// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4BREPSolidCone.cc,v 1.15 2006/06/29 18:41:16 gunter Exp $ // GEANT4 tag $Name: geant4-09-03 $ // // ---------------------------------------------------------------------- // GEANT 4 class source file // // G4BREPSolidCone.cc // // ---------------------------------------------------------------------- #include "G4BREPSolidCone.hh" #include "G4FPlane.hh" #include "G4FConicalSurface.hh" #include "G4FCylindricalSurface.hh" #include "G4CircularCurve.hh" G4BREPSolidCone::G4BREPSolidCone(const G4String& name, const G4ThreeVector& origin, const G4ThreeVector& axis, const G4ThreeVector& direction, G4double length, G4double radius, G4double large_radius) : G4BREPSolid(name) { SurfaceVec = new G4Surface*[3]; G4Point3D ArcStart1 = G4Point3D(origin + (radius*direction)); G4Vector3D tmpaxis(axis); G4Vector3D tmporigin(origin); G4Point3D tmppoint; tmppoint= G4Point3D(origin) + (length*tmpaxis); G4Point3D origin2(tmppoint.x(), tmppoint.y(), tmppoint.z()); tmppoint= origin2 + (large_radius*tmpaxis); G4Point3D ArcStart2(tmppoint.x(), tmppoint.y(), tmppoint.z()); G4Ray::Vcross(tmpaxis, axis, direction); G4ThreeVector axis2(tmpaxis.x(),tmpaxis.y(), tmpaxis.z()); G4CurveVector CVec; G4CircularCurve* tmp; tmp = new G4CircularCurve(); tmp->Init(G4Axis2Placement3D(direction, axis2, origin) , large_radius); tmp->SetBounds(ArcStart1, ArcStart1); CVec.push_back(tmp); tmp = new G4CircularCurve(); tmp->Init(G4Axis2Placement3D(direction, axis2, origin2), large_radius); tmp->SetBounds(ArcStart2, ArcStart2); CVec.push_back(tmp); SurfaceVec[0] = new G4FConicalSurface(tmporigin, axis, length, radius, large_radius); SurfaceVec[0]->SetBoundaries(&CVec); // new G4AdvancedFace("G4FConicalSurface", tmporigin, direction, // axis, CVec, 1, 0,0,length, radius, large_radius); // Create end planes & boundaries for cone solid G4CurveVector CVec2; tmp = new G4CircularCurve(); tmp->Init(G4Axis2Placement3D(direction, axis2, origin), radius); tmp->SetBounds(ArcStart1, ArcStart1); CVec2.push_back(tmp); SurfaceVec[1] = new G4FPlane(tmpaxis, direction, origin2); //new G4AdvancedFace("G4FPlane" , origin2, direction, tmpaxis, CVec2, 1); SurfaceVec[1]->SetBoundaries(&CVec2); CVec2[0] = tmp = new G4CircularCurve(); tmp->Init(G4Axis2Placement3D(direction, axis2, origin2), large_radius); tmp->SetBounds(ArcStart2, ArcStart2); SurfaceVec[2] = new G4FPlane(tmpaxis, direction, origin); //new G4AdvancedFace("G4FPlane", origin, direction, tmpaxis, CVec2, 1); SurfaceVec[2]->SetBoundaries(&CVec2); nb_of_surfaces = 3; active=1; // Save constructor parameters constructorParams.origin = origin; constructorParams.axis = axis; constructorParams.direction = direction; constructorParams.length = length; constructorParams.radius = radius; constructorParams.large_radius = large_radius; Initialize(); } G4BREPSolidCone::G4BREPSolidCone( __void__& a ) : G4BREPSolid(a) { } G4BREPSolidCone::~G4BREPSolidCone() { } void G4BREPSolidCone::Initialize() { // Calc bounding box for solids and surfaces // Convert concave planes to convex ShortestDistance=1000000; CheckSurfaceNormals(); if(!Box || !AxisBox) IsConvex(); CalcBBoxes(); } EInside G4BREPSolidCone::Inside(register const G4ThreeVector& Pt) const { G4double dist1 = SurfaceVec[0]->HowNear(Pt); G4double dist2 = SurfaceVec[1]->ClosestDistanceToPoint(Pt); G4double dist3 = SurfaceVec[2]->ClosestDistanceToPoint(Pt); if(dist1 > dist2) dist1 = dist2; if(dist1 > dist3) dist1 = dist3; if(dist1 > 0) return kInside; if(dist1 < 0) return kOutside; return kSurface; } G4ThreeVector G4BREPSolidCone::SurfaceNormal(const G4ThreeVector& Pt) const { G4Vector3D n = SurfaceVec[0]->Normal(Pt); G4ThreeVector norm(n.x(), n.y(), n.z()); return norm; } G4double G4BREPSolidCone::DistanceToIn(const G4ThreeVector& Pt) const { G4double dist1 = std::fabs(SurfaceVec[0]->HowNear(Pt)); G4double dist2 = std::fabs(SurfaceVec[1]->ClosestDistanceToPoint(Pt)); G4double dist3 = std::fabs(SurfaceVec[2]->ClosestDistanceToPoint(Pt)); if(dist1 > dist2) dist1 = dist2; if(dist1 > dist3) dist1 = dist3; return dist1; } G4double G4BREPSolidCone::DistanceToIn(register const G4ThreeVector& Pt, register const G4ThreeVector& V) const { Reset(); G4Vector3D Pttmp(Pt); G4Vector3D Vtmp(V); // G4double kInfinity = 10e20; G4Ray r(Pttmp, Vtmp); if(SurfaceVec[0]->Intersect( r )) { ShortestDistance = SurfaceVec[0]->GetDistance(); return ShortestDistance; } return kInfinity; } G4double G4BREPSolidCone::DistanceToOut(register const G4ThreeVector& Pt, register const G4ThreeVector& V, const G4bool, G4bool *validNorm, G4ThreeVector *) const { if(validNorm) *validNorm = false; Reset(); G4Vector3D Pttmp(Pt); G4Vector3D Vtmp(V); // G4double kInfinity = 10e20; G4Ray r(Pttmp, Vtmp); if(SurfaceVec[0]->Intersect( r )) { ShortestDistance = SurfaceVec[0]->GetDistance(); return ShortestDistance; } return kInfinity; } G4double G4BREPSolidCone::DistanceToOut(const G4ThreeVector& Pt) const { G4double dist1 = std::fabs(SurfaceVec[0]->HowNear(Pt)); G4double dist2 = std::fabs(SurfaceVec[1]->ClosestDistanceToPoint(Pt)); G4double dist3 = std::fabs(SurfaceVec[2]->ClosestDistanceToPoint(Pt)); if(dist1 > dist2) dist1 = dist2; if(dist1 > dist3) dist1 = dist3; return dist1; } // Streams solid contents to output stream. std::ostream& G4BREPSolidCone::StreamInfo(std::ostream& os) const { G4BREPSolid::StreamInfo( os ) << "\n origin: " << constructorParams.origin << "\n axis: " << constructorParams.axis << "\n direction: " << constructorParams.direction << "\n length: " << constructorParams.length << "\n radius: " << constructorParams.radius << "\n large_radius: " << constructorParams.large_radius << "\n-----------------------------------------------------------\n"; return os; }