| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4BREPSolid.cc,v 1.37 2008/03/13 14:18:57 gcosmo Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-04-beta-01 $
|
|---|
| 29 | //
|
|---|
| 30 | // ----------------------------------------------------------------------
|
|---|
| 31 | // GEANT 4 class source file
|
|---|
| 32 | //
|
|---|
| 33 | // G4BREPSolid.cc
|
|---|
| 34 | //
|
|---|
| 35 | // ----------------------------------------------------------------------
|
|---|
| 36 |
|
|---|
| 37 | #include "G4BREPSolid.hh"
|
|---|
| 38 | #include "G4VoxelLimits.hh"
|
|---|
| 39 | #include "G4AffineTransform.hh"
|
|---|
| 40 | #include "G4VGraphicsScene.hh"
|
|---|
| 41 | #include "G4Polyhedron.hh"
|
|---|
| 42 | #include "G4NURBSbox.hh"
|
|---|
| 43 | #include "G4BoundingBox3D.hh"
|
|---|
| 44 | #include "G4FPlane.hh"
|
|---|
| 45 | #include "G4BSplineSurface.hh"
|
|---|
| 46 | #include "G4ToroidalSurface.hh"
|
|---|
| 47 | #include "G4SphericalSurface.hh"
|
|---|
| 48 |
|
|---|
| 49 | G4Ray G4BREPSolid::Track;
|
|---|
| 50 | G4double G4BREPSolid::ShortestDistance= kInfinity;
|
|---|
| 51 | G4int G4BREPSolid::NumberOfSolids=0;
|
|---|
| 52 |
|
|---|
| 53 | G4BREPSolid::G4BREPSolid(const G4String& name)
|
|---|
| 54 | : G4VSolid(name),
|
|---|
| 55 | Box(0), Convex(0), AxisBox(0), PlaneSolid(0), place(0), bbox(0),
|
|---|
| 56 | intersectionDistance(kInfinity), active(1), startInside(0),
|
|---|
| 57 | nb_of_surfaces(0), SurfaceVec(0), solidname(name),
|
|---|
| 58 | fStatistics(1000000), fCubVolEpsilon(0.001), fAreaAccuracy(-1.),
|
|---|
| 59 | fCubicVolume(0.), fSurfaceArea(0.), fpPolyhedron(0)
|
|---|
| 60 | {
|
|---|
| 61 | }
|
|---|
| 62 |
|
|---|
| 63 | G4BREPSolid::G4BREPSolid( const G4String& name ,
|
|---|
| 64 | G4Surface** srfVec ,
|
|---|
| 65 | G4int numberOfSrfs )
|
|---|
| 66 | : G4VSolid(name),
|
|---|
| 67 | Box(0), Convex(0), AxisBox(0), PlaneSolid(0), place(0), bbox(0),
|
|---|
| 68 | intersectionDistance(kInfinity), active(1), startInside(0),
|
|---|
| 69 | nb_of_surfaces(numberOfSrfs), SurfaceVec(srfVec),
|
|---|
| 70 | fStatistics(1000000), fCubVolEpsilon(0.001), fAreaAccuracy(-1.),
|
|---|
| 71 | fCubicVolume(0.), fSurfaceArea(0.), fpPolyhedron(0)
|
|---|
| 72 | {
|
|---|
| 73 | Initialize();
|
|---|
| 74 | }
|
|---|
| 75 |
|
|---|
| 76 | G4BREPSolid::G4BREPSolid( __void__& a )
|
|---|
| 77 | : G4VSolid(a),
|
|---|
| 78 | Box(0), Convex(0), AxisBox(0), PlaneSolid(0), place(0), bbox(0),
|
|---|
| 79 | intersectionDistance(kInfinity), active(1), startInside(0),
|
|---|
| 80 | nb_of_surfaces(0), SurfaceVec(0),
|
|---|
| 81 | fStatistics(1000000), fCubVolEpsilon(0.001), fAreaAccuracy(-1.),
|
|---|
| 82 | fCubicVolume(0.), fSurfaceArea(0.), fpPolyhedron(0)
|
|---|
| 83 | {
|
|---|
| 84 | }
|
|---|
| 85 |
|
|---|
| 86 | G4BREPSolid::~G4BREPSolid()
|
|---|
| 87 | {
|
|---|
| 88 | if(place)
|
|---|
| 89 | delete place;
|
|---|
| 90 |
|
|---|
| 91 | if(bbox)
|
|---|
| 92 | delete bbox;
|
|---|
| 93 |
|
|---|
| 94 | for(G4int a=0;a<nb_of_surfaces;a++)
|
|---|
| 95 | delete SurfaceVec[a];
|
|---|
| 96 |
|
|---|
| 97 | if( nb_of_surfaces > 0 && SurfaceVec != 0 )
|
|---|
| 98 | delete [] SurfaceVec;
|
|---|
| 99 |
|
|---|
| 100 | delete fpPolyhedron;
|
|---|
| 101 | }
|
|---|
| 102 |
|
|---|
| 103 | void G4BREPSolid::Initialize()
|
|---|
| 104 | {
|
|---|
| 105 | if(active)
|
|---|
| 106 | {
|
|---|
| 107 | // Compute bounding box for solids and surfaces
|
|---|
| 108 | // Convert concave planes to convex
|
|---|
| 109 | //
|
|---|
| 110 | ShortestDistance= kInfinity;
|
|---|
| 111 | IsBox();
|
|---|
| 112 | CheckSurfaceNormals();
|
|---|
| 113 |
|
|---|
| 114 | if(!Box || !AxisBox)
|
|---|
| 115 | IsConvex();
|
|---|
| 116 |
|
|---|
| 117 | CalcBBoxes();
|
|---|
| 118 | }
|
|---|
| 119 | }
|
|---|
| 120 |
|
|---|
| 121 | G4String G4BREPSolid::GetEntityType() const
|
|---|
| 122 | {
|
|---|
| 123 | return "Closed_Shell";
|
|---|
| 124 | }
|
|---|
| 125 |
|
|---|
| 126 | void G4BREPSolid::Reset() const
|
|---|
| 127 | {
|
|---|
| 128 | ((G4BREPSolid*)this)->active=1;
|
|---|
| 129 | ((G4BREPSolid*)this)->intersectionDistance=kInfinity;
|
|---|
| 130 | ((G4BREPSolid*)this)->startInside=0;
|
|---|
| 131 |
|
|---|
| 132 | for(register G4int a=0;a<nb_of_surfaces;a++)
|
|---|
| 133 | SurfaceVec[a]->Reset();
|
|---|
| 134 |
|
|---|
| 135 | ShortestDistance = kInfinity;
|
|---|
| 136 | }
|
|---|
| 137 |
|
|---|
| 138 | void G4BREPSolid::CheckSurfaceNormals()
|
|---|
| 139 | {
|
|---|
| 140 | if(!PlaneSolid)
|
|---|
| 141 | return; // All faces must be planar
|
|---|
| 142 |
|
|---|
| 143 | Convex=1;
|
|---|
| 144 |
|
|---|
| 145 | // Checks that the normals of the surfaces point outwards.
|
|---|
| 146 | // If not, turns the Normal to point out.
|
|---|
| 147 |
|
|---|
| 148 | // Loop through each face and check the G4Vector3D of the Normal
|
|---|
| 149 | //
|
|---|
| 150 | G4Surface* srf;
|
|---|
| 151 | G4Point3D V;
|
|---|
| 152 |
|
|---|
| 153 | G4int PointNum=0;
|
|---|
| 154 | G4int SrfNum = 0;
|
|---|
| 155 | G4double YValue=0;
|
|---|
| 156 | G4Point3D Pt;
|
|---|
| 157 |
|
|---|
| 158 | G4int a, b;
|
|---|
| 159 | for(a=0; a<nb_of_surfaces; a++)
|
|---|
| 160 | {
|
|---|
| 161 | // Find vertex point containing extreme y value
|
|---|
| 162 | //
|
|---|
| 163 | srf = SurfaceVec[a];
|
|---|
| 164 | G4int Points = srf->GetNumberOfPoints();
|
|---|
| 165 |
|
|---|
| 166 | for(b =0; b<Points; b++)
|
|---|
| 167 | {
|
|---|
| 168 | Pt = (G4Point3D)srf->GetPoint(b);
|
|---|
| 169 | if(YValue < Pt.y())
|
|---|
| 170 | {
|
|---|
| 171 | YValue = Pt.y();
|
|---|
| 172 | PointNum = b; // Save point number
|
|---|
| 173 | SrfNum = a; // Save srf number
|
|---|
| 174 | }
|
|---|
| 175 | }
|
|---|
| 176 | }
|
|---|
| 177 |
|
|---|
| 178 | // Move the selected face to the first in the List
|
|---|
| 179 | //
|
|---|
| 180 | srf = SurfaceVec[SrfNum];
|
|---|
| 181 |
|
|---|
| 182 | // Start handling the surfaces in order and compare
|
|---|
| 183 | // the neighbouring ones and turn their normals if they
|
|---|
| 184 | // point inwards
|
|---|
| 185 | //
|
|---|
| 186 | G4Point3D Pt1;
|
|---|
| 187 | G4Point3D Pt2;
|
|---|
| 188 | G4Point3D Pt3;
|
|---|
| 189 | G4Point3D Pt4;
|
|---|
| 190 |
|
|---|
| 191 | G4Vector3D N1;
|
|---|
| 192 | G4Vector3D N2;
|
|---|
| 193 | G4Vector3D N3;
|
|---|
| 194 | G4Vector3D N4;
|
|---|
| 195 |
|
|---|
| 196 | G4int* ConnectedList = new G4int[nb_of_surfaces];
|
|---|
| 197 |
|
|---|
| 198 | for(a=0; a<nb_of_surfaces; a++)
|
|---|
| 199 | ConnectedList[a]=0;
|
|---|
| 200 |
|
|---|
| 201 | G4Surface* ConnectedSrf;
|
|---|
| 202 |
|
|---|
| 203 | for(a=0; a<nb_of_surfaces-1; a++)
|
|---|
| 204 | {
|
|---|
| 205 | if(ConnectedList[a] == 0)
|
|---|
| 206 | break;
|
|---|
| 207 | else
|
|---|
| 208 | ConnectedList[a]=1;
|
|---|
| 209 |
|
|---|
| 210 | srf = SurfaceVec[a];
|
|---|
| 211 | G4int SrfPoints = srf->GetNumberOfPoints();
|
|---|
| 212 | N1 = (srf->Norm())->GetDir();
|
|---|
| 213 |
|
|---|
| 214 | for(b=a+1; b<nb_of_surfaces; b++)
|
|---|
| 215 | {
|
|---|
| 216 | if(ConnectedList[b] == 1)
|
|---|
| 217 | break;
|
|---|
| 218 | else
|
|---|
| 219 | ConnectedList[b]=1;
|
|---|
| 220 |
|
|---|
| 221 | // Get next in List
|
|---|
| 222 | //
|
|---|
| 223 | ConnectedSrf = SurfaceVec[b];
|
|---|
| 224 |
|
|---|
| 225 | // Check if it is connected to srf by looping through the points.
|
|---|
| 226 | //
|
|---|
| 227 | G4int ConnSrfPoints = ConnectedSrf->GetNumberOfPoints();
|
|---|
| 228 |
|
|---|
| 229 | for(G4int c=0;c<SrfPoints;c++)
|
|---|
| 230 | {
|
|---|
| 231 | Pt1 = srf->GetPoint(c);
|
|---|
| 232 |
|
|---|
| 233 | for(G4int d=0;d<ConnSrfPoints;d++)
|
|---|
| 234 | {
|
|---|
| 235 | // Find common points
|
|---|
| 236 | //
|
|---|
| 237 | Pt2 = (ConnectedSrf)->GetPoint(d);
|
|---|
| 238 |
|
|---|
| 239 | if( Pt1 == Pt2 )
|
|---|
| 240 | {
|
|---|
| 241 | // Common point found. Compare normals.
|
|---|
| 242 | //
|
|---|
| 243 | N2 = ((ConnectedSrf)->Norm())->GetDir();
|
|---|
| 244 |
|
|---|
| 245 | // Check cross product.
|
|---|
| 246 | //
|
|---|
| 247 | G4Vector3D CP1 = G4Vector3D( N1.cross(N2) );
|
|---|
| 248 | G4double CrossProd1 = CP1.x()+CP1.y()+CP1.z();
|
|---|
| 249 |
|
|---|
| 250 | // Create the other normals
|
|---|
| 251 | //
|
|---|
| 252 | if(c==0)
|
|---|
| 253 | Pt3 = srf->GetPoint(c+1);
|
|---|
| 254 | else
|
|---|
| 255 | Pt3 = srf->GetPoint(0);
|
|---|
| 256 |
|
|---|
| 257 | N3 = (Pt1-Pt3);
|
|---|
| 258 |
|
|---|
| 259 | if(d==0)
|
|---|
| 260 | Pt4 = (ConnectedSrf)->GetPoint(d+1);
|
|---|
| 261 | else
|
|---|
| 262 | Pt4 = (ConnectedSrf)->GetPoint(0);
|
|---|
| 263 |
|
|---|
| 264 | N4 = (Pt1-Pt4);
|
|---|
| 265 |
|
|---|
| 266 | G4Vector3D CP2 = G4Vector3D( N3.cross(N4) );
|
|---|
| 267 | G4double CrossProd2 = CP2.x()+CP2.y()+CP2.z();
|
|---|
| 268 |
|
|---|
| 269 | G4cout << "\nCroosProd2: " << CrossProd2;
|
|---|
| 270 |
|
|---|
| 271 | if( (CrossProd1 < 0 && CrossProd2 < 0) ||
|
|---|
| 272 | (CrossProd1 > 0 && CrossProd2 > 0) )
|
|---|
| 273 | {
|
|---|
| 274 | // Turn Normal
|
|---|
| 275 | //
|
|---|
| 276 | (ConnectedSrf)->Norm()
|
|---|
| 277 | ->SetDir(-1 * (ConnectedSrf)->Norm()->GetDir());
|
|---|
| 278 |
|
|---|
| 279 | // Take the CrossProd1 again as the other Normal was turned.
|
|---|
| 280 | //
|
|---|
| 281 | CP1 = N1.cross(N2);
|
|---|
| 282 | CrossProd1 = CP1.x()+CP1.y()+CP1.z();
|
|---|
| 283 | }
|
|---|
| 284 | if(CrossProd1 > 0)
|
|---|
| 285 | Convex=0;
|
|---|
| 286 | }
|
|---|
| 287 | }
|
|---|
| 288 | }
|
|---|
| 289 | }
|
|---|
| 290 | }
|
|---|
| 291 |
|
|---|
| 292 | delete []ConnectedList;
|
|---|
| 293 | }
|
|---|
| 294 |
|
|---|
| 295 | G4int G4BREPSolid::IsBox()
|
|---|
| 296 | {
|
|---|
| 297 | // This is done by checking that the solid consists of 6 planes.
|
|---|
| 298 | // Then the type is checked to be planar face by face.
|
|---|
| 299 | // For each G4Plane the Normal is computed. The dot product
|
|---|
| 300 | // of one face Normal and each other face Normal is computed.
|
|---|
| 301 | // One result should be 1 and the rest 0 in order to the solid
|
|---|
| 302 | // to be a box.
|
|---|
| 303 |
|
|---|
| 304 | Box=0;
|
|---|
| 305 | G4Surface* srf1, *srf2;
|
|---|
| 306 | register G4int a;
|
|---|
| 307 |
|
|---|
| 308 | // Compute the Normal for the planes
|
|---|
| 309 | //
|
|---|
| 310 | for(a=0; a < nb_of_surfaces;a++)
|
|---|
| 311 | {
|
|---|
| 312 | srf1 = SurfaceVec[a];
|
|---|
| 313 |
|
|---|
| 314 | if(srf1->MyType()==1)
|
|---|
| 315 | (srf1)->Project(); // Compute the projection
|
|---|
| 316 | else
|
|---|
| 317 | {
|
|---|
| 318 | PlaneSolid=0;
|
|---|
| 319 | return 0;
|
|---|
| 320 | }
|
|---|
| 321 | }
|
|---|
| 322 |
|
|---|
| 323 | // Check that all faces are planar
|
|---|
| 324 | //
|
|---|
| 325 | for(a=0; a < nb_of_surfaces;a++)
|
|---|
| 326 | {
|
|---|
| 327 | srf1 = SurfaceVec[a];
|
|---|
| 328 |
|
|---|
| 329 | if (srf1->MyType()!=1)
|
|---|
| 330 | return 0;
|
|---|
| 331 | }
|
|---|
| 332 |
|
|---|
| 333 | PlaneSolid = 1;
|
|---|
| 334 |
|
|---|
| 335 | // Check that the amount of faces is correct
|
|---|
| 336 | //
|
|---|
| 337 | if(nb_of_surfaces!=6) return 0;
|
|---|
| 338 |
|
|---|
| 339 | G4Point3D Pt;
|
|---|
| 340 | G4int Points;
|
|---|
| 341 | G4int Sides=0;
|
|---|
| 342 | G4int Opposite=0;
|
|---|
| 343 |
|
|---|
| 344 | srf1 = SurfaceVec[0];
|
|---|
| 345 | Points = (srf1)->GetNumberOfPoints();
|
|---|
| 346 |
|
|---|
| 347 | if(Points!=4)
|
|---|
| 348 | return 0;
|
|---|
| 349 |
|
|---|
| 350 | G4Vector3D Normal1 = (srf1->Norm())->GetDir();
|
|---|
| 351 | G4double Result;
|
|---|
| 352 |
|
|---|
| 353 | for(G4int b=1; b < nb_of_surfaces;b++)
|
|---|
| 354 | {
|
|---|
| 355 | srf2 = SurfaceVec[b];
|
|---|
| 356 | G4Vector3D Normal2 = ((srf2)->Norm())->GetDir();
|
|---|
| 357 | Result = std::fabs(Normal1 * Normal2);
|
|---|
| 358 |
|
|---|
| 359 | if((Result != 0) && (Result != 1))
|
|---|
| 360 | return 0;
|
|---|
| 361 | else
|
|---|
| 362 | {
|
|---|
| 363 | if(!(G4int)Result)
|
|---|
| 364 | Sides++;
|
|---|
| 365 | else
|
|---|
| 366 | if(((G4int)Result) == 1)
|
|---|
| 367 | Opposite++;
|
|---|
| 368 | }
|
|---|
| 369 | }
|
|---|
| 370 |
|
|---|
| 371 | if((Opposite != 1) && (Sides != nb_of_surfaces-2))
|
|---|
| 372 | return 0;
|
|---|
| 373 |
|
|---|
| 374 | G4Vector3D x_axis(1,0,0);
|
|---|
| 375 | G4Vector3D y_axis(0,1,0);
|
|---|
| 376 |
|
|---|
| 377 | if(((std::fabs(x_axis * Normal1) == 1) && (std::fabs(y_axis * Normal1) == 0)) ||
|
|---|
| 378 | ((std::fabs(x_axis * Normal1) == 0) && (std::fabs(y_axis * Normal1) == 1)) ||
|
|---|
| 379 | ((std::fabs(x_axis * Normal1) == 0) && (std::fabs(y_axis * Normal1) == 0)))
|
|---|
| 380 | AxisBox=1;
|
|---|
| 381 | else
|
|---|
| 382 | Box=1;
|
|---|
| 383 |
|
|---|
| 384 | return 1;
|
|---|
| 385 | }
|
|---|
| 386 |
|
|---|
| 387 | G4bool G4BREPSolid::IsConvex()
|
|---|
| 388 | {
|
|---|
| 389 | if(!PlaneSolid)
|
|---|
| 390 | return 0; // All faces must be planar
|
|---|
| 391 |
|
|---|
| 392 | // This is not robust. There can be concave solids
|
|---|
| 393 | // where the concavity comes for example from three triangles.
|
|---|
| 394 |
|
|---|
| 395 | // Additional checking 20.8. For each face the connecting faces are
|
|---|
| 396 | // found and the cross product computed between the face and each
|
|---|
| 397 | // connecting face. If the result changes value at any point the
|
|---|
| 398 | // solid is concave.
|
|---|
| 399 |
|
|---|
| 400 | G4Surface* Srf;
|
|---|
| 401 | G4Surface* ConnectedSrf;
|
|---|
| 402 | G4int Result;
|
|---|
| 403 | Convex = 1;
|
|---|
| 404 |
|
|---|
| 405 | G4int a, b, c, d;
|
|---|
| 406 | for(a=0;a<nb_of_surfaces;a++)
|
|---|
| 407 | {
|
|---|
| 408 | Srf = SurfaceVec[a];
|
|---|
| 409 |
|
|---|
| 410 | // Primary test. Test wether any one of the faces
|
|---|
| 411 | // is concave -> solid is concave. This is not enough to
|
|---|
| 412 | // distinguish all the cases of concavity.
|
|---|
| 413 | //
|
|---|
| 414 | Result = Srf->IsConvex();
|
|---|
| 415 |
|
|---|
| 416 | if(Result != -1)
|
|---|
| 417 | {
|
|---|
| 418 | Convex = 0;
|
|---|
| 419 | return 0;
|
|---|
| 420 | }
|
|---|
| 421 | }
|
|---|
| 422 |
|
|---|
| 423 | Srf = SurfaceVec[0];
|
|---|
| 424 | G4Point3D Pt1;
|
|---|
| 425 | G4Point3D Pt2;
|
|---|
| 426 |
|
|---|
| 427 | G4int ConnectingPoints=0;
|
|---|
| 428 |
|
|---|
| 429 | G4Vector3D N1;
|
|---|
| 430 | G4Vector3D N2;
|
|---|
| 431 |
|
|---|
| 432 | // L. Broglia
|
|---|
| 433 | // The number of connecting points can be
|
|---|
| 434 | // (nb_of_surfaces-1) * nb_of_surfaces (loop a & loop b)
|
|---|
| 435 |
|
|---|
| 436 | // G4int* ConnectedList = new G4int[nb_of_surfaces];
|
|---|
| 437 | G4int* ConnectedList = new G4int[(nb_of_surfaces-1) * nb_of_surfaces];
|
|---|
| 438 |
|
|---|
| 439 | for(a=0; a<nb_of_surfaces; a++)
|
|---|
| 440 | {
|
|---|
| 441 | ConnectedList[a]=0;
|
|---|
| 442 | }
|
|---|
| 443 |
|
|---|
| 444 | G4int Connections=0;
|
|---|
| 445 |
|
|---|
| 446 | for(a=0; a<nb_of_surfaces-1; a++)
|
|---|
| 447 | {
|
|---|
| 448 | Srf = SurfaceVec[a];
|
|---|
| 449 | G4int SrfPoints = Srf->GetNumberOfPoints();
|
|---|
| 450 | Result=0;
|
|---|
| 451 |
|
|---|
| 452 | for(b=0; b<nb_of_surfaces; b++)
|
|---|
| 453 | {
|
|---|
| 454 | if(b==a)
|
|---|
| 455 | b++;
|
|---|
| 456 |
|
|---|
| 457 | if(b==nb_of_surfaces)
|
|---|
| 458 | break;
|
|---|
| 459 |
|
|---|
| 460 | // Get next in List
|
|---|
| 461 | //
|
|---|
| 462 | ConnectedSrf = SurfaceVec[b];
|
|---|
| 463 |
|
|---|
| 464 | // Check if it is connected to Srf by looping through the points.
|
|---|
| 465 | //
|
|---|
| 466 | G4int ConnSrfPoints = ConnectedSrf->GetNumberOfPoints();
|
|---|
| 467 |
|
|---|
| 468 | for(c=0; c<SrfPoints; c++)
|
|---|
| 469 | {
|
|---|
| 470 | const G4Point3D& Pts1 =Srf->GetPoint(c);
|
|---|
| 471 |
|
|---|
| 472 | for(d=0; d<ConnSrfPoints; d++)
|
|---|
| 473 | {
|
|---|
| 474 | // Find common points
|
|---|
| 475 | //
|
|---|
| 476 | const G4Point3D& Pts2 = ConnectedSrf->GetPoint(d);
|
|---|
| 477 | if(Pts1 == Pts2)
|
|---|
| 478 | ConnectingPoints++;
|
|---|
| 479 | }
|
|---|
| 480 | if(ConnectingPoints > 0)
|
|---|
| 481 | break;
|
|---|
| 482 | }
|
|---|
| 483 |
|
|---|
| 484 | if( ConnectingPoints > 0 )
|
|---|
| 485 | {
|
|---|
| 486 | Connections++;
|
|---|
| 487 | ConnectedList[Connections]=b;
|
|---|
| 488 | }
|
|---|
| 489 | ConnectingPoints=0;
|
|---|
| 490 | }
|
|---|
| 491 | }
|
|---|
| 492 |
|
|---|
| 493 | // If connected, check for concavity.
|
|---|
| 494 | // Get surfaces from ConnectedList and compare their normals
|
|---|
| 495 | //
|
|---|
| 496 | for(c=0; c<Connections; c++)
|
|---|
| 497 | {
|
|---|
| 498 | G4int Left=0;
|
|---|
| 499 | G4int Right =0;
|
|---|
| 500 | G4int tmp = ConnectedList[c];
|
|---|
| 501 |
|
|---|
| 502 | Srf = SurfaceVec[tmp];
|
|---|
| 503 | ConnectedSrf = SurfaceVec[tmp+1];
|
|---|
| 504 |
|
|---|
| 505 | // Get normals
|
|---|
| 506 | //
|
|---|
| 507 | N1 = Srf->Norm()->GetDir();
|
|---|
| 508 | N2 = ConnectedSrf->Norm()->GetDir();
|
|---|
| 509 |
|
|---|
| 510 | // Check cross product
|
|---|
| 511 | //
|
|---|
| 512 | G4Vector3D CP = G4Vector3D( N1.cross(N2) );
|
|---|
| 513 | G4double CrossProd = CP.x()+CP.y()+CP.z();
|
|---|
| 514 | if( CrossProd > 0 )
|
|---|
| 515 | Left++;
|
|---|
| 516 | if(CrossProd < 0)
|
|---|
| 517 | Right++;
|
|---|
| 518 | if(Left&&Right)
|
|---|
| 519 | {
|
|---|
| 520 | Convex = 0;
|
|---|
| 521 | return 0;
|
|---|
| 522 | }
|
|---|
| 523 | Connections=0;
|
|---|
| 524 | }
|
|---|
| 525 |
|
|---|
| 526 | Convex=1;
|
|---|
| 527 |
|
|---|
| 528 | // L. Broglia
|
|---|
| 529 | // Problems with this delete when there are many solids to create
|
|---|
| 530 | // delete [] ConnectedList;
|
|---|
| 531 |
|
|---|
| 532 | return 1;
|
|---|
| 533 | }
|
|---|
| 534 |
|
|---|
| 535 | G4bool G4BREPSolid::CalculateExtent(const EAxis pAxis,
|
|---|
| 536 | const G4VoxelLimits& pVoxelLimit,
|
|---|
| 537 | const G4AffineTransform& pTransform,
|
|---|
| 538 | G4double& pMin, G4double& pMax) const
|
|---|
| 539 | {
|
|---|
| 540 | G4Point3D Min = bbox->GetBoxMin();
|
|---|
| 541 | G4Point3D Max = bbox->GetBoxMax();
|
|---|
| 542 |
|
|---|
| 543 | if (!pTransform.IsRotated())
|
|---|
| 544 | {
|
|---|
| 545 | // Special case handling for unrotated boxes
|
|---|
| 546 | // Compute x/y/z mins and maxs respecting limits, with early returns
|
|---|
| 547 | // if outside limits. Then switch() on pAxis
|
|---|
| 548 | //
|
|---|
| 549 | G4double xoffset,xMin,xMax;
|
|---|
| 550 | G4double yoffset,yMin,yMax;
|
|---|
| 551 | G4double zoffset,zMin,zMax;
|
|---|
| 552 |
|
|---|
| 553 | xoffset=pTransform.NetTranslation().x();
|
|---|
| 554 | xMin=xoffset+Min.x();
|
|---|
| 555 | xMax=xoffset+Max.x();
|
|---|
| 556 | if (pVoxelLimit.IsXLimited())
|
|---|
| 557 | {
|
|---|
| 558 | if (xMin>pVoxelLimit.GetMaxXExtent()
|
|---|
| 559 | ||xMax<pVoxelLimit.GetMinXExtent())
|
|---|
| 560 | {
|
|---|
| 561 | return false;
|
|---|
| 562 | }
|
|---|
| 563 | else
|
|---|
| 564 | {
|
|---|
| 565 | if (xMin<pVoxelLimit.GetMinXExtent())
|
|---|
| 566 | {
|
|---|
| 567 | xMin=pVoxelLimit.GetMinXExtent();
|
|---|
| 568 | }
|
|---|
| 569 | if (xMax>pVoxelLimit.GetMaxXExtent())
|
|---|
| 570 | {
|
|---|
| 571 | xMax=pVoxelLimit.GetMaxXExtent();
|
|---|
| 572 | }
|
|---|
| 573 | }
|
|---|
| 574 | }
|
|---|
| 575 |
|
|---|
| 576 | yoffset=pTransform.NetTranslation().y();
|
|---|
| 577 | yMin=yoffset+Min.y();
|
|---|
| 578 | yMax=yoffset+Max.y();
|
|---|
| 579 | if (pVoxelLimit.IsYLimited())
|
|---|
| 580 | {
|
|---|
| 581 | if (yMin>pVoxelLimit.GetMaxYExtent()
|
|---|
| 582 | ||yMax<pVoxelLimit.GetMinYExtent())
|
|---|
| 583 | {
|
|---|
| 584 | return false;
|
|---|
| 585 | }
|
|---|
| 586 | else
|
|---|
| 587 | {
|
|---|
| 588 | if (yMin<pVoxelLimit.GetMinYExtent())
|
|---|
| 589 | {
|
|---|
| 590 | yMin=pVoxelLimit.GetMinYExtent();
|
|---|
| 591 | }
|
|---|
| 592 | if (yMax>pVoxelLimit.GetMaxYExtent())
|
|---|
| 593 | {
|
|---|
| 594 | yMax=pVoxelLimit.GetMaxYExtent();
|
|---|
| 595 | }
|
|---|
| 596 | }
|
|---|
| 597 | }
|
|---|
| 598 |
|
|---|
| 599 | zoffset=pTransform.NetTranslation().z();
|
|---|
| 600 | zMin=zoffset+Min.z();
|
|---|
| 601 | zMax=zoffset+Max.z();
|
|---|
| 602 | if (pVoxelLimit.IsZLimited())
|
|---|
| 603 | {
|
|---|
| 604 | if (zMin>pVoxelLimit.GetMaxZExtent()
|
|---|
| 605 | ||zMax<pVoxelLimit.GetMinZExtent())
|
|---|
| 606 | {
|
|---|
| 607 | return false;
|
|---|
| 608 | }
|
|---|
| 609 | else
|
|---|
| 610 | {
|
|---|
| 611 | if (zMin<pVoxelLimit.GetMinZExtent())
|
|---|
| 612 | {
|
|---|
| 613 | zMin=pVoxelLimit.GetMinZExtent();
|
|---|
| 614 | }
|
|---|
| 615 | if (zMax>pVoxelLimit.GetMaxZExtent())
|
|---|
| 616 | {
|
|---|
| 617 | zMax=pVoxelLimit.GetMaxZExtent();
|
|---|
| 618 | }
|
|---|
| 619 | }
|
|---|
| 620 | }
|
|---|
| 621 |
|
|---|
| 622 | switch (pAxis)
|
|---|
| 623 | {
|
|---|
| 624 | case kXAxis:
|
|---|
| 625 | pMin=xMin;
|
|---|
| 626 | pMax=xMax;
|
|---|
| 627 | break;
|
|---|
| 628 | case kYAxis:
|
|---|
| 629 | pMin=yMin;
|
|---|
| 630 | pMax=yMax;
|
|---|
| 631 | break;
|
|---|
| 632 | case kZAxis:
|
|---|
| 633 | pMin=zMin;
|
|---|
| 634 | pMax=zMax;
|
|---|
| 635 | break;
|
|---|
| 636 | default:
|
|---|
| 637 | break;
|
|---|
| 638 | }
|
|---|
| 639 | pMin-=kCarTolerance;
|
|---|
| 640 | pMax+=kCarTolerance;
|
|---|
| 641 |
|
|---|
| 642 | return true;
|
|---|
| 643 | }
|
|---|
| 644 | else
|
|---|
| 645 | {
|
|---|
| 646 | // General rotated case - create and clip mesh to boundaries
|
|---|
| 647 |
|
|---|
| 648 | G4bool existsAfterClip=false;
|
|---|
| 649 | G4ThreeVectorList *vertices;
|
|---|
| 650 |
|
|---|
| 651 | pMin=+kInfinity;
|
|---|
| 652 | pMax=-kInfinity;
|
|---|
| 653 |
|
|---|
| 654 | // Calculate rotated vertex coordinates
|
|---|
| 655 | //
|
|---|
| 656 | vertices=CreateRotatedVertices(pTransform);
|
|---|
| 657 | ClipCrossSection(vertices,0,pVoxelLimit,pAxis,pMin,pMax);
|
|---|
| 658 | ClipCrossSection(vertices,4,pVoxelLimit,pAxis,pMin,pMax);
|
|---|
| 659 | ClipBetweenSections(vertices,0,pVoxelLimit,pAxis,pMin,pMax);
|
|---|
| 660 |
|
|---|
| 661 | if ( (pMin!=kInfinity) || (pMax!=-kInfinity) )
|
|---|
| 662 | {
|
|---|
| 663 | existsAfterClip=true;
|
|---|
| 664 |
|
|---|
| 665 | // Add 2*tolerance to avoid precision troubles
|
|---|
| 666 | //
|
|---|
| 667 | pMin-=kCarTolerance;
|
|---|
| 668 | pMax+=kCarTolerance;
|
|---|
| 669 | }
|
|---|
| 670 | else
|
|---|
| 671 | {
|
|---|
| 672 | // Check for case where completely enveloping clipping volume.
|
|---|
| 673 | // If point inside then we are confident that the solid completely
|
|---|
| 674 | // envelopes the clipping volume. Hence set min/max extents according
|
|---|
| 675 | // to clipping volume extents along the specified axis.
|
|---|
| 676 | //
|
|---|
| 677 | G4ThreeVector clipCentre(
|
|---|
| 678 | (pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5,
|
|---|
| 679 | (pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5,
|
|---|
| 680 | (pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5);
|
|---|
| 681 |
|
|---|
| 682 | if (Inside(pTransform.Inverse().TransformPoint(clipCentre))!=kOutside)
|
|---|
| 683 | {
|
|---|
| 684 | existsAfterClip=true;
|
|---|
| 685 | pMin=pVoxelLimit.GetMinExtent(pAxis);
|
|---|
| 686 | pMax=pVoxelLimit.GetMaxExtent(pAxis);
|
|---|
| 687 | }
|
|---|
| 688 | }
|
|---|
| 689 | delete vertices;
|
|---|
| 690 | return existsAfterClip;
|
|---|
| 691 | }
|
|---|
| 692 | }
|
|---|
| 693 |
|
|---|
| 694 | G4ThreeVectorList*
|
|---|
| 695 | G4BREPSolid::CreateRotatedVertices(const G4AffineTransform& pTransform) const
|
|---|
| 696 | {
|
|---|
| 697 | G4Point3D Min = bbox->GetBoxMin();
|
|---|
| 698 | G4Point3D Max = bbox->GetBoxMax();
|
|---|
| 699 |
|
|---|
| 700 | G4ThreeVectorList *vertices;
|
|---|
| 701 | vertices=new G4ThreeVectorList();
|
|---|
| 702 | vertices->reserve(8);
|
|---|
| 703 |
|
|---|
| 704 | if (vertices)
|
|---|
| 705 | {
|
|---|
| 706 | G4ThreeVector vertex0(Min.x(),Min.y(),Min.z());
|
|---|
| 707 | G4ThreeVector vertex1(Max.x(),Min.y(),Min.z());
|
|---|
| 708 | G4ThreeVector vertex2(Max.x(),Max.y(),Min.z());
|
|---|
| 709 | G4ThreeVector vertex3(Min.x(),Max.y(),Min.z());
|
|---|
| 710 | G4ThreeVector vertex4(Min.x(),Min.y(),Max.z());
|
|---|
| 711 | G4ThreeVector vertex5(Max.x(),Min.y(),Max.z());
|
|---|
| 712 | G4ThreeVector vertex6(Max.x(),Max.y(),Max.z());
|
|---|
| 713 | G4ThreeVector vertex7(Min.x(),Max.y(),Max.z());
|
|---|
| 714 |
|
|---|
| 715 | vertices->push_back(pTransform.TransformPoint(vertex0));
|
|---|
| 716 | vertices->push_back(pTransform.TransformPoint(vertex1));
|
|---|
| 717 | vertices->push_back(pTransform.TransformPoint(vertex2));
|
|---|
| 718 | vertices->push_back(pTransform.TransformPoint(vertex3));
|
|---|
| 719 | vertices->push_back(pTransform.TransformPoint(vertex4));
|
|---|
| 720 | vertices->push_back(pTransform.TransformPoint(vertex5));
|
|---|
| 721 | vertices->push_back(pTransform.TransformPoint(vertex6));
|
|---|
| 722 | vertices->push_back(pTransform.TransformPoint(vertex7));
|
|---|
| 723 | }
|
|---|
| 724 | else
|
|---|
| 725 | {
|
|---|
| 726 | G4Exception("G4BREPSolid::CreateRotatedVertices()", "FatalError",
|
|---|
| 727 | FatalException, "Out of memory - Cannot allocate vertices!");
|
|---|
| 728 | }
|
|---|
| 729 | return vertices;
|
|---|
| 730 | }
|
|---|
| 731 |
|
|---|
| 732 | EInside G4BREPSolid::Inside(register const G4ThreeVector& Pt) const
|
|---|
| 733 | {
|
|---|
| 734 | // This function finds if the point Pt is inside,
|
|---|
| 735 | // outside or on the surface of the solid
|
|---|
| 736 |
|
|---|
| 737 | const G4double sqrHalfTolerance = kCarTolerance*kCarTolerance*0.25;
|
|---|
| 738 |
|
|---|
| 739 | G4Vector3D v(1, 0, 0.01);
|
|---|
| 740 | G4Vector3D Pttmp(Pt);
|
|---|
| 741 | G4Vector3D Vtmp(v);
|
|---|
| 742 | G4Ray r(Pttmp, Vtmp);
|
|---|
| 743 |
|
|---|
| 744 | // Check if point is inside the PCone bounding box
|
|---|
| 745 | //
|
|---|
| 746 | if( !GetBBox()->Inside(Pttmp) )
|
|---|
| 747 | return kOutside;
|
|---|
| 748 |
|
|---|
| 749 | // Set the surfaces to active again
|
|---|
| 750 | //
|
|---|
| 751 | Reset();
|
|---|
| 752 |
|
|---|
| 753 | // Test if the bounding box of each surface is intersected
|
|---|
| 754 | // by the ray. If not, the surface become deactive.
|
|---|
| 755 | //
|
|---|
| 756 | TestSurfaceBBoxes(r);
|
|---|
| 757 |
|
|---|
| 758 | G4int hits=0, samehit=0;
|
|---|
| 759 |
|
|---|
| 760 | for(G4int a=0; a < nb_of_surfaces; a++)
|
|---|
| 761 | {
|
|---|
| 762 | if(SurfaceVec[a]->IsActive())
|
|---|
| 763 | {
|
|---|
| 764 | // Count the number of intersections. If this number is odd,
|
|---|
| 765 | // the start of the ray is inside the volume bounded by the surfaces,
|
|---|
| 766 | // so increment the number of intersection by 1 if the point is not
|
|---|
| 767 | // on the surface and if this intersection was not found before.
|
|---|
| 768 | //
|
|---|
| 769 | if( (SurfaceVec[a]->Intersect(r)) & 1 )
|
|---|
| 770 | {
|
|---|
| 771 | // Test if the point is on the surface
|
|---|
| 772 | //
|
|---|
| 773 | if(SurfaceVec[a]->GetDistance() < sqrHalfTolerance)
|
|---|
| 774 | return kSurface;
|
|---|
| 775 |
|
|---|
| 776 | // Test if this intersection was found before
|
|---|
| 777 | //
|
|---|
| 778 | for(G4int i=0; i<a; i++)
|
|---|
| 779 | if(SurfaceVec[a]->GetDistance() == SurfaceVec[i]->GetDistance())
|
|---|
| 780 | {
|
|---|
| 781 | samehit++;
|
|---|
| 782 | break;
|
|---|
| 783 | }
|
|---|
| 784 |
|
|---|
| 785 | // Count the number of surfaces intersected by the ray
|
|---|
| 786 | //
|
|---|
| 787 | if(!samehit)
|
|---|
| 788 | hits++;
|
|---|
| 789 | }
|
|---|
| 790 | }
|
|---|
| 791 | }
|
|---|
| 792 |
|
|---|
| 793 | // If the number of surfaces intersected is odd,
|
|---|
| 794 | // the point is inside the solid
|
|---|
| 795 | //
|
|---|
| 796 | if(hits&1)
|
|---|
| 797 | return kInside;
|
|---|
| 798 | else
|
|---|
| 799 | return kOutside;
|
|---|
| 800 | }
|
|---|
| 801 |
|
|---|
| 802 | G4ThreeVector G4BREPSolid::SurfaceNormal(const G4ThreeVector& Pt) const
|
|---|
| 803 | {
|
|---|
| 804 | // This function calculates the normal of the surface at a point on the
|
|---|
| 805 | // surface. If the point is not on the surface the result is undefined.
|
|---|
| 806 | // Note : the sense of the normal depends on the sense of the surface.
|
|---|
| 807 |
|
|---|
| 808 | const G4double sqrHalfTolerance = kCarTolerance*kCarTolerance*0.25;
|
|---|
| 809 | G4int iplane;
|
|---|
| 810 |
|
|---|
| 811 | // Find on which surface the point is
|
|---|
| 812 | //
|
|---|
| 813 | for(iplane = 0; iplane < nb_of_surfaces; iplane++)
|
|---|
| 814 | {
|
|---|
| 815 | if(SurfaceVec[iplane]->HowNear(Pt) < sqrHalfTolerance)
|
|---|
| 816 | // the point is on this surface
|
|---|
| 817 | break;
|
|---|
| 818 | }
|
|---|
| 819 |
|
|---|
| 820 | // Calculate the normal at this point
|
|---|
| 821 | //
|
|---|
| 822 | G4ThreeVector norm = SurfaceVec[iplane]->SurfaceNormal(Pt);
|
|---|
| 823 |
|
|---|
| 824 | return norm.unit();
|
|---|
| 825 | }
|
|---|
| 826 |
|
|---|
| 827 | G4double G4BREPSolid::DistanceToIn(const G4ThreeVector& Pt) const
|
|---|
| 828 | {
|
|---|
| 829 | // Calculates the shortest distance ("safety") from a point
|
|---|
| 830 | // outside the solid to any boundary of this solid.
|
|---|
| 831 | // Return 0 if the point is already inside.
|
|---|
| 832 |
|
|---|
| 833 | G4double *dists = new G4double[nb_of_surfaces];
|
|---|
| 834 | G4int a;
|
|---|
| 835 |
|
|---|
| 836 | // Set the surfaces to active again
|
|---|
| 837 | //
|
|---|
| 838 | Reset();
|
|---|
| 839 |
|
|---|
| 840 | // Compute the shortest distance of the point to each surface.
|
|---|
| 841 | // Be careful : it's a signed value
|
|---|
| 842 | //
|
|---|
| 843 | for(a=0; a< nb_of_surfaces; a++)
|
|---|
| 844 | dists[a] = SurfaceVec[a]->HowNear(Pt);
|
|---|
| 845 |
|
|---|
| 846 | G4double Dist = kInfinity;
|
|---|
| 847 |
|
|---|
| 848 | // If dists[] is positive, the point is outside, so take the shortest of
|
|---|
| 849 | // the shortest positive distances dists[] can be equal to 0 : point on
|
|---|
| 850 | // a surface.
|
|---|
| 851 | // ( Problem with the G4FPlane : there is no inside and no outside...
|
|---|
| 852 | // So, to test if the point is inside to return 0, utilize the Inside()
|
|---|
| 853 | // function. But I don't know if it is really needed because dToIn is
|
|---|
| 854 | // called only if the point is outside )
|
|---|
| 855 | //
|
|---|
| 856 | for(a = 0; a < nb_of_surfaces; a++)
|
|---|
| 857 | if( std::fabs(Dist) > std::fabs(dists[a]) )
|
|---|
| 858 | //if( dists[a] >= 0)
|
|---|
| 859 | Dist = dists[a];
|
|---|
| 860 |
|
|---|
| 861 | delete[] dists;
|
|---|
| 862 |
|
|---|
| 863 | if(Dist == kInfinity)
|
|---|
| 864 | return 0; // the point is inside the solid or on a surface
|
|---|
| 865 | else
|
|---|
| 866 | return std::fabs(Dist);
|
|---|
| 867 | }
|
|---|
| 868 |
|
|---|
| 869 | G4double G4BREPSolid::DistanceToIn(register const G4ThreeVector& Pt,
|
|---|
| 870 | register const G4ThreeVector& V ) const
|
|---|
| 871 | {
|
|---|
| 872 | // Calculates the distance from a point outside the solid
|
|---|
| 873 | // to the solid's boundary along a specified direction vector.
|
|---|
| 874 | //
|
|---|
| 875 | // Note : Intersections with boundaries less than the tolerance must be
|
|---|
| 876 | // ignored if the direction is away from the boundary.
|
|---|
| 877 |
|
|---|
| 878 | G4int a;
|
|---|
| 879 |
|
|---|
| 880 | // Set the surfaces to active again
|
|---|
| 881 | //
|
|---|
| 882 | Reset();
|
|---|
| 883 |
|
|---|
| 884 | const G4double sqrHalfTolerance = kCarTolerance*kCarTolerance*0.25;
|
|---|
| 885 | G4Vector3D Pttmp(Pt);
|
|---|
| 886 | G4Vector3D Vtmp(V);
|
|---|
| 887 | G4Ray r(Pttmp, Vtmp);
|
|---|
| 888 |
|
|---|
| 889 | // Test if the bounding box of each surface is intersected
|
|---|
| 890 | // by the ray. If not, the surface become deactive.
|
|---|
| 891 | //
|
|---|
| 892 | TestSurfaceBBoxes(r);
|
|---|
| 893 |
|
|---|
| 894 | ShortestDistance = kInfinity;
|
|---|
| 895 |
|
|---|
| 896 | for(a=0; a< nb_of_surfaces; a++)
|
|---|
| 897 | {
|
|---|
| 898 | if( SurfaceVec[a]->IsActive() )
|
|---|
| 899 | {
|
|---|
| 900 | // Test if the ray intersects the surface
|
|---|
| 901 | //
|
|---|
| 902 | if( SurfaceVec[a]->Intersect(r) )
|
|---|
| 903 | {
|
|---|
| 904 | G4double surfDistance = SurfaceVec[a]->GetDistance();
|
|---|
| 905 |
|
|---|
| 906 | // If more than 1 surface is intersected, take the nearest one
|
|---|
| 907 | //
|
|---|
| 908 | if( surfDistance < ShortestDistance )
|
|---|
| 909 | {
|
|---|
| 910 | if( surfDistance > sqrHalfTolerance )
|
|---|
| 911 | {
|
|---|
| 912 | ShortestDistance = surfDistance;
|
|---|
| 913 | }
|
|---|
| 914 | else
|
|---|
| 915 | {
|
|---|
| 916 | // The point is within the boundary. It is ignored it if
|
|---|
| 917 | // the direction is away from the boundary
|
|---|
| 918 | //
|
|---|
| 919 | G4Vector3D Norm = SurfaceVec[a]->SurfaceNormal(Pttmp);
|
|---|
| 920 |
|
|---|
| 921 | if( (Norm * Vtmp) < 0 )
|
|---|
| 922 | {
|
|---|
| 923 | ShortestDistance = surfDistance;
|
|---|
| 924 | }
|
|---|
| 925 | }
|
|---|
| 926 | }
|
|---|
| 927 | }
|
|---|
| 928 | }
|
|---|
| 929 | }
|
|---|
| 930 |
|
|---|
| 931 | // Be careful !
|
|---|
| 932 | // SurfaceVec->Distance is in fact the squared distance
|
|---|
| 933 | //
|
|---|
| 934 | if(ShortestDistance != kInfinity)
|
|---|
| 935 | return std::sqrt(ShortestDistance);
|
|---|
| 936 | else
|
|---|
| 937 | return kInfinity; // No intersection
|
|---|
| 938 | }
|
|---|
| 939 |
|
|---|
| 940 | G4double G4BREPSolid::DistanceToOut(register const G4ThreeVector& P,
|
|---|
| 941 | register const G4ThreeVector& D,
|
|---|
| 942 | const G4bool,
|
|---|
| 943 | G4bool *validNorm,
|
|---|
| 944 | G4ThreeVector* ) const
|
|---|
| 945 | {
|
|---|
| 946 | // Calculates the distance from a point inside the solid to the solid's
|
|---|
| 947 | // boundary along a specified direction vector.
|
|---|
| 948 | // Returns 0 if the point is already outside.
|
|---|
| 949 | //
|
|---|
| 950 | // Note : If the shortest distance to a boundary is less than the tolerance,
|
|---|
| 951 | // it is ignored. This allows for a point within a tolerant boundary
|
|---|
| 952 | // to leave immediately.
|
|---|
| 953 |
|
|---|
| 954 | // Set the surfaces to active again
|
|---|
| 955 | //
|
|---|
| 956 | Reset();
|
|---|
| 957 |
|
|---|
| 958 | const G4double sqrHalfTolerance = kCarTolerance*kCarTolerance*0.25;
|
|---|
| 959 | G4Vector3D Ptv = P;
|
|---|
| 960 | G4int a;
|
|---|
| 961 |
|
|---|
| 962 | if(validNorm)
|
|---|
| 963 | *validNorm=false;
|
|---|
| 964 |
|
|---|
| 965 | G4Vector3D Pttmp(Ptv);
|
|---|
| 966 | G4Vector3D Vtmp(D);
|
|---|
| 967 |
|
|---|
| 968 | G4Ray r(Pttmp, Vtmp);
|
|---|
| 969 |
|
|---|
| 970 | // Test if the bounding box of each surface is intersected
|
|---|
| 971 | // by the ray. If not, the surface become deactive.
|
|---|
| 972 | //
|
|---|
| 973 | TestSurfaceBBoxes(r);
|
|---|
| 974 |
|
|---|
| 975 | ShortestDistance = kInfinity;
|
|---|
| 976 |
|
|---|
| 977 | for(a=0; a< nb_of_surfaces; a++)
|
|---|
| 978 | {
|
|---|
| 979 | if(SurfaceVec[a]->IsActive())
|
|---|
| 980 | {
|
|---|
| 981 | // Test if the ray intersect the surface
|
|---|
| 982 | //
|
|---|
| 983 | if( (SurfaceVec[a]->Intersect(r)) )
|
|---|
| 984 | {
|
|---|
| 985 | // If more than 1 surface is intersected, take the nearest one
|
|---|
| 986 | //
|
|---|
| 987 | G4double surfDistance = SurfaceVec[a]->GetDistance();
|
|---|
| 988 | if( surfDistance < ShortestDistance )
|
|---|
| 989 | {
|
|---|
| 990 | if( surfDistance > sqrHalfTolerance )
|
|---|
| 991 | {
|
|---|
| 992 | ShortestDistance = surfDistance;
|
|---|
| 993 | }
|
|---|
| 994 | else
|
|---|
| 995 | {
|
|---|
| 996 | // The point is within the boundary: ignore it
|
|---|
| 997 | }
|
|---|
| 998 | }
|
|---|
| 999 | }
|
|---|
| 1000 | }
|
|---|
| 1001 | }
|
|---|
| 1002 |
|
|---|
| 1003 | // Be careful !
|
|---|
| 1004 | // SurfaceVec->Distance is in fact the squared distance
|
|---|
| 1005 | //
|
|---|
| 1006 | if(ShortestDistance != kInfinity)
|
|---|
| 1007 | return std::sqrt(ShortestDistance);
|
|---|
| 1008 | else
|
|---|
| 1009 | return 0.0; // No intersection is found, the point is outside
|
|---|
| 1010 | }
|
|---|
| 1011 |
|
|---|
| 1012 | G4double G4BREPSolid::DistanceToOut(const G4ThreeVector& Pt)const
|
|---|
| 1013 | {
|
|---|
| 1014 | // Calculates the shortest distance ("safety") from a point
|
|---|
| 1015 | // inside the solid to any boundary of this solid.
|
|---|
| 1016 | // Returns 0 if the point is already outside.
|
|---|
| 1017 |
|
|---|
| 1018 | G4double *dists = new G4double[nb_of_surfaces];
|
|---|
| 1019 | G4int a;
|
|---|
| 1020 |
|
|---|
| 1021 | // Set the surfaces to active again
|
|---|
| 1022 | //
|
|---|
| 1023 | Reset();
|
|---|
| 1024 |
|
|---|
| 1025 | // Compute the shortest distance of the point to each surfaces
|
|---|
| 1026 | // Be careful : it's a signed value
|
|---|
| 1027 | //
|
|---|
| 1028 | for(a=0; a< nb_of_surfaces; a++)
|
|---|
| 1029 | dists[a] = SurfaceVec[a]->HowNear(Pt);
|
|---|
| 1030 |
|
|---|
| 1031 | G4double Dist = kInfinity;
|
|---|
| 1032 |
|
|---|
| 1033 | // If dists[] is negative, the point is inside so take the shortest of the
|
|---|
| 1034 | // shortest negative distances dists[] can be equal to 0 : point on a
|
|---|
| 1035 | // surface
|
|---|
| 1036 | // ( Problem with the G4FPlane : there is no inside and no outside...
|
|---|
| 1037 | // So, to test if the point is outside to return 0, utilize the Inside()
|
|---|
| 1038 | // function. But I don`t know if it is really needed because dToOut is
|
|---|
| 1039 | // called only if the point is inside )
|
|---|
| 1040 | //
|
|---|
| 1041 | for(a = 0; a < nb_of_surfaces; a++)
|
|---|
| 1042 | if( std::fabs(Dist) > std::fabs(dists[a]) )
|
|---|
| 1043 | //if( dists[a] <= 0)
|
|---|
| 1044 | Dist = dists[a];
|
|---|
| 1045 |
|
|---|
| 1046 | delete[] dists;
|
|---|
| 1047 |
|
|---|
| 1048 | if(Dist == kInfinity)
|
|---|
| 1049 | return 0; // The point is ouside the solid or on a surface
|
|---|
| 1050 | else
|
|---|
| 1051 | return std::fabs(Dist);
|
|---|
| 1052 | }
|
|---|
| 1053 |
|
|---|
| 1054 | void G4BREPSolid::DescribeYourselfTo (G4VGraphicsScene& scene) const
|
|---|
| 1055 | {
|
|---|
| 1056 | scene.AddSolid (*this);
|
|---|
| 1057 | }
|
|---|
| 1058 |
|
|---|
| 1059 | G4Polyhedron* G4BREPSolid::CreatePolyhedron () const
|
|---|
| 1060 | {
|
|---|
| 1061 | // Approximate implementation, just a box ...
|
|---|
| 1062 |
|
|---|
| 1063 | G4Point3D Min = bbox->GetBoxMin();
|
|---|
| 1064 | G4Point3D Max = bbox->GetBoxMax();
|
|---|
| 1065 |
|
|---|
| 1066 | return new G4PolyhedronBox (Max.x(), Max.y(), Max.z());
|
|---|
| 1067 | }
|
|---|
| 1068 |
|
|---|
| 1069 | G4NURBS* G4BREPSolid::CreateNURBS () const
|
|---|
| 1070 | {
|
|---|
| 1071 | // Approximate implementation, just a box ...
|
|---|
| 1072 |
|
|---|
| 1073 | G4Point3D Min = bbox->GetBoxMin();
|
|---|
| 1074 | G4Point3D Max = bbox->GetBoxMax();
|
|---|
| 1075 |
|
|---|
| 1076 | return new G4NURBSbox (Max.x(), Max.y(), Max.z());
|
|---|
| 1077 | }
|
|---|
| 1078 |
|
|---|
| 1079 | void G4BREPSolid::CalcBBoxes()
|
|---|
| 1080 | {
|
|---|
| 1081 | // First initialization. Calculates the bounding boxes
|
|---|
| 1082 | // for the surfaces and for the solid.
|
|---|
| 1083 |
|
|---|
| 1084 | G4Surface* srf;
|
|---|
| 1085 | G4Point3D min, max;
|
|---|
| 1086 |
|
|---|
| 1087 | if(active)
|
|---|
| 1088 | {
|
|---|
| 1089 | min = PINFINITY;
|
|---|
| 1090 | max = -PINFINITY;
|
|---|
| 1091 |
|
|---|
| 1092 | for(G4int a = 0;a < nb_of_surfaces;a++)
|
|---|
| 1093 | {
|
|---|
| 1094 | // Get first in List
|
|---|
| 1095 | //
|
|---|
| 1096 | srf = SurfaceVec[a];
|
|---|
| 1097 | G4int convex=1;
|
|---|
| 1098 | G4int concavepoint=-1;
|
|---|
| 1099 |
|
|---|
| 1100 | if (srf->MyType() == 1)
|
|---|
| 1101 | {
|
|---|
| 1102 | concavepoint = srf->IsConvex();
|
|---|
| 1103 | convex = srf->GetConvex();
|
|---|
| 1104 | }
|
|---|
| 1105 |
|
|---|
| 1106 | // Make bbox for face
|
|---|
| 1107 | //
|
|---|
| 1108 | // if(convex && Concavepoint==-1)
|
|---|
| 1109 | {
|
|---|
| 1110 | srf->CalcBBox();
|
|---|
| 1111 | G4Point3D box_min = srf->GetBBox()->GetBoxMin();
|
|---|
| 1112 | G4Point3D box_max = srf->GetBBox()->GetBoxMax();
|
|---|
| 1113 |
|
|---|
| 1114 | // Find max and min of face bboxes to make solids bbox.
|
|---|
| 1115 |
|
|---|
| 1116 | // replace by Extend
|
|---|
| 1117 | // max < box_max
|
|---|
| 1118 | //
|
|---|
| 1119 | if(max.x() < box_max.x()) max.setX(box_max.x());
|
|---|
| 1120 | if(max.y() < box_max.y()) max.setY(box_max.y());
|
|---|
| 1121 | if(max.z() < box_max.z()) max.setZ(box_max.z());
|
|---|
| 1122 |
|
|---|
| 1123 | // min > box_min
|
|---|
| 1124 | //
|
|---|
| 1125 | if(min.x() > box_min.x()) min.setX(box_min.x());
|
|---|
| 1126 | if(min.y() > box_min.y()) min.setY(box_min.y());
|
|---|
| 1127 | if(min.z() > box_min.z()) min.setZ(box_min.z());
|
|---|
| 1128 | }
|
|---|
| 1129 | }
|
|---|
| 1130 | bbox = new G4BoundingBox3D(min, max);
|
|---|
| 1131 | return;
|
|---|
| 1132 | }
|
|---|
| 1133 | G4cerr << "ERROR - G4BREPSolid::CalcBBoxes()" << G4endl
|
|---|
| 1134 | << " No bbox calculated for solid. Error." << G4endl;
|
|---|
| 1135 | }
|
|---|
| 1136 |
|
|---|
| 1137 | void G4BREPSolid::RemoveHiddenFaces(register const G4Ray& rayref,
|
|---|
| 1138 | G4int In ) const
|
|---|
| 1139 | {
|
|---|
| 1140 | // Deactivates the planar faces that are on the "back" side of a solid.
|
|---|
| 1141 | // B-splines are not handled by this function. Also cases where the ray
|
|---|
| 1142 | // starting point is Inside the bbox of the solid are ignored as we don't
|
|---|
| 1143 | // know if the starting point is Inside the actual solid except for
|
|---|
| 1144 | // axis-oriented box-like solids.
|
|---|
| 1145 |
|
|---|
| 1146 | register G4Surface* srf;
|
|---|
| 1147 | register const G4Vector3D& RayDir = rayref.GetDir();
|
|---|
| 1148 | register G4double Result;
|
|---|
| 1149 | G4int a;
|
|---|
| 1150 |
|
|---|
| 1151 | // In all other cases the ray starting point is outside the solid
|
|---|
| 1152 | //
|
|---|
| 1153 | if(!In)
|
|---|
| 1154 | for(a=0; a<nb_of_surfaces; a++)
|
|---|
| 1155 | {
|
|---|
| 1156 | // Deactivates the solids faces that are hidden
|
|---|
| 1157 | //
|
|---|
| 1158 | srf = SurfaceVec[a];
|
|---|
| 1159 | if(srf->MyType()==1)
|
|---|
| 1160 | {
|
|---|
| 1161 | const G4Vector3D& Normal = (srf->Norm())->GetDir();
|
|---|
| 1162 | Result = (RayDir * Normal);
|
|---|
| 1163 |
|
|---|
| 1164 | if( Result >= 0 )
|
|---|
| 1165 | srf->Deactivate();
|
|---|
| 1166 | }
|
|---|
| 1167 | }
|
|---|
| 1168 | else
|
|---|
| 1169 | for(a=0; a<nb_of_surfaces; a++)
|
|---|
| 1170 | {
|
|---|
| 1171 | // Deactivates the AxisBox type solids faces whose normals
|
|---|
| 1172 | // point in the G4Vector3D opposite to the rays G4Vector3D
|
|---|
| 1173 | // i.e. are behind the ray starting point as in this case the
|
|---|
| 1174 | // ray starts from Inside the solid.
|
|---|
| 1175 | //
|
|---|
| 1176 | srf = SurfaceVec[a];
|
|---|
| 1177 | if(srf->MyType()==1)
|
|---|
| 1178 | {
|
|---|
| 1179 | const G4Vector3D& Normal = (srf->Norm())->GetDir();
|
|---|
| 1180 | Result = (RayDir * Normal);
|
|---|
| 1181 |
|
|---|
| 1182 | if( Result < 0 )
|
|---|
| 1183 | srf->Deactivate();
|
|---|
| 1184 | }
|
|---|
| 1185 | }
|
|---|
| 1186 | }
|
|---|
| 1187 |
|
|---|
| 1188 | void G4BREPSolid::TestSurfaceBBoxes(register const G4Ray& rayref) const
|
|---|
| 1189 | {
|
|---|
| 1190 | register G4Surface* srf;
|
|---|
| 1191 | G4int active_srfs = nb_of_surfaces;
|
|---|
| 1192 |
|
|---|
| 1193 | // Do the bbox tests to all surfaces in List
|
|---|
| 1194 | // for planar faces the intersection is instead evaluated.
|
|---|
| 1195 | //
|
|---|
| 1196 | G4int intersection=0;
|
|---|
| 1197 |
|
|---|
| 1198 | for(G4int a=0;a<nb_of_surfaces;a++)
|
|---|
| 1199 | {
|
|---|
| 1200 | // Get first in List
|
|---|
| 1201 | //
|
|---|
| 1202 | srf = SurfaceVec[a];
|
|---|
| 1203 |
|
|---|
| 1204 | if(srf->IsActive())
|
|---|
| 1205 | {
|
|---|
| 1206 | // Get type
|
|---|
| 1207 | //
|
|---|
| 1208 | if(srf->MyType() != 1) // 1 == planar face
|
|---|
| 1209 | {
|
|---|
| 1210 | if(srf->GetBBox()->Test(rayref))
|
|---|
| 1211 | srf->SetDistance(bbox->GetDistance());
|
|---|
| 1212 | else
|
|---|
| 1213 | {
|
|---|
| 1214 | // Test failed. Flag as inactive.
|
|---|
| 1215 | //
|
|---|
| 1216 | srf->Deactivate();
|
|---|
| 1217 | active_srfs--;
|
|---|
| 1218 | }
|
|---|
| 1219 | }
|
|---|
| 1220 | else
|
|---|
| 1221 | {
|
|---|
| 1222 | // Type was convex planar face
|
|---|
| 1223 | intersection = srf->Intersect(rayref);
|
|---|
| 1224 |
|
|---|
| 1225 | if(!intersection)
|
|---|
| 1226 | active_srfs--;
|
|---|
| 1227 | }
|
|---|
| 1228 | }
|
|---|
| 1229 | else
|
|---|
| 1230 | active_srfs--;
|
|---|
| 1231 | }
|
|---|
| 1232 |
|
|---|
| 1233 | if(!active_srfs) Active(0);
|
|---|
| 1234 | }
|
|---|
| 1235 |
|
|---|
| 1236 |
|
|---|
| 1237 | G4int G4BREPSolid::Intersect(register const G4Ray& rayref) const
|
|---|
| 1238 | {
|
|---|
| 1239 | // Gets the roughly calculated closest intersection point for
|
|---|
| 1240 | // a b_spline & accurate point for others.
|
|---|
| 1241 |
|
|---|
| 1242 | const G4double sqrHalfTolerance = kCarTolerance*kCarTolerance*0.25;
|
|---|
| 1243 |
|
|---|
| 1244 | register G4Surface* srf;
|
|---|
| 1245 | G4double HitDistance = -1;
|
|---|
| 1246 | const G4Point3D& RayStart = rayref.GetStart();
|
|---|
| 1247 | const G4Point3D& RayDir = rayref.GetDir();
|
|---|
| 1248 |
|
|---|
| 1249 | G4int result=1;
|
|---|
| 1250 |
|
|---|
| 1251 | // Sort List of active surfaces according to
|
|---|
| 1252 | // bbox distances to ray starting point
|
|---|
| 1253 | //
|
|---|
| 1254 | QuickSort(SurfaceVec, 0, nb_of_surfaces-1);
|
|---|
| 1255 | G4int Number=0;
|
|---|
| 1256 |
|
|---|
| 1257 | // Start handling active surfaces in order
|
|---|
| 1258 | //
|
|---|
| 1259 | for(register G4int a=0;a<nb_of_surfaces;a++)
|
|---|
| 1260 | {
|
|---|
| 1261 | srf = SurfaceVec[a];
|
|---|
| 1262 | G4int included = 0;
|
|---|
| 1263 |
|
|---|
| 1264 | if(srf->IsActive())
|
|---|
| 1265 | {
|
|---|
| 1266 | result = srf->Intersect(rayref);
|
|---|
| 1267 | if(result)
|
|---|
| 1268 | {
|
|---|
| 1269 | // Get the evaluated point on the surface
|
|---|
| 1270 | //
|
|---|
| 1271 | const G4Point3D& closest_point = srf->GetClosestHit();
|
|---|
| 1272 |
|
|---|
| 1273 | // Test for DistanceToIn(pt, vec)
|
|---|
| 1274 | // if d = 0 and vec.norm > 0, do not see the surface
|
|---|
| 1275 | //
|
|---|
| 1276 | if( !( (srf->GetDistance() < sqrHalfTolerance) ||
|
|---|
| 1277 | (RayDir.dot(srf->SurfaceNormal(closest_point)) > 0) ) )
|
|---|
| 1278 | {
|
|---|
| 1279 |
|
|---|
| 1280 | if(srf->MyType()==1)
|
|---|
| 1281 | HitDistance = srf->GetDistance();
|
|---|
| 1282 | else
|
|---|
| 1283 | {
|
|---|
| 1284 | // Check if the evaluated point is in front of the
|
|---|
| 1285 | // bbox of the next surface.
|
|---|
| 1286 | //
|
|---|
| 1287 | HitDistance = RayStart.distance2(closest_point);
|
|---|
| 1288 | }
|
|---|
| 1289 | }
|
|---|
| 1290 | }
|
|---|
| 1291 | else // No hit
|
|---|
| 1292 | {
|
|---|
| 1293 | included = 1;
|
|---|
| 1294 | srf->Deactivate();
|
|---|
| 1295 | }
|
|---|
| 1296 | }
|
|---|
| 1297 | Number++;
|
|---|
| 1298 | }
|
|---|
| 1299 |
|
|---|
| 1300 | if(HitDistance < 0)
|
|---|
| 1301 | return 0;
|
|---|
| 1302 |
|
|---|
| 1303 | QuickSort(SurfaceVec, 0, nb_of_surfaces-1);
|
|---|
| 1304 |
|
|---|
| 1305 | if(!(SurfaceVec[0]->IsActive()))
|
|---|
| 1306 | return 0;
|
|---|
| 1307 |
|
|---|
| 1308 | ((G4BREPSolid*)this)->intersection_point = SurfaceVec[0]->GetClosestHit();
|
|---|
| 1309 | bbox->SetDistance(HitDistance);
|
|---|
| 1310 |
|
|---|
| 1311 | return 1;
|
|---|
| 1312 | }
|
|---|
| 1313 |
|
|---|
| 1314 | G4int G4BREPSolid::FinalEvaluation(register const G4Ray& rayref,
|
|---|
| 1315 | G4int ToIn ) const
|
|---|
| 1316 | {
|
|---|
| 1317 | const G4double sqrHalfTolerance = kCarTolerance*kCarTolerance*0.25;
|
|---|
| 1318 | register G4Surface* srf;
|
|---|
| 1319 | G4double Dist=0;
|
|---|
| 1320 |
|
|---|
| 1321 | ((G4BREPSolid*)this)->intersectionDistance = kInfinity;
|
|---|
| 1322 |
|
|---|
| 1323 | for(register G4int a=0;a<nb_of_surfaces;a++)
|
|---|
| 1324 | {
|
|---|
| 1325 | srf = SurfaceVec[a];
|
|---|
| 1326 |
|
|---|
| 1327 | if(srf->IsActive())
|
|---|
| 1328 | {
|
|---|
| 1329 | const G4Point3D& srf_intersection = srf->Evaluation(rayref);
|
|---|
| 1330 |
|
|---|
| 1331 | // Compute hit point distance from ray starting point
|
|---|
| 1332 | //
|
|---|
| 1333 | if(srf->MyType() != 1)
|
|---|
| 1334 | {
|
|---|
| 1335 | G4Point3D start = rayref.GetStart();
|
|---|
| 1336 | Dist = srf_intersection.distance2(start);
|
|---|
| 1337 | }
|
|---|
| 1338 | else
|
|---|
| 1339 | Dist = srf->GetDistance();
|
|---|
| 1340 |
|
|---|
| 1341 | // Skip point wich are on the surface i.e. within tolerance of the
|
|---|
| 1342 | // surface. Special handling for DistanceToIn & reflections
|
|---|
| 1343 | //
|
|---|
| 1344 | if(Dist < sqrHalfTolerance)
|
|---|
| 1345 | {
|
|---|
| 1346 | if(ToIn)
|
|---|
| 1347 | {
|
|---|
| 1348 | const G4Vector3D& Dir = rayref.GetDir();
|
|---|
| 1349 | const G4Point3D& Hit = srf->GetClosestHit();
|
|---|
| 1350 | const G4Vector3D& Norm = srf->SurfaceNormal(Hit);
|
|---|
| 1351 |
|
|---|
| 1352 | if(( Dir * Norm ) >= 0)
|
|---|
| 1353 | {
|
|---|
| 1354 | Dist = kInfinity;
|
|---|
| 1355 | srf->Deactivate();
|
|---|
| 1356 | }
|
|---|
| 1357 |
|
|---|
| 1358 | // else continue with the distance, even though < tolerance
|
|---|
| 1359 | }
|
|---|
| 1360 | else
|
|---|
| 1361 | {
|
|---|
| 1362 | Dist = kInfinity;
|
|---|
| 1363 | srf->Deactivate();
|
|---|
| 1364 | }
|
|---|
| 1365 | }
|
|---|
| 1366 |
|
|---|
| 1367 | // If more than one surfaces are evaluated till the
|
|---|
| 1368 | // final stage, only the closest point is taken
|
|---|
| 1369 | //
|
|---|
| 1370 | if(Dist < intersectionDistance)
|
|---|
| 1371 | {
|
|---|
| 1372 | // Check that Hit is in the direction of the ray
|
|---|
| 1373 | // from the starting point
|
|---|
| 1374 | //
|
|---|
| 1375 | const G4Point3D& Pt = rayref.GetStart();
|
|---|
| 1376 | const G4Vector3D& Dir = rayref.GetDir();
|
|---|
| 1377 |
|
|---|
| 1378 | G4Point3D TestPoint = (0.00001*Dir) + Pt;
|
|---|
| 1379 | G4double TestDistance = srf_intersection.distance2(TestPoint);
|
|---|
| 1380 |
|
|---|
| 1381 | if(TestDistance > Dist)
|
|---|
| 1382 | {
|
|---|
| 1383 | // Hit behind ray starting point, no intersection
|
|---|
| 1384 | //
|
|---|
| 1385 | Dist = kInfinity;
|
|---|
| 1386 | srf->Deactivate();
|
|---|
| 1387 | }
|
|---|
| 1388 | else
|
|---|
| 1389 | {
|
|---|
| 1390 | ((G4BREPSolid*)this)->intersectionDistance = Dist;
|
|---|
| 1391 | ((G4BREPSolid*)this)->intersection_point = srf_intersection;
|
|---|
| 1392 | }
|
|---|
| 1393 |
|
|---|
| 1394 | // Check that the intersection is closer than the
|
|---|
| 1395 | // next surfaces approximated point
|
|---|
| 1396 | //
|
|---|
| 1397 | if(srf->IsActive())
|
|---|
| 1398 | {
|
|---|
| 1399 | if(a+1<nb_of_surfaces)
|
|---|
| 1400 | {
|
|---|
| 1401 | const G4Vector3D& Dir = rayref.GetDir();
|
|---|
| 1402 | const G4Point3D& Hit = srf->GetClosestHit();
|
|---|
| 1403 | const G4Vector3D& Norm = srf->SurfaceNormal(Hit);
|
|---|
| 1404 |
|
|---|
| 1405 | // L. Broglia
|
|---|
| 1406 | //if(( Dir * Norm ) >= 0)
|
|---|
| 1407 | if(( Dir * Norm ) < 0)
|
|---|
| 1408 | {
|
|---|
| 1409 | Dist = kInfinity;
|
|---|
| 1410 | srf->Deactivate();
|
|---|
| 1411 | }
|
|---|
| 1412 |
|
|---|
| 1413 | // else continue with the distance, even though < tolerance
|
|---|
| 1414 |
|
|---|
| 1415 | ShortestDistance = Dist;
|
|---|
| 1416 | }
|
|---|
| 1417 | else
|
|---|
| 1418 | {
|
|---|
| 1419 | ShortestDistance = Dist;
|
|---|
| 1420 | return 1;
|
|---|
| 1421 | }
|
|---|
| 1422 | }
|
|---|
| 1423 | }
|
|---|
| 1424 | }
|
|---|
| 1425 | else // if srf NOT active
|
|---|
| 1426 | {
|
|---|
| 1427 | /* if(intersectionDistance < kInfinity)
|
|---|
| 1428 | return 1;
|
|---|
| 1429 | return 0;*/
|
|---|
| 1430 | }
|
|---|
| 1431 | }
|
|---|
| 1432 | if(intersectionDistance < kInfinity)
|
|---|
| 1433 | return 1;
|
|---|
| 1434 |
|
|---|
| 1435 | return 0;
|
|---|
| 1436 | }
|
|---|
| 1437 |
|
|---|
| 1438 | G4Point3D G4BREPSolid::Scope() const
|
|---|
| 1439 | {
|
|---|
| 1440 | G4Point3D scope;
|
|---|
| 1441 | G4Point3D Max = bbox->GetBoxMax();
|
|---|
| 1442 | G4Point3D Min = bbox->GetBoxMin();
|
|---|
| 1443 |
|
|---|
| 1444 | scope.setX(std::fabs(Max.x()) - std::fabs(Min.x()));
|
|---|
| 1445 | scope.setY(std::fabs(Max.y()) - std::fabs(Min.y()));
|
|---|
| 1446 | scope.setZ(std::fabs(Max.z()) - std::fabs(Min.z()));
|
|---|
| 1447 |
|
|---|
| 1448 | return scope;
|
|---|
| 1449 | }
|
|---|
| 1450 |
|
|---|
| 1451 | std::ostream& G4BREPSolid::StreamInfo(std::ostream& os) const
|
|---|
| 1452 | {
|
|---|
| 1453 | os << "-----------------------------------------------------------\n"
|
|---|
| 1454 | << " *** Dump for solid - " << GetName() << " ***\n"
|
|---|
| 1455 | << " ===================================================\n"
|
|---|
| 1456 | << " Solid type: " << GetEntityType() << "\n"
|
|---|
| 1457 | << " Parameters: \n"
|
|---|
| 1458 | << " Number of solids: " << NumberOfSolids << "\n"
|
|---|
| 1459 | << "-----------------------------------------------------------\n";
|
|---|
| 1460 |
|
|---|
| 1461 | return os;
|
|---|
| 1462 | }
|
|---|
| 1463 |
|
|---|
| 1464 | G4Polyhedron* G4BREPSolid::GetPolyhedron () const
|
|---|
| 1465 | {
|
|---|
| 1466 | if (!fpPolyhedron ||
|
|---|
| 1467 | fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() !=
|
|---|
| 1468 | fpPolyhedron->GetNumberOfRotationSteps())
|
|---|
| 1469 | {
|
|---|
| 1470 | delete fpPolyhedron;
|
|---|
| 1471 | fpPolyhedron = CreatePolyhedron();
|
|---|
| 1472 | }
|
|---|
| 1473 | return fpPolyhedron;
|
|---|
| 1474 | }
|
|---|