(pFieldMgr), fVoxel(0), fOptimise(optimise), fRootRegion(false), fSmartless(2.), fMass(0.), fVisAttributes(0), fRegion(0), fCutsCouple(0) { SetSolid(pSolid); SetMaterial(pMaterial); SetName(name); SetSensitiveDetector(pSDetector); SetUserLimits(pULimits); // // Add to store // G4LogicalVolumeStore::Register(this); } // ******************************************************************** // Fake default constructor - sets only member data and allocates memory // for usage restricted to object persistency. // ******************************************************************** // G4LogicalVolume::G4LogicalVolume( __void__& ) : fDaughters(0,(G4VPhysicalVolume*)0), fFieldManager(0), fMaterial(0), fName(""), fSensitiveDetector(0), fSolid(0), fUserLimits(0), fVoxel(0), fOptimise(true), fRootRegion(false), fSmartless(2.), fMass(0.), fVisAttributes(0), fRegion(0), fCutsCouple(0), fBiasWeight(0.) { // Add to store // G4LogicalVolumeStore::Register(this); } // ******************************************************************** // Destructor - Removes itself from solid Store // NOTE: Not virtual // ******************************************************************** // G4LogicalVolume::~G4LogicalVolume() { // Avoid de-registration of root region if treating the first world volume // if( (fRootRegion) && (this != (*G4LogicalVolumeStore::GetInstance())[0]) ) { fRegion->RemoveRootLogicalVolume(this); } G4LogicalVolumeStore::DeRegister(this); } // ******************************************************************** // SetFieldManager // ******************************************************************** // void G4LogicalVolume::SetFieldManager(G4FieldManager* pNewFieldMgr, G4bool forceAllDaughters) { fFieldManager = pNewFieldMgr; G4int NoDaughters = GetNoDaughters(); while ( (NoDaughters--)>0 ) { G4LogicalVolume* DaughterLogVol; DaughterLogVol = GetDaughter(NoDaughters)->GetLogicalVolume(); if ( forceAllDaughters || (DaughterLogVol->GetFieldManager() == 0) ) { DaughterLogVol->SetFieldManager(pNewFieldMgr, forceAllDaughters); } } } // ******************************************************************** // IsAncestor // // Finds out if the current logical volume is an ancestor of a given // physical volume // ******************************************************************** // G4bool G4LogicalVolume::IsAncestor(const G4VPhysicalVolume* aVolume) const { G4bool isDaughter = IsDaughter(aVolume); if (!isDaughter) { for (G4PhysicalVolumeList::const_iterator itDau = fDaughters.begin(); itDau != fDaughters.end(); itDau++) { isDaughter = (*itDau)->GetLogicalVolume()->IsAncestor(aVolume); if (isDaughter) break; } } return isDaughter; } // ******************************************************************** // TotalVolumeEntities // // Returns the total number of physical volumes (replicated or placed) // in the tree represented by the current logical volume. // ******************************************************************** // G4int G4LogicalVolume::TotalVolumeEntities() const { static G4int vols = 0; vols++; for (G4PhysicalVolumeList::const_iterator itDau = fDaughters.begin(); itDau != fDaughters.end(); itDau++) { G4VPhysicalVolume* physDaughter = (*itDau); for (G4int i=0; iGetMultiplicity(); i++) { physDaughter->GetLogicalVolume()->TotalVolumeEntities(); } } return vols; } // ******************************************************************** // GetMass // // Returns the mass of the logical volume tree computed from the // estimated geometrical volume of each solid and material associated // to the logical volume and its daughters. // NOTE: the computation may require considerable amount of time, // depending from the complexity of the geometry tree. // The returned value is cached and can be used for successive // calls (default), unless recomputation is forced by providing // 'true' for the boolean argument in input. Computation should // be forced if the geometry setup has changed after the previous // call. By setting the 'propagate' boolean flag to 'false' the // method returns the mass of the present logical volume only // (subtracted for the volume occupied by the daughter volumes). // The extra argument 'parMaterial' is internally used to // consider cases of geometrical parameterisations by material. // ******************************************************************** // G4double G4LogicalVolume::GetMass(G4bool forced, G4bool propagate, G4Material* parMaterial) { // Return the cached non-zero value, if not forced // if ( (fMass) && (!forced) ) return fMass; // Global density and computed mass associated to the logical // volume without considering its daughters // G4Material* logMaterial = parMaterial ? parMaterial : fMaterial; if (!logMaterial) { G4cerr << "ERROR - G4LogicalVolume::GetMass()" << G4endl << " No material is associated to the logical volume: " << fName << " ! Sorry, cannot compute the mass ..." << G4endl; G4Exception("G4LogicalVolume::GetMass()", "InvalidSetup", FatalException, "No material associated to the logical volume !"); } if (!fSolid) { G4cerr << "ERROR - G4LogicalVolume::GetMass()" << G4endl << " No solid is associated to the logical volume: " << fName << " ! Sorry, cannot compute the mass ..." << G4endl; G4Exception("G4LogicalVolume::GetMass()", "InvalidSetup", FatalException, "No solid associated to the logical volume !"); } G4double globalDensity = logMaterial->GetDensity(); fMass = fSolid->GetCubicVolume() * globalDensity; // For each daughter in the tree, subtract the mass occupied // and if required by the propagate flag, add the real daughter's // one computed recursively for (G4PhysicalVolumeList::const_iterator itDau = fDaughters.begin(); itDau != fDaughters.end(); itDau++) { G4VPhysicalVolume* physDaughter = (*itDau); G4LogicalVolume* logDaughter = physDaughter->GetLogicalVolume(); G4double subMass=0.; G4VSolid* daughterSolid = 0; G4Material* daughterMaterial = 0; // Compute the mass to subtract and to add for each daughter // considering its multiplicity (i.e. replicated or not) and // eventually its parameterisation (by solid and/or by material) // for (G4int i=0; iGetMultiplicity(); i++) { G4VPVParameterisation* physParam = physDaughter->GetParameterisation(); if (physParam) { daughterSolid = physParam->ComputeSolid(i, physDaughter); daughterSolid->ComputeDimensions(physParam, i, physDaughter); daughterMaterial = physParam->ComputeMaterial(i, physDaughter); } else { daughterSolid = logDaughter->GetSolid(); daughterMaterial = logDaughter->GetMaterial(); } subMass = daughterSolid->GetCubicVolume() * globalDensity; // Subtract the daughter's portion for the mass and, if required, // add the real daughter's mass computed recursively // fMass -= subMass; if (propagate) { fMass += logDaughter->GetMass(true, true, daughterMaterial); } } } return fMass; } void G4LogicalVolume::SetVisAttributes (const G4VisAttributes& VA) { fVisAttributes = new G4VisAttributes(VA); }