| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4Hyperbola.icc,v 1.9 2006/06/29 18:39:38 gunter Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-04-beta-01 $
|
|---|
| 29 | //
|
|---|
| 30 | // --------------------------------------------------------------------
|
|---|
| 31 | // GEANT 4 inline definitions file
|
|---|
| 32 | //
|
|---|
| 33 | // G4Hyperbola.icc
|
|---|
| 34 | //
|
|---|
| 35 | // Implementation of inline methods of G4Hyperbola
|
|---|
| 36 | // --------------------------------------------------------------------
|
|---|
| 37 |
|
|---|
| 38 | inline
|
|---|
| 39 | void G4Hyperbola::Init(G4Axis2Placement3D position0,
|
|---|
| 40 | G4double semiAxis0, G4double semiImagAxis0)
|
|---|
| 41 | {
|
|---|
| 42 | position= position0;
|
|---|
| 43 | semiAxis= semiAxis0;
|
|---|
| 44 | semiImagAxis= semiImagAxis0;
|
|---|
| 45 |
|
|---|
| 46 | ratioAxisImagAxis= semiAxis/semiImagAxis;
|
|---|
| 47 |
|
|---|
| 48 | // needed only for 2D hyperbolas
|
|---|
| 49 | toUnitHyperbola = G4Scale3D(1/semiAxis, 1/semiImagAxis, 0)
|
|---|
| 50 | * position.GetToPlacementCoordinates();
|
|---|
| 51 |
|
|---|
| 52 | forTangent= semiAxis*semiAxis/(semiImagAxis*semiImagAxis);
|
|---|
| 53 | }
|
|---|
| 54 |
|
|---|
| 55 | inline
|
|---|
| 56 | G4double G4Hyperbola::GetSemiAxis() const
|
|---|
| 57 | {
|
|---|
| 58 | return semiAxis;
|
|---|
| 59 | }
|
|---|
| 60 |
|
|---|
| 61 | inline
|
|---|
| 62 | G4double G4Hyperbola::GetSemiImagAxis() const
|
|---|
| 63 | {
|
|---|
| 64 | return semiImagAxis;
|
|---|
| 65 | }
|
|---|
| 66 |
|
|---|
| 67 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 68 |
|
|---|
| 69 | inline
|
|---|
| 70 | G4double G4Hyperbola::GetPMax() const
|
|---|
| 71 | {
|
|---|
| 72 | return -1;
|
|---|
| 73 | }
|
|---|
| 74 |
|
|---|
| 75 | inline
|
|---|
| 76 | G4Point3D G4Hyperbola::GetPoint(G4double param) const
|
|---|
| 77 | {
|
|---|
| 78 | return G4Point3D( position.GetLocation()
|
|---|
| 79 | + semiAxis*std::cosh(param)*position.GetPX()
|
|---|
| 80 | + semiImagAxis*std::sinh(param)*position.GetPY() );
|
|---|
| 81 | }
|
|---|
| 82 |
|
|---|
| 83 | inline
|
|---|
| 84 | G4double G4Hyperbola::GetPPoint(const G4Point3D& pt) const
|
|---|
| 85 | {
|
|---|
| 86 | G4Point3D ptLocal= position.GetToPlacementCoordinates()*pt;
|
|---|
| 87 | G4double xval= ptLocal.y()/ptLocal.x()*ratioAxisImagAxis;
|
|---|
| 88 | return 0.5*std::log((1+xval)/(1-xval)); // atanh(xval)
|
|---|
| 89 | }
|
|---|
| 90 |
|
|---|
| 91 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 92 |
|
|---|
| 93 | /*
|
|---|
| 94 | #include "G4CurveRayIntersection.hh"
|
|---|
| 95 |
|
|---|
| 96 | inline
|
|---|
| 97 | void G4Hyperbola::IntersectRay2D(const G4Ray& ray,
|
|---|
| 98 | G4CurveRayIntersection& is)
|
|---|
| 99 | {
|
|---|
| 100 | is.Init(*this, ray);
|
|---|
| 101 |
|
|---|
| 102 | // similar to G4Ellipse::IntersectRay2D
|
|---|
| 103 |
|
|---|
| 104 | // 2D operations would be faster
|
|---|
| 105 | G4Point3D s= toUnitHyperbola*ray.GetStart();
|
|---|
| 106 | G4Vector3D d= toUnitHyperbola*ray.GetDir();
|
|---|
| 107 |
|
|---|
| 108 | // solve (s+i*t)^2 = 1 for i (the distance)
|
|---|
| 109 |
|
|---|
| 110 | G4double sd= s.x()*d.x()-s.y()*d.y();
|
|---|
| 111 | G4double dd= d.x()*d.x()-d.y()*d.y(); // can be 0
|
|---|
| 112 | G4double ss= s.x()*s.x()-s.y()*s.y();
|
|---|
| 113 |
|
|---|
| 114 | if (std::abs(dd) < kCarTolerance*kCarTolerance) {
|
|---|
| 115 |
|
|---|
| 116 | // coeff of i^2 == 0
|
|---|
| 117 | G4double i= (1-ss)/(2*sd);
|
|---|
| 118 | G4CurveRayIntersection isTmp(*this, ray);
|
|---|
| 119 | isTmp.ResetDistance(i);
|
|---|
| 120 | is.Update(isTmp);
|
|---|
| 121 | return;
|
|---|
| 122 |
|
|---|
| 123 | }
|
|---|
| 124 |
|
|---|
| 125 | G4double discr= sd*sd-dd*(ss-1);
|
|---|
| 126 | if (discr >= 0) {
|
|---|
| 127 |
|
|---|
| 128 | // 2 intersections (maybe 1, but this case is rare)
|
|---|
| 129 | G4double sqrtdiscr= std::sqrt(discr);
|
|---|
| 130 | // find the smallest positive i
|
|---|
| 131 | G4double i= -sd-sqrtdiscr;
|
|---|
| 132 | if (i<kCarTolerance) {
|
|---|
| 133 | i= -sd+sqrtdiscr;
|
|---|
| 134 | if (i<kCarTolerance) {
|
|---|
| 135 | return;
|
|---|
| 136 | }
|
|---|
| 137 | }
|
|---|
| 138 | i/= dd;
|
|---|
| 139 | G4CurveRayIntersection isTmp(*this, ray);
|
|---|
| 140 | isTmp.ResetDistance(i);
|
|---|
| 141 | is.Update(isTmp);
|
|---|
| 142 |
|
|---|
| 143 | }
|
|---|
| 144 | }
|
|---|
| 145 | */
|
|---|
| 146 |
|
|---|
| 147 | inline
|
|---|
| 148 | G4int G4Hyperbola::IntersectRay2D(const G4Ray& ray)
|
|---|
| 149 | {
|
|---|
| 150 | // NOT VERIFIED
|
|---|
| 151 |
|
|---|
| 152 | // similar to G4Ellipse::IntersectRay2D
|
|---|
| 153 |
|
|---|
| 154 | // 2D operations would be faster
|
|---|
| 155 | G4Point3D s= toUnitHyperbola*ray.GetStart();
|
|---|
| 156 | G4Vector3D d= toUnitHyperbola*ray.GetDir();
|
|---|
| 157 |
|
|---|
| 158 | // solve (s+i*t)^2 = 1 for i (the distance)
|
|---|
| 159 |
|
|---|
| 160 | G4double sd= s.x()*d.x()-s.y()*d.y();
|
|---|
| 161 | G4double dd= d.x()*d.x()-d.y()*d.y(); // can be 0
|
|---|
| 162 | G4double ss= s.x()*s.x()-s.y()*s.y();
|
|---|
| 163 |
|
|---|
| 164 | if (std::abs(dd) < kCarTolerance*kCarTolerance) {
|
|---|
| 165 |
|
|---|
| 166 | // coeff of i^2 == 0
|
|---|
| 167 | return 0;
|
|---|
| 168 |
|
|---|
| 169 | }
|
|---|
| 170 |
|
|---|
| 171 | G4int nbinter = 0;
|
|---|
| 172 |
|
|---|
| 173 | G4double discr= sd*sd-dd*(ss-1);
|
|---|
| 174 | if (discr >= 0)
|
|---|
| 175 | {
|
|---|
| 176 | // 2 intersections (maybe 1, but this case is rare)
|
|---|
| 177 | G4double sqrtdiscr= std::sqrt(discr);
|
|---|
| 178 | // find the smallest positive i
|
|---|
| 179 | G4double i= -sd-sqrtdiscr;
|
|---|
| 180 | if (i > kCarTolerance)
|
|---|
| 181 | nbinter++;
|
|---|
| 182 |
|
|---|
| 183 | i= -sd+sqrtdiscr;
|
|---|
| 184 | if (i<kCarTolerance)
|
|---|
| 185 | nbinter++;
|
|---|
| 186 | }
|
|---|
| 187 |
|
|---|
| 188 | return nbinter;
|
|---|
| 189 | }
|
|---|