// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4SphericalSurface.hh,v 1.10 2006/06/29 18:40:36 gunter Exp $ // GEANT4 tag $Name: geant4-09-02-ref-02 $ // // ---------------------------------------------------------------------- // Class G4SphericalSurface // // Class description: // // Definition of a spherical surface. // The code for G4SphericalSurface has been derived from the original // implementation in the "Gismo" package. // // Authors: L.Lim, A.Breakstone. // Adaptation: J.Sulkimo, P.Urban. // Revisions by: L.Broglia, G.Cosmo. // ---------------------------------------------------------------------- #ifndef __G4SpheShell_H #define __G4SpheShell_H #include "G4Surface.hh" #include "G4ThreeMat.hh" class G4SphericalSurface : public G4Surface { public: // with description G4SphericalSurface(); // Default constructor. G4SphericalSurface( const G4Vector3D& o, const G4Vector3D& xhat, const G4Vector3D& zhat, G4double r, G4double ph1, G4double ph2, G4double th1, G4double th2 ); // Normal constructor: // first argument is the origin of the G4SphericalSurface // second argument is the axis of the G4SphericalSurface // which defines azimuthal angle equals zero // third argument is the axis of the G4SphericalSurface // which defines polar angle equals zero // fourth argument is the radius of the G4SphericalSurface // fifth argument is the lower azimuthal angle limit of the surface // sixth argument is the upper azimuthal angle limit of the surface // seventh argument is the lower polar angle limit of the surface // eigth argument is the upper polar angle limit of the surface virtual ~G4SphericalSurface(); // Destructor. inline G4int operator==( const G4SphericalSurface& s ); // Equality operator. inline G4String GetEntityType() const; // Returns the type identifier. virtual const char* NameOf() const; // Returns the class name. virtual void PrintOn( std::ostream& os = G4cout ) const; // Printing function, streaming surface's attributes. G4int Intersect(const G4Ray&); // Returns the distance along a Ray (straight line with G4Vector3D) to // leave or enter a G4SphericalSurface. // If the G4Vector3D of the Ray is opposite to that of the Normal to // the G4SphericalSurface at the intersection point, it will not leave the // G4SphericalSurface. // Similarly, if the G4Vector3D of the Ray is along that of the Normal // to the G4SphericalSurface at the intersection point, it will not enter // the G4SphericalSurface. // This method is called by all finite shapes sub-classed to // G4SphericalSurface. // A negative result means no intersection. // If no valid intersection point is found, set the distance // and intersection point to large numbers. void CalcBBox(); // Computes the bounding-box. inline void Comp(G4Vector3D& v, G4Point3D& min , G4Point3D& max); // Compares the x,y and z values of v and min // versus v and max. min/max-values are replaced if // greater/smaller than v-values. virtual G4double HowNear( const G4Vector3D& x ) const; // Returns the distance from a point to a G4SphericalSurface // The point x is the (input) argument. // The distance is positive if the point is Inside, negative if it // is outside virtual G4Vector3D SurfaceNormal( const G4Point3D& p ) const; // Returns the Normal unit vector to the G4SphericalSurface at a point p // on (or nearly on) the G4SphericalSurface. virtual G4int Inside( const G4Vector3D& x ) const; // Returns 1 if the point x is Inside the G4SphericalSurface, 0 otherwise. virtual G4int WithinBoundary( const G4Vector3D& x ) const; // Returns 1 if the point x is within the boundary, 0 otherwise. virtual G4double Scale() const; // Returns the radius, unless it is zero, in which case it // returns 1. Used for Scale-invariant tests of surface thickness. virtual G4double Area() const; // Calculates the area of a G4SphericalSurface. virtual void resize( G4double r, G4double ph1, G4double ph2, G4double th1, G4double th2); // Resizes the G4SphericalSurface to new radius and angle limits. // first argument is the radius of the G4SphericalSurface // second argument is the lower azimuthal angle limit of the surface // third argument is the upper azimuthal angle limit of the surface // fourth argument is the lower polar angle limit of the surface // fifth argument is the upper polar angle limit of the surface inline G4Vector3D GetXAxis() const; inline G4Vector3D GetZAxis() const; inline G4double GetRadius() const; inline G4double GetPhi1() const; inline G4double GetPhi2() const; inline G4double GetTheta1() const; inline G4double GetTheta2() const; // Accessors methodss to return the axes, radius, and angles // of the G4SphericalSurface. public: // without description virtual G4Vector3D Normal( const G4Vector3D& p ) const; // Returns the Normal unit vector as for SurfaceNormal(). /* virtual G4double distanceAlongRay( G4int which_way, const G4Ray* ry, G4ThreeVec& p ) const; // Returns the distance along a Ray to enter or leave a G4SphericalSurface. // The first (input) argument is +1 to leave or -1 to enter // The second (input) argument is a pointer to the Ray // The third (output) argument returns the intersection point. virtual G4double distanceAlongHelix( G4int which_way, const Helix* hx, G4ThreeVec& p ) const; // Returns the distance along a Helix to enter or leave a G4SphericalSurface. // The first (input) argument is +1 to leave or -1 to enter // The second (input) argument is a pointer to the Helix // The third (output) argument returns the intersection point. virtual G4Vector3D Normal( const G4Point3D& p ) const; // Returns the Normal unit vector to a G4SphericalSurface at a point p // on (or nearly on) the G4SphericalSurface. virtual void rotate( G4double alpha, G4double beta, G4double gamma, G4ThreeMat& m, G4int inverse ); // Rotates the G4SphericalSurface (angles are assumed to be given in // radians), arguments: // - first about global x_axis by angle alpha, // - second about global y-axis by angle beta, // - third about global z_axis by angle gamma, // - fourth (output) argument gives the calculated rotation matrix, // - fifth (input) argument is an integer flag which if // non-zero reverses the order of the rotations. virtual void rotate( G4double alpha, G4double beta, G4double gamma, G4int inverse ); // Rotates the G4SphericalSurface (angles are assumed to be given in // radians), arguments: // - first about global x_axis by angle alpha, // - second about global y-axis by angle beta, // - third about global z_axis by angle gamma, // - fourth (input) argument is an integer flag which if // non-zero reverses the order of the rotations. */ protected: // with description G4Vector3D x_axis; // Direction (unit vector) of axis of G4SphericalSurface // which defines azimuthal angle of zero. G4Vector3D z_axis; // Direction (unit vector) of axis of G4SphericalSurface // which defines polar angle of zero. G4double radius; // Radius of G4SphericalSurface. G4double phi_1; // Lower azimuthal angle limit of G4SphericalSurface // (in radians). Allowed range: 0 <= phi_1 < 2*PI. G4double phi_2; // Upper azimuthal angle limit of G4SphericalSurface // (in radians). Allowed range: phi_1 < phi_2 <= phi_1 + 2*PI G4double theta_1; // Lower polar angle limit of G4SphericalSurface // (in radians). Allowed range: 0 <= theta_1 < PI. G4double theta_2; // Upper polar angle limit of G4SphericalSurface // (in radians). Allowed range: theta_1 < theta_2 <= theta_1 + PI. private: G4SphericalSurface(const G4SphericalSurface&); G4SphericalSurface& operator=(const G4SphericalSurface&); // Private copy constructor and assignment operator. // virtual G4double gropeAlongHelix( const Helix* hx ) const; // Private function to use a crude technique to find the intersection // of a Helix with a G4SphericalSurface. It returns the turning angle // along the Helix at which the intersection occurs or -1.0 if no // intersection point is found. The argument to the call is the pointer // to the Helix. }; #include "G4SphericalSurface.icc" #endif