source: trunk/source/geometry/solids/BREPS/include/G4ConicalSurface.hh @ 978

Last change on this file since 978 was 850, checked in by garnier, 16 years ago

geant4.8.2 beta

File size: 8.6 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26//
27// $Id: G4ConicalSurface.hh,v 1.10 2006/06/29 18:38:44 gunter Exp $
28// GEANT4 tag $Name: HEAD $
29//
30// ----------------------------------------------------------------------
31// Class G4ConicalSurface
32//
33// Class Description:
34//   
35// A G4ConicalSurface is a semi-infinite conical surface defined by
36// an axis and an opening angle, defined as the angle between the axis
37// and the conical surface, with the origin being the apex of the cone.
38
39// The code for G4ConicalSurface has been derived from the original
40// implementation in the "Gismo" package.
41//
42// Author: A.Breakstone
43// Adaptation: J.Sulkimo, P.Urban.
44// Revisions by: L.Broglia, G.Cosmo.
45// ----------------------------------------------------------------------
46#ifndef __G4CONICALSURFACE_H
47#define __G4CONICALSURFACE_H
48
49#include "G4Surface.hh"
50 
51
52class G4ConicalSurface : public G4Surface
53{
54
55public:  // with description
56
57  G4ConicalSurface();
58    // Default constructor:
59    //   default axis is ( 1.0, 0.0, 0.0 ),
60    //   default angle is 1.0 radians.
61
62  G4ConicalSurface( const G4Point3D& o, const G4Vector3D& a, G4double e ); 
63    // Normal constructor:
64    //   first argument is the origin of the G4ConicalSurface
65    //   second argument is the axis of the G4ConicalSurface
66    //   third argument is the angle of the G4ConicalSurface.
67
68  virtual ~G4ConicalSurface();
69    // Virtual destructor.
70
71  inline G4int operator==( const G4ConicalSurface& c );
72    // Equality operator.
73
74  inline G4String GetEntityType() const;
75    // Returns type identifier of the shape.
76
77  virtual const char* NameOf() const;
78    // Returns the class name.
79
80  virtual void PrintOn( std::ostream& os = G4cout ) const;
81    // Printing function, streaming surface's attributes.
82
83  virtual G4double HowNear( const G4Vector3D& x ) const;
84    // Returns the distance from a point to a semi-infinite G4ConicalSurface.
85    // The point x is the (input) argument.
86    // The distance is positive if the point is Inside, negative if it
87    // is outside
88
89  void CalcBBox();
90    // Computes the bounding-box.
91
92  G4int Intersect( const G4Ray& ry );
93    // Returns the distance along a Ray (straight line with G4Vector3D) to
94    // leave or enter a G4ConicalSurface.
95    // If the G4Vector3D of the Ray is opposite to that of the Normal to
96    // the G4ConicalSurface at the intersection point, it will not leave the
97    // G4ConicalSurface.
98    // Similarly, if the G4Vector3D of the Ray is along that of the Normal
99    // to the G4ConicalSurface at the intersection point, it will not enter the
100    // G4ConicalSurface.
101    // This method is called by all finite shapes sub-classed to
102    // G4ConicalSurface.
103    // A negative result means no intersection.
104    // If no valid intersection point is found, set the distance
105    // and intersection point to large numbers.
106
107  virtual G4Vector3D SurfaceNormal( const G4Point3D& p ) const; 
108    // Returns the Normal unit vector to the G4ConicalSurface at a point p
109    // on (or nearly on) the G4ConicalSurface.
110
111  virtual G4int Inside( const G4Vector3D& x ) const;
112    // Returns 1 if the point x is Inside the G4ConicalSurface, 0 otherwise.
113    // Outside means that the distance to the G4ConicalSurface would be
114    // negative. Uses the HowNear() function to calculate this distance.
115
116  virtual G4int WithinBoundary( const G4Vector3D& x ) const;
117    // Returns 1 if point x is on the G4ConicalSurface, otherwise return zero
118    // Since a G4ConicalSurface is infinite in extent, the function
119    // will just check if the point is on the G4ConicalSurface (to the surface
120    // precision).
121
122  virtual G4double Scale() const;
123    // Function overwritten by finite-sized derived classes which returns
124    // a radius, unless it is zero, in which case it returns the smallest
125    // non-zero dimension.
126    // Since a semi-infinite cone has no Scale associated with it, it returns
127    // the arbitrary number 1.0.
128    // Used for Scale-invariant tests of surface thickness.
129
130  inline G4Vector3D GetAxis() const;
131  inline G4double GetAngle() const;
132    // Return the axis and angle of the G4ConicalSurface.
133
134  void SetAngle( G4double e );
135    // Changes the angle of the G4ConicalSurface.
136    // Requires angle to range from 0 to PI/2.
137
138public:  // without description
139
140/*
141  virtual G4double distanceAlongRay( G4int which_way, const G4Ray* ry,
142                                     G4Vector3D& p ) const;
143    // Returns the distance along a Ray to enter or leave a G4ConicalSurface. 
144    //   The first (input) argument is +1 to leave or -1 to enter
145    //   The second (input) argument is a pointer to the Ray
146    //   The third (output) argument returns the intersection point.
147
148  virtual G4double distanceAlongHelix( G4int which_way, const Helix* hx,
149                                       G4Vector3D& p ) const;
150    // Returns the distance along a Helix to enter or leave a G4ConicalSurface. 
151    //   The first (input) argument is +1 to leave or -1 to enter
152    //   The second (input) argument is a pointer to the Helix
153    //   The third (output) argument returns the intersection point.
154
155  G4Vector3D Normal( const G4Vector3D& p ) const;
156    // Returns the Normal unit vector to a G4ConicalSurface
157    // at a point p on (or nearly on) the G4ConicalSurface.
158
159  virtual void rotate( G4double alpha, G4double beta,
160                       G4double gamma, G4ThreeMat& m, G4int inverse );
161    // Rotates the G4ConicalSurface (angles are assumed to be given in
162    // radians), arguments:
163    // - first about global x-axis by angle alpha,
164    // - second about global y-axis by angle beta,
165    // - third about global z-axis by angle gamma,
166    // - fourth (output) argument gives the calculated rotation matrix,
167    // - fifth (input) argument is an integer flag which if
168    //   non-zero reverses the order of the rotations.
169
170  virtual void rotate( G4double alpha, G4double beta,
171                       G4double gamma, G4int inverse );
172    // Rotates the G4ConicalSurface (angles are assumed to be given in
173    // radians), arguments:
174    // - first about global x-axis by angle alpha,
175    // - second about global y-axis by angle beta,
176    // - third about global z-axis by angle gamma,
177    // - fourth (input) argument is an integer flag which if
178    //   non-zero reverses the order of the rotations.
179
180private:
181
182  virtual G4double gropeAlongHelix( const Helix* hx ) const;
183    // Private function to use a crude technique to find the intersection
184    // of a Helix with a G4ConicalSurface.  It returns the turning angle
185    // along the Helix at which the intersection occurs or -1.0 if no
186    // intersection point is found.
187    // The argument to the call is the pointer to the Helix.
188*/
189
190private:
191
192  G4ConicalSurface(const G4ConicalSurface&);
193  G4ConicalSurface& operator=(const G4ConicalSurface&);
194    // Private copy constructor and assignment operator.
195
196private:
197
198  G4Vector3D axis;
199    // Direction of axis of G4ConicalSurface (unit vector).
200
201  G4double   angle;
202    // Half opening angle of G4ConicalSurface, in radians
203    // range is 0 < angle < PI/2.
204
205};
206
207#include "G4ConicalSurface.icc"
208
209#endif
Note: See TracBrowser for help on using the repository browser.