source: trunk/source/geometry/navigation/include/G4PropagatorInField.icc @ 1198

Last change on this file since 1198 was 921, checked in by garnier, 15 years ago

en test de gl2ps. Problemes de libraries

File size: 8.4 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26//
27// $Id: G4PropagatorInField.icc,v 1.13 2008/10/29 14:31:55 gcosmo Exp $
28// GEANT4 tag $Name: geant4-09-02-cand-01 $
29//
30//
31// ------------------------------------------------------------------------
32//  GEANT 4  inline implementation
33//
34// ------------------------------------------------------------------------
35//
36// 25.10.96 John Apostolakis, design and implementation
37// 25.03.97 John Apostolakis, adaptation for G4Transportation and cleanup
38//
39//  To create an object of this type, must have:
40//  - an object that calculates the Curved paths
41//  - the navigator to find (linear) intersections
42//  - and ?? also must know the value of the maximum displacement allowed
43// ------------------------------------------------------------------------
44
45inline
46G4ChordFinder* G4PropagatorInField::GetChordFinder()
47{
48  // The "Chord Finder" of the current Field Mgr is used
49  //    -- this could be of the global field manager
50  //        or that of another, from the current volume
51  return fCurrentFieldMgr->GetChordFinder();
52}
53
54inline
55void G4PropagatorInField::SetChargeMomentumMass(
56            G4double Charge,            // in e+ units
57            G4double Momentum,          // in GeV/c
58            G4double Mass)              // in ? units
59{
60  // GetChordFinder()->SetChargeMomentumMass(Charge, Momentum, Mass);
61  //  --> Not needed anymore, as it is done in ComputeStep for the
62  //       ChordFinder of the current step (which is known only then).
63  fCharge = Charge;
64  fInitialMomentumModulus = Momentum;
65  fMass = Mass;
66}
67
68//  Obtain the final space-point and velocity (normal) at the end of the Step
69//
70inline
71G4ThreeVector  G4PropagatorInField::EndPosition() const
72{
73  return   End_PointAndTangent.GetPosition();
74}
75
76inline
77G4ThreeVector  G4PropagatorInField::EndMomentumDir() const
78{
79  return   End_PointAndTangent.GetMomentumDir();
80}
81
82inline
83G4double G4PropagatorInField::GetEpsilonStep() const
84{
85  return fEpsilonStep;
86}
87
88inline
89void     G4PropagatorInField::SetEpsilonStep( G4double newEps )
90{
91  fEpsilonStep=newEps;
92}
93
94inline
95G4bool   G4PropagatorInField::IsParticleLooping() const
96{
97  return fParticleIsLooping;
98}
99
100inline
101G4int    G4PropagatorInField::GetMaxLoopCount() const
102{
103  return fMax_loop_count;
104}
105
106inline
107void     G4PropagatorInField::SetMaxLoopCount( G4int new_max )
108{
109  fMax_loop_count = new_max;
110}
111
112inline
113G4double G4PropagatorInField::GetDeltaIntersection() const
114{
115  return fCurrentFieldMgr->GetDeltaIntersection();
116}
117
118inline
119G4double G4PropagatorInField::GetDeltaOneStep() const
120{
121  return fCurrentFieldMgr->GetDeltaOneStep();
122}
123
124inline
125void
126G4PropagatorInField::SetAccuraciesWithDeltaOneStep( G4double valDeltaOneStep )
127{
128  fDetectorFieldMgr->SetAccuraciesWithDeltaOneStep(valDeltaOneStep);
129}
130
131inline
132void G4PropagatorInField::SetDeltaOneStep( G4double valDeltaOneStep )
133{
134  fDetectorFieldMgr->SetDeltaOneStep(valDeltaOneStep);
135}
136
137inline
138void G4PropagatorInField::SetDeltaIntersection( G4double valDeltaIntersection )
139{
140  fDetectorFieldMgr->SetDeltaIntersection(valDeltaIntersection);
141}
142
143inline
144G4int G4PropagatorInField::GetVerboseLevel() const
145{
146  return fVerboseLevel;
147}
148inline
149G4int G4PropagatorInField::Verbose() const     // Obsolete
150{
151  return GetVerboseLevel();
152}
153
154inline
155G4FieldTrack G4PropagatorInField::GetEndState() const
156{
157  return End_PointAndTangent;
158}
159
160// Minimum for Relative accuracy of a Step in volumes of global field
161inline
162G4double  G4PropagatorInField::GetMinimumEpsilonStep() const
163{
164  return fDetectorFieldMgr->GetMinimumEpsilonStep();
165}
166
167inline
168void      G4PropagatorInField::SetMinimumEpsilonStep( G4double newEpsMin )
169{
170  fDetectorFieldMgr->SetMinimumEpsilonStep(newEpsMin);
171}
172
173// Maximum for Relative accuracy of any Step
174inline
175G4double  G4PropagatorInField::GetMaximumEpsilonStep() const
176{
177  return fDetectorFieldMgr->GetMaximumEpsilonStep();
178}
179
180inline
181void      G4PropagatorInField::SetMaximumEpsilonStep( G4double newEpsMax )
182{
183  fDetectorFieldMgr->SetMaximumEpsilonStep( newEpsMax );
184}
185
186inline
187void G4PropagatorInField::SetLargestAcceptableStep( G4double newBigDist )
188{
189  if( fLargestAcceptableStep>0.0 )
190  {
191    fLargestAcceptableStep = newBigDist;
192  }
193}
194
195inline
196G4double  G4PropagatorInField::GetLargestAcceptableStep()
197{
198  return fLargestAcceptableStep;
199}
200
201inline
202G4FieldManager*  G4PropagatorInField::GetCurrentFieldManager()
203{
204  return fCurrentFieldMgr;
205}
206
207inline
208void G4PropagatorInField::SetThresholdNoZeroStep( G4int noAct,
209                                                  G4int noHarsh,
210                                                  G4int noAbandon )
211{
212  if( noAct>0 )
213    fActionThreshold_NoZeroSteps = noAct;
214
215  if( noHarsh > fActionThreshold_NoZeroSteps )
216    fSevereActionThreshold_NoZeroSteps = noHarsh;
217  else
218    fSevereActionThreshold_NoZeroSteps = 2*(fActionThreshold_NoZeroSteps+1);
219
220  if( noAbandon > fSevereActionThreshold_NoZeroSteps+5 )
221    fAbandonThreshold_NoZeroSteps = noAbandon;
222  else
223    fAbandonThreshold_NoZeroSteps = 2*(fSevereActionThreshold_NoZeroSteps+3);
224}
225
226inline
227G4int G4PropagatorInField::GetThresholdNoZeroSteps( G4int i )
228{
229   G4int t=0;
230   if( i==0 )     { t = 3; }     // No of parameters
231   else if (i==1) { t = fActionThreshold_NoZeroSteps; }
232   else if (i==2) { t = fSevereActionThreshold_NoZeroSteps; }
233   else if (i==3) { t = fAbandonThreshold_NoZeroSteps; }
234
235   return t;
236}
237
238inline
239void G4PropagatorInField::SetDetectorFieldManager(G4FieldManager* newDetectorFieldManager)
240{
241   fDetectorFieldMgr = newDetectorFieldManager;
242}
243
244 
245inline
246void  G4PropagatorInField:: SetUseSafetyForOptimization( G4bool value )
247{
248   fUseSafetyForOptimisation= value;
249}
250
251inline
252G4bool G4PropagatorInField::GetUseSafetyForOptimization()
253{
254   return fUseSafetyForOptimisation;
255}
256
257inline
258void G4PropagatorInField::
259SetNavigatorForPropagating( G4Navigator *SimpleOrMultiNavigator )
260{
261  if(SimpleOrMultiNavigator)  { fNavigator= SimpleOrMultiNavigator; }
262}
263
264inline
265G4Navigator* G4PropagatorInField::GetNavigatorForPropagating()
266{
267  return fNavigator;
268}
269
270inline
271void G4PropagatorInField::
272SetIntersectionLocator( G4VIntersectionLocator *pIntLoc )
273{
274  if(pIntLoc)  { fIntersectionLocator= pIntLoc; }
275}
276
277inline
278G4VIntersectionLocator* G4PropagatorInField::GetIntersectionLocator()
279{
280  return fIntersectionLocator;
281}
282
283inline
284G4bool G4PropagatorInField::IntersectChord( G4ThreeVector  StartPointA,
285                                            G4ThreeVector  EndPointB,
286                                            G4double      &NewSafety,
287                                            G4double      &LinearStepLength,
288                                            G4ThreeVector &IntersectionPoint )
289{
290  // Calculate the direction and length of the chord AB
291  //
292  return fIntersectionLocator
293         ->IntersectChord(StartPointA,EndPointB,NewSafety,
294                          fPreviousSafety,fPreviousSftOrigin,
295                          LinearStepLength,IntersectionPoint);
296}
Note: See TracBrowser for help on using the repository browser.