| [831] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4Ellipse.icc,v 1.8 2006/06/29 18:39:18 gunter Exp $
|
|---|
| [1058] | 28 | // GEANT4 tag $Name: geant4-09-02-ref-02 $
|
|---|
| [831] | 29 | //
|
|---|
| 30 | // --------------------------------------------------------------------
|
|---|
| 31 | // GEANT 4 inline definitions file
|
|---|
| 32 | //
|
|---|
| 33 | // G4Ellipse.icc
|
|---|
| 34 | //
|
|---|
| 35 | // Implementation of inline methods of G4Ellipse
|
|---|
| 36 | // --------------------------------------------------------------------
|
|---|
| 37 |
|
|---|
| 38 | inline
|
|---|
| 39 | void G4Ellipse::Init(const G4Axis2Placement3D& position0,
|
|---|
| 40 | G4double semiAxis10, G4double semiAxis20)
|
|---|
| 41 | {
|
|---|
| 42 | position= position0;
|
|---|
| 43 | semiAxis1= semiAxis10;
|
|---|
| 44 | semiAxis2= semiAxis20;
|
|---|
| 45 |
|
|---|
| 46 | ratioAxis2Axis1= semiAxis2/semiAxis1;
|
|---|
| 47 |
|
|---|
| 48 | SetBounds(0, 0);
|
|---|
| 49 |
|
|---|
| 50 | // needed only for 2D ellipses
|
|---|
| 51 | toUnitCircle = G4Scale3D(1/semiAxis1, 1/semiAxis2, 0)
|
|---|
| 52 | * position.GetToPlacementCoordinates();
|
|---|
| 53 |
|
|---|
| 54 | forTangent= -semiAxis1*semiAxis1/(semiAxis2*semiAxis2);
|
|---|
| 55 | }
|
|---|
| 56 |
|
|---|
| 57 | inline
|
|---|
| 58 | G4double G4Ellipse::GetSemiAxis1() const
|
|---|
| 59 | {
|
|---|
| 60 | return semiAxis1;
|
|---|
| 61 | }
|
|---|
| 62 |
|
|---|
| 63 | inline
|
|---|
| 64 | G4double G4Ellipse::GetSemiAxis2() const
|
|---|
| 65 | {
|
|---|
| 66 | return semiAxis2;
|
|---|
| 67 | }
|
|---|
| 68 |
|
|---|
| 69 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 70 |
|
|---|
| 71 | inline
|
|---|
| 72 | G4double G4Ellipse::GetPMax() const
|
|---|
| 73 | {
|
|---|
| 74 | return twopi;
|
|---|
| 75 | }
|
|---|
| 76 |
|
|---|
| 77 | inline
|
|---|
| 78 | G4Point3D G4Ellipse::GetPoint(G4double param) const
|
|---|
| 79 | {
|
|---|
| 80 | param-= GetPShift();
|
|---|
| 81 | return G4Point3D( position.GetLocation()
|
|---|
| 82 | + semiAxis1*std::cos(param)*position.GetPX()
|
|---|
| 83 | + semiAxis2*std::sin(param)*position.GetPY() );
|
|---|
| 84 | }
|
|---|
| 85 |
|
|---|
| 86 | inline
|
|---|
| 87 | G4double G4Ellipse::GetPPoint(const G4Point3D& pt) const
|
|---|
| 88 | {
|
|---|
| 89 | G4Point3D ptLocal= position.GetToPlacementCoordinates()*pt;
|
|---|
| 90 | G4double angle= std::atan2(ptLocal.y(), ptLocal.x()*ratioAxis2Axis1);
|
|---|
| 91 | G4double r= (angle<0)? angle+twopi: angle;
|
|---|
| 92 | return r+GetPShift();
|
|---|
| 93 | }
|
|---|
| 94 |
|
|---|
| 95 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 96 |
|
|---|
| 97 | #include "G4CurveRayIntersection.hh"
|
|---|
| 98 |
|
|---|
| 99 | /*
|
|---|
| 100 | inline
|
|---|
| 101 | void G4Ellipse::IntersectRay2D(const G4Ray& ray,
|
|---|
| 102 | G4CurveRayIntersection& is)
|
|---|
| 103 | {
|
|---|
| 104 | is.Init(*this, ray);
|
|---|
| 105 |
|
|---|
| 106 | // transform s.t. the ellipse becomes the unit circle
|
|---|
| 107 | // with the center at the origin
|
|---|
| 108 |
|
|---|
| 109 | // 2D operations would be faster
|
|---|
| 110 | G4Point3D s= toUnitCircle*ray.GetStart();
|
|---|
| 111 | G4Vector3D d= toUnitCircle*ray.GetDir();
|
|---|
| 112 |
|
|---|
| 113 | // solve (s+i*t)^2 = 1 for i (the distance)
|
|---|
| 114 |
|
|---|
| 115 | G4double sd= s*d;
|
|---|
| 116 | G4double dd= d.mag2(); // never 0
|
|---|
| 117 | G4double ss= s.mag2();
|
|---|
| 118 |
|
|---|
| 119 | G4double discr= sd*sd-dd*(ss-1);
|
|---|
| 120 | if (discr >= 0) {
|
|---|
| 121 |
|
|---|
| 122 | // 2 intersections (maybe 1, but this case is rare)
|
|---|
| 123 | G4double sqrtdiscr= std::sqrt(discr);
|
|---|
| 124 | // find the smallest positive i
|
|---|
| 125 | G4double i= -sd-sqrtdiscr;
|
|---|
| 126 | if (i<kCarTolerance) {
|
|---|
| 127 | i= -sd+sqrtdiscr;
|
|---|
| 128 | if (i<kCarTolerance) {
|
|---|
| 129 | return;
|
|---|
| 130 | }
|
|---|
| 131 | }
|
|---|
| 132 | i/= dd;
|
|---|
| 133 | G4CurveRayIntersection isTmp(*this, ray);
|
|---|
| 134 | isTmp.ResetDistance(i);
|
|---|
| 135 | is.Update(isTmp);
|
|---|
| 136 |
|
|---|
| 137 | }
|
|---|
| 138 | }
|
|---|
| 139 | */
|
|---|
| 140 |
|
|---|
| 141 | inline
|
|---|
| 142 | G4int G4Ellipse::IntersectRay2D(const G4Ray& ray)
|
|---|
| 143 | {
|
|---|
| 144 | // transform s.t. the ellipse becomes the unit circle
|
|---|
| 145 | // with the center at the origin
|
|---|
| 146 |
|
|---|
| 147 | // 2D operations would be faster
|
|---|
| 148 | G4Point3D s= toUnitCircle*ray.GetStart();
|
|---|
| 149 | G4Vector3D d= toUnitCircle*ray.GetDir();
|
|---|
| 150 |
|
|---|
| 151 | // solve (s+i*t)^2 = 1 for i (the distance)
|
|---|
| 152 | G4double sd= s*d;
|
|---|
| 153 | G4double dd= d.mag2(); // never 0
|
|---|
| 154 | G4double ss= s.mag2();
|
|---|
| 155 |
|
|---|
| 156 | G4double discr= sd*sd-dd*(ss-1);
|
|---|
| 157 | G4int nbinter = 0;
|
|---|
| 158 | G4double i;
|
|---|
| 159 |
|
|---|
| 160 | if (discr > 0)
|
|---|
| 161 | {
|
|---|
| 162 | // 2 intersections
|
|---|
| 163 | G4double sqrtdiscr= std::sqrt(discr);
|
|---|
| 164 |
|
|---|
| 165 | // if i is positive, we have an intersection
|
|---|
| 166 | i= -sd-sqrtdiscr;
|
|---|
| 167 | if (i > kCarTolerance)
|
|---|
| 168 | nbinter++;
|
|---|
| 169 |
|
|---|
| 170 | i= -sd+sqrtdiscr;
|
|---|
| 171 | if (i > kCarTolerance)
|
|---|
| 172 | nbinter++;
|
|---|
| 173 | }
|
|---|
| 174 |
|
|---|
| 175 | // if the ray is tangent on the circle
|
|---|
| 176 | if (discr == 0)
|
|---|
| 177 | nbinter = 1;
|
|---|
| 178 |
|
|---|
| 179 | return nbinter;
|
|---|
| 180 | }
|
|---|