source: trunk/source/geometry/solids/BREPS/include/G4CylindricalSurface.hh@ 1104

Last change on this file since 1104 was 1058, checked in by garnier, 17 years ago

file release beta

File size: 8.4 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4CylindricalSurface.hh,v 1.10 2006/06/29 18:39:12 gunter Exp $
28// GEANT4 tag $Name: geant4-09-02-ref-02 $
29//
30// ----------------------------------------------------------------------
31// Class G4CylindricalSurface
32//
33// Class Description:
34//
35// Definition of a generic cylindrical surface.
36
37// The code for G4CylindricalSurface has been derived from the original
38// implementation in the "Gismo" package.
39//
40// Author: A.Breakstone
41// Adaptation: J.Sulkimo, P.Urban.
42// Revisions by: L.Broglia, G.Cosmo.
43// ----------------------------------------------------------------------
44#ifndef __G4CYLINDERSURFACE_H
45#define __G4CYLINDERSURFACE_H
46
47#include "G4Surface.hh"
48
49class G4CylindricalSurface : public G4Surface
50{
51
52 public: // with description
53
54 G4CylindricalSurface();
55 // Default constructor.
56
57 G4CylindricalSurface( const G4Vector3D& o, const G4Vector3D& a, G4double r );
58 // Normal constructor:
59 // - first argument is the origin of the G4CylindricalSurface
60 // - second argument is the axis of the G4CylindricalSurface
61 // - third argument is the radius of the G4CylindricalSurface.
62
63 virtual ~G4CylindricalSurface();
64 // Destructor.
65
66 inline G4int operator==( const G4CylindricalSurface& c ) const;
67 // Equality operator.
68
69 inline G4String GetEntityType() const;
70 // Returns the shape identifier.
71
72 virtual const char* NameOf() const;
73 // Returns the class name.
74
75 virtual void PrintOn( std::ostream& os = G4cout ) const;
76 // Printing function, streaming surface's attributes.
77
78 virtual G4double HowNear( const G4Vector3D& x ) const;
79 // Returns the distance from a point to a G4CylindricalSurface.
80 // The point x is the (input) argument.
81 // The distance is positive if the point is Inside, negative otherwise.
82
83 virtual G4Vector3D Normal( const G4Vector3D& p ) const;
84 // Returns the Normal unit vector to a G4CylindricalSurface at a point p
85 // on (or nearly on) the G4CylindricalSurface.
86
87 virtual G4Vector3D SurfaceNormal( const G4Point3D& p ) const;
88 // Returns the Normal unit vector to the G4CylindricalSurface at a point
89 // p on (or nearly on) the G4CylindricalSurface.
90
91 virtual G4int Inside( const G4Vector3D& x ) const;
92 // Returns 1 if the point x is Inside the G4CylindricalSurface,
93 // returns 0 otherwise.
94 // Outside means that the distance to the G4CylindricalSurface would
95 // be negative.
96 // Uses the HowNear() function to calculate this distance.
97
98 virtual G4int WithinBoundary( const G4Vector3D& x ) const;
99 // Function overwritten by finite-sized derived classes which returns
100 // 1 if the point x is within the boundary, 0 otherwise.
101 // Since a G4CylindricalSurface is infinite in extent, the function will
102 // just check if the point is on the G4CylindricalSurface (to the surface
103 // precision).
104
105 virtual G4double Scale() const;
106 // Function overwritten by finite-sized derived classes which returns
107 // the radius, unless it is zero, in which case it returns the smallest
108 // non-zero dimension.
109 // Used for Scale-invariant tests of surface thickness.
110
111 G4int Intersect(const G4Ray& ry);
112 // Returns the distance along a Ray (straight line with G4Vector3D) to
113 // leave or enter a G4CylindricalSurface.
114 // If the G4Vector3D of the Ray is opposite to that of the Normal to
115 // the G4CylindricalSurface at the intersection point, it will not leave
116 // the G4CylindricalSurface.
117 // Similarly, if the G4Vector3D of the Ray is along that of the Normal
118 // to the G4CylindricalSurface at the intersection point, it will not enter
119 // the G4CylindricalSurface.
120 // This method is called by all finite shapes sub-classed to
121 // G4CylindricalSurface.
122 // A negative result means no intersection.
123 // If no valid intersection point is found, the distance and intersection
124 // point are set to large numbers.
125
126 inline G4Vector3D GetAxis() const;
127 inline G4double GetRadius() const;
128 // Return the axis and radius of the G4CylindricalSurface.
129
130 void SetRadius( G4double r );
131 // Changes the radius of the G4CylindricalSurface.
132 // Requires radius to be non-negative.
133
134 public: // without description
135
136/*
137 virtual G4double distanceAlongRay( G4int which_way, const G4Ray* ry,
138 G4Vector3D& p ) const;
139 // Returns the distance along a Ray to enter or leave a
140 // G4CylindricalSurface. Arguments:
141 // - first (input) argument is +1 to leave or -1 to enter
142 // - second (input) argument is a pointer to the Ray
143 // - third (output) argument returns the intersection point.
144
145 virtual G4double distanceAlongHelix( G4int which_way, const Helix* hx,
146 G4Vector3D& p ) const;
147 // Returns the distance along a Helix to enter or leave a
148 // G4CylindricalSurface. Arguments:
149 // - first (input) argument is +1 to leave or -1 to enter
150 // - second (input) argument is a pointer to the Helix
151 // - third (output) argument returns the intersection point.
152
153 virtual void rotate( G4double alpha, G4double beta,
154 G4double gamma, G4ThreeMat& m, G4int inverse );
155 // Rotates the G4CylindricalSurface (the angles are assumed to be given
156 // in radians). Arguments:
157 // - first about global x-axis by angle alpha,
158 // - second about global y-axis by angle beta,
159 // - third about global z-axis by angle gamma
160 // - fourth (output) argument gives the calculated rotation matrix
161 // - fifth (input) argument is an integer flag which if non-zero
162 // reverses the order of the rotations
163
164 virtual void rotate( G4double alpha, G4double beta,
165 G4double gamma, G4int inverse );
166 // Rotates the G4CylindricalSurface (the angles are assumed to be given
167 // in radians). Arguments:
168 // - first about global x-axis by angle alpha,
169 // - second about global y-axis by angle beta,
170 // - third about global z-axis by angle gamma
171 // - fourth (input) argument is an integer flag which if non-zero
172 // reverses the order of the rotations
173*/
174
175
176 protected: // make available to derived classes
177
178 G4Vector3D axis;
179 // Direction of axis of G4CylindricalSurface (unit vector).
180
181 G4double radius;
182 // Radius of G4CylindricalSurface.
183
184
185 private:
186
187 G4CylindricalSurface(const G4CylindricalSurface&);
188 G4CylindricalSurface& operator=(const G4CylindricalSurface&);
189 // Private copy constructor and assignment operator.
190
191/*
192 virtual G4double gropeAlongHelix( const Helix* hx ) const;
193 // Private function to use a crude technique to find the intersection
194 // of a Helix with a G4CylindricalSurface. It returns the turning angle
195 // along the Helix at which the intersection occurs or -1.0 if no
196 // intersection point is found. The argument to the call is the pointer
197 // to the Helix.
198*/
199
200};
201
202#include "G4CylindricalSurface.icc"
203
204#endif
205
Note: See TracBrowser for help on using the repository browser.