source: trunk/source/geometry/solids/BREPS/include/G4CylindricalSurface.hh @ 1202

Last change on this file since 1202 was 1058, checked in by garnier, 15 years ago

file release beta

File size: 8.4 KB
Line 
1//
2// ********************************************************************
3// * License and Disclaimer                                           *
4// *                                                                  *
5// * The  Geant4 software  is  copyright of the Copyright Holders  of *
6// * the Geant4 Collaboration.  It is provided  under  the terms  and *
7// * conditions of the Geant4 Software License,  included in the file *
8// * LICENSE and available at  http://cern.ch/geant4/license .  These *
9// * include a list of copyright holders.                             *
10// *                                                                  *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work  make  any representation or  warranty, express or implied, *
14// * regarding  this  software system or assume any liability for its *
15// * use.  Please see the license in the file  LICENSE  and URL above *
16// * for the full disclaimer and the limitation of liability.         *
17// *                                                                  *
18// * This  code  implementation is the result of  the  scientific and *
19// * technical work of the GEANT4 collaboration.                      *
20// * By using,  copying,  modifying or  distributing the software (or *
21// * any work based  on the software)  you  agree  to acknowledge its *
22// * use  in  resulting  scientific  publications,  and indicate your *
23// * acceptance of all terms of the Geant4 Software license.          *
24// ********************************************************************
25//
26//
27// $Id: G4CylindricalSurface.hh,v 1.10 2006/06/29 18:39:12 gunter Exp $
28// GEANT4 tag $Name: geant4-09-02-ref-02 $
29//
30// ----------------------------------------------------------------------
31// Class G4CylindricalSurface
32//
33// Class Description:
34//   
35// Definition of a generic cylindrical surface.
36
37// The code for G4CylindricalSurface has been derived from the original
38// implementation in the "Gismo" package.
39//
40// Author: A.Breakstone
41// Adaptation: J.Sulkimo, P.Urban.
42// Revisions by: L.Broglia, G.Cosmo.
43// ----------------------------------------------------------------------
44#ifndef __G4CYLINDERSURFACE_H
45#define __G4CYLINDERSURFACE_H
46
47#include "G4Surface.hh"
48
49class G4CylindricalSurface : public G4Surface
50{
51
52 public:  // with description
53
54  G4CylindricalSurface();
55    // Default constructor.
56
57  G4CylindricalSurface( const G4Vector3D& o, const G4Vector3D& a, G4double r ); 
58    // Normal constructor:
59    // - first argument is the origin of the G4CylindricalSurface
60    // - second argument is the axis of the G4CylindricalSurface
61    // - third argument is the radius of the G4CylindricalSurface.
62
63  virtual ~G4CylindricalSurface();
64    // Destructor.
65
66  inline G4int operator==( const G4CylindricalSurface& c ) const;
67    // Equality operator.
68
69  inline G4String GetEntityType() const;
70    // Returns the shape identifier.
71
72  virtual const char* NameOf() const;
73    // Returns the class name.
74
75  virtual void PrintOn( std::ostream& os = G4cout ) const;
76    // Printing function, streaming surface's attributes.
77
78  virtual G4double HowNear( const G4Vector3D& x ) const;
79    // Returns the distance from a point to a G4CylindricalSurface.
80    // The point x is the (input) argument.
81    // The distance is positive if the point is Inside, negative otherwise.
82
83  virtual G4Vector3D Normal( const G4Vector3D& p ) const;
84    // Returns the Normal unit vector to a G4CylindricalSurface at a point p
85    // on (or nearly on) the G4CylindricalSurface.
86
87  virtual G4Vector3D SurfaceNormal( const G4Point3D& p ) const; 
88    // Returns the Normal unit vector to the G4CylindricalSurface at a point
89    // p on (or nearly on) the G4CylindricalSurface.
90
91  virtual G4int Inside( const G4Vector3D& x ) const;
92    // Returns 1 if the point x is Inside the G4CylindricalSurface,
93    // returns 0 otherwise.
94    // Outside means that the distance to the G4CylindricalSurface would
95    // be negative.
96    // Uses the HowNear() function to calculate this distance.
97
98  virtual G4int WithinBoundary( const G4Vector3D& x ) const;
99    // Function overwritten by finite-sized derived classes which returns
100    // 1 if the point x is within the boundary, 0 otherwise.
101    // Since a G4CylindricalSurface is infinite in extent, the function will
102    // just check if the point is on the G4CylindricalSurface (to the surface
103    // precision).
104
105  virtual G4double Scale() const;
106    // Function overwritten by finite-sized derived classes which returns
107    // the radius, unless it is zero, in which case it returns the smallest
108    // non-zero dimension.
109    // Used for Scale-invariant tests of surface thickness.
110
111  G4int Intersect(const G4Ray& ry);
112    // Returns the distance along a Ray (straight line with G4Vector3D) to
113    // leave or enter a G4CylindricalSurface.
114    // If the G4Vector3D of the Ray is opposite to that of the Normal to
115    // the G4CylindricalSurface at the intersection point, it will not leave
116    // the G4CylindricalSurface.
117    // Similarly, if the G4Vector3D of the Ray is along that of the Normal
118    // to the G4CylindricalSurface at the intersection point, it will not enter
119    // the G4CylindricalSurface.
120    // This method is called by all finite shapes sub-classed to
121    // G4CylindricalSurface.
122    // A negative result means no intersection.
123    // If no valid intersection point is found, the distance and intersection
124    // point are set to large numbers.
125
126  inline G4Vector3D GetAxis() const;
127  inline G4double GetRadius() const;
128    // Return the axis and radius of the G4CylindricalSurface.
129
130  void SetRadius( G4double r );
131    // Changes the radius of the G4CylindricalSurface.
132    // Requires radius to be non-negative.
133
134 public:  // without description
135
136/*
137  virtual G4double distanceAlongRay( G4int which_way, const G4Ray* ry,
138                                     G4Vector3D& p ) const;
139    // Returns the distance along a Ray to enter or leave a
140    // G4CylindricalSurface. Arguments:
141    // - first (input) argument is +1 to leave or -1 to enter
142    // - second (input) argument is a pointer to the Ray
143    // - third (output) argument returns the intersection point.
144
145  virtual G4double distanceAlongHelix( G4int which_way, const Helix* hx,
146                                       G4Vector3D& p ) const;
147    // Returns the distance along a Helix to enter or leave a
148    // G4CylindricalSurface. Arguments:
149    // - first (input) argument is +1 to leave or -1 to enter
150    // - second (input) argument is a pointer to the Helix
151    // - third (output) argument returns the intersection point.
152
153  virtual void rotate( G4double alpha, G4double beta,
154                       G4double gamma, G4ThreeMat& m, G4int inverse );
155    // Rotates the G4CylindricalSurface (the angles are assumed to be given
156    // in radians). Arguments:
157    // - first about global x-axis by angle alpha,
158    // - second about global y-axis by angle beta,
159    // - third about global z-axis by angle gamma
160    // - fourth (output) argument gives the calculated rotation matrix
161    // - fifth (input) argument is an integer flag which if non-zero
162    //   reverses the order of the rotations
163
164  virtual void rotate( G4double alpha, G4double beta,
165                       G4double gamma, G4int inverse );
166    // Rotates the G4CylindricalSurface (the angles are assumed to be given
167    // in radians). Arguments:
168    // - first about global x-axis by angle alpha,
169    // - second about global y-axis by angle beta,
170    // - third about global z-axis by angle gamma
171    // - fourth (input) argument is an integer flag which if non-zero
172    //   reverses the order of the rotations
173*/
174
175
176 protected:          // make available to derived classes
177
178  G4Vector3D axis;
179    // Direction of axis of G4CylindricalSurface (unit vector).
180
181  G4double radius;
182    // Radius of G4CylindricalSurface.
183
184
185 private:
186
187  G4CylindricalSurface(const G4CylindricalSurface&);
188  G4CylindricalSurface& operator=(const G4CylindricalSurface&);
189    // Private copy constructor and assignment operator.
190
191/*
192  virtual G4double gropeAlongHelix( const Helix* hx ) const;
193    // Private function to use a crude technique to find the intersection
194    // of a Helix with a G4CylindricalSurface. It returns the turning angle
195    // along the Helix at which the intersection occurs or -1.0 if no
196    // intersection point is found.  The argument to the call is the pointer
197    // to the Helix.
198*/
199
200};
201
202#include "G4CylindricalSurface.icc"
203
204#endif
205
Note: See TracBrowser for help on using the repository browser.