source: trunk/source/geometry/solids/BREPS/include/G4SphericalSurface.hh@ 1315

Last change on this file since 1315 was 1228, checked in by garnier, 16 years ago

update geant4.9.3 tag

File size: 10.1 KB
RevLine 
[831]1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4SphericalSurface.hh,v 1.10 2006/06/29 18:40:36 gunter Exp $
[1228]28// GEANT4 tag $Name: geant4-09-03 $
[831]29//
30// ----------------------------------------------------------------------
31// Class G4SphericalSurface
32//
33// Class description:
34//
35// Definition of a spherical surface.
36
37// The code for G4SphericalSurface has been derived from the original
38// implementation in the "Gismo" package.
39//
40// Authors: L.Lim, A.Breakstone.
41// Adaptation: J.Sulkimo, P.Urban.
42// Revisions by: L.Broglia, G.Cosmo.
43// ----------------------------------------------------------------------
44#ifndef __G4SpheShell_H
45#define __G4SpheShell_H
46
47#include "G4Surface.hh"
48#include "G4ThreeMat.hh"
49
50class G4SphericalSurface : public G4Surface
51{
52
53public: // with description
54
55 G4SphericalSurface();
56 // Default constructor.
57
58 G4SphericalSurface( const G4Vector3D& o,
59 const G4Vector3D& xhat, const G4Vector3D& zhat,
60 G4double r,
61 G4double ph1, G4double ph2,
62 G4double th1, G4double th2 );
63 // Normal constructor:
64 // first argument is the origin of the G4SphericalSurface
65 // second argument is the axis of the G4SphericalSurface
66 // which defines azimuthal angle equals zero
67 // third argument is the axis of the G4SphericalSurface
68 // which defines polar angle equals zero
69 // fourth argument is the radius of the G4SphericalSurface
70 // fifth argument is the lower azimuthal angle limit of the surface
71 // sixth argument is the upper azimuthal angle limit of the surface
72 // seventh argument is the lower polar angle limit of the surface
73 // eigth argument is the upper polar angle limit of the surface
74
75 virtual ~G4SphericalSurface();
76 // Destructor.
77
78 inline G4int operator==( const G4SphericalSurface& s );
79 // Equality operator.
80
81 inline G4String GetEntityType() const;
82 // Returns the type identifier.
83
84 virtual const char* NameOf() const;
85 // Returns the class name.
86
87 virtual void PrintOn( std::ostream& os = G4cout ) const;
88 // Printing function, streaming surface's attributes.
89
90 G4int Intersect(const G4Ray&);
91 // Returns the distance along a Ray (straight line with G4Vector3D) to
92 // leave or enter a G4SphericalSurface.
93 // If the G4Vector3D of the Ray is opposite to that of the Normal to
94 // the G4SphericalSurface at the intersection point, it will not leave the
95 // G4SphericalSurface.
96 // Similarly, if the G4Vector3D of the Ray is along that of the Normal
97 // to the G4SphericalSurface at the intersection point, it will not enter
98 // the G4SphericalSurface.
99 // This method is called by all finite shapes sub-classed to
100 // G4SphericalSurface.
101 // A negative result means no intersection.
102 // If no valid intersection point is found, set the distance
103 // and intersection point to large numbers.
104
105 void CalcBBox();
106 // Computes the bounding-box.
107
108 inline void Comp(G4Vector3D& v, G4Point3D& min , G4Point3D& max);
109 // Compares the x,y and z values of v and min
110 // versus v and max. min/max-values are replaced if
111 // greater/smaller than v-values.
112
113 virtual G4double HowNear( const G4Vector3D& x ) const;
114 // Returns the distance from a point to a G4SphericalSurface
115 // The point x is the (input) argument.
116 // The distance is positive if the point is Inside, negative if it
117 // is outside
118
119 virtual G4Vector3D SurfaceNormal( const G4Point3D& p ) const;
120 // Returns the Normal unit vector to the G4SphericalSurface at a point p
121 // on (or nearly on) the G4SphericalSurface.
122
123 virtual G4int Inside( const G4Vector3D& x ) const;
124 // Returns 1 if the point x is Inside the G4SphericalSurface, 0 otherwise.
125
126 virtual G4int WithinBoundary( const G4Vector3D& x ) const;
127 // Returns 1 if the point x is within the boundary, 0 otherwise.
128
129 virtual G4double Scale() const;
130 // Returns the radius, unless it is zero, in which case it
131 // returns 1. Used for Scale-invariant tests of surface thickness.
132
133 virtual G4double Area() const;
134 // Calculates the area of a G4SphericalSurface.
135
136 virtual void resize( G4double r, G4double ph1, G4double ph2,
137 G4double th1, G4double th2);
138 // Resizes the G4SphericalSurface to new radius and angle limits.
139 // first argument is the radius of the G4SphericalSurface
140 // second argument is the lower azimuthal angle limit of the surface
141 // third argument is the upper azimuthal angle limit of the surface
142 // fourth argument is the lower polar angle limit of the surface
143 // fifth argument is the upper polar angle limit of the surface
144
145 inline G4Vector3D GetXAxis() const;
146 inline G4Vector3D GetZAxis() const;
147 inline G4double GetRadius() const;
148 inline G4double GetPhi1() const;
149 inline G4double GetPhi2() const;
150 inline G4double GetTheta1() const;
151 inline G4double GetTheta2() const;
152 // Accessors methodss to return the axes, radius, and angles
153 // of the G4SphericalSurface.
154
155public: // without description
156
157 virtual G4Vector3D Normal( const G4Vector3D& p ) const;
158 // Returns the Normal unit vector as for SurfaceNormal().
159
160/*
161 virtual G4double distanceAlongRay( G4int which_way, const G4Ray* ry,
162 G4ThreeVec& p ) const;
163 // Returns the distance along a Ray to enter or leave a G4SphericalSurface.
164 // The first (input) argument is +1 to leave or -1 to enter
165 // The second (input) argument is a pointer to the Ray
166 // The third (output) argument returns the intersection point.
167
168 virtual G4double distanceAlongHelix( G4int which_way, const Helix* hx,
169 G4ThreeVec& p ) const;
170 // Returns the distance along a Helix to enter or leave a G4SphericalSurface.
171 // The first (input) argument is +1 to leave or -1 to enter
172 // The second (input) argument is a pointer to the Helix
173 // The third (output) argument returns the intersection point.
174
175 virtual G4Vector3D Normal( const G4Point3D& p ) const;
176 // Returns the Normal unit vector to a G4SphericalSurface at a point p
177 // on (or nearly on) the G4SphericalSurface.
178
179 virtual void rotate( G4double alpha, G4double beta,
180 G4double gamma, G4ThreeMat& m, G4int inverse );
181 // Rotates the G4SphericalSurface (angles are assumed to be given in
182 // radians), arguments:
183 // - first about global x_axis by angle alpha,
184 // - second about global y-axis by angle beta,
185 // - third about global z_axis by angle gamma,
186 // - fourth (output) argument gives the calculated rotation matrix,
187 // - fifth (input) argument is an integer flag which if
188 // non-zero reverses the order of the rotations.
189
190 virtual void rotate( G4double alpha, G4double beta,
191 G4double gamma, G4int inverse );
192 // Rotates the G4SphericalSurface (angles are assumed to be given in
193 // radians), arguments:
194 // - first about global x_axis by angle alpha,
195 // - second about global y-axis by angle beta,
196 // - third about global z_axis by angle gamma,
197 // - fourth (input) argument is an integer flag which if
198 // non-zero reverses the order of the rotations.
199*/
200
201protected: // with description
202
203 G4Vector3D x_axis;
204 // Direction (unit vector) of axis of G4SphericalSurface
205 // which defines azimuthal angle of zero.
206
207 G4Vector3D z_axis;
208 // Direction (unit vector) of axis of G4SphericalSurface
209 // which defines polar angle of zero.
210
211 G4double radius;
212 // Radius of G4SphericalSurface.
213
214 G4double phi_1;
215 // Lower azimuthal angle limit of G4SphericalSurface
216 // (in radians). Allowed range: 0 <= phi_1 < 2*PI.
217
218 G4double phi_2;
219 // Upper azimuthal angle limit of G4SphericalSurface
220 // (in radians). Allowed range: phi_1 < phi_2 <= phi_1 + 2*PI
221
222 G4double theta_1;
223 // Lower polar angle limit of G4SphericalSurface
224 // (in radians). Allowed range: 0 <= theta_1 < PI.
225
226 G4double theta_2;
227 // Upper polar angle limit of G4SphericalSurface
228 // (in radians). Allowed range: theta_1 < theta_2 <= theta_1 + PI.
229
230private:
231
232 G4SphericalSurface(const G4SphericalSurface&);
233 G4SphericalSurface& operator=(const G4SphericalSurface&);
234 // Private copy constructor and assignment operator.
235
236 // virtual G4double gropeAlongHelix( const Helix* hx ) const;
237 // Private function to use a crude technique to find the intersection
238 // of a Helix with a G4SphericalSurface. It returns the turning angle
239 // along the Helix at which the intersection occurs or -1.0 if no
240 // intersection point is found. The argument to the call is the pointer
241 // to the Helix.
242
243};
244
245#include "G4SphericalSurface.icc"
246
247#endif
Note: See TracBrowser for help on using the repository browser.