| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4ConicalSurface.cc,v 1.11 2006/06/29 18:41:58 gunter Exp $
|
|---|
| 28 | // GEANT4 tag $Name: HEAD $
|
|---|
| 29 | //
|
|---|
| 30 | // ----------------------------------------------------------------------
|
|---|
| 31 | // GEANT 4 class source file
|
|---|
| 32 | //
|
|---|
| 33 | // G4ConicalSurface.cc
|
|---|
| 34 | //
|
|---|
| 35 | // ----------------------------------------------------------------------
|
|---|
| 36 |
|
|---|
| 37 | #include "G4ConicalSurface.hh"
|
|---|
| 38 | #include "G4Sort.hh"
|
|---|
| 39 | #include "G4Globals.hh"
|
|---|
| 40 |
|
|---|
| 41 |
|
|---|
| 42 | G4ConicalSurface::G4ConicalSurface()
|
|---|
| 43 | : G4Surface(), axis(G4Vector3D(1.,0.,0.)), angle(1.)
|
|---|
| 44 | {
|
|---|
| 45 | }
|
|---|
| 46 |
|
|---|
| 47 | G4ConicalSurface::G4ConicalSurface( const G4Point3D&,
|
|---|
| 48 | const G4Vector3D& a,
|
|---|
| 49 | G4double e ) //: G4Surface( o )
|
|---|
| 50 | {
|
|---|
| 51 | // Normal constructor
|
|---|
| 52 | // require axis to be a unit vector
|
|---|
| 53 | /* L. Broglia
|
|---|
| 54 | G4double amag = a.Magnitude();
|
|---|
| 55 |
|
|---|
| 56 | include/G4ThreeVec.hh: G4double Magnitude() const
|
|---|
| 57 | { return std::sqrt( x*x + y*y + z*z ); }
|
|---|
| 58 | This function is mag2 for HepThreeVector
|
|---|
| 59 | */
|
|---|
| 60 | G4double amag = a.mag2();
|
|---|
| 61 |
|
|---|
| 62 |
|
|---|
| 63 | if ( amag != 0.0 )
|
|---|
| 64 | /* L. Broglia
|
|---|
| 65 | axis = a / amag; // this makes the axis a unit vector
|
|---|
| 66 | */
|
|---|
| 67 | axis = a*(1/amag);
|
|---|
| 68 | else {
|
|---|
| 69 | G4cerr << "WARNING - G4ConicalSurface::G4ConicalSurface" << G4endl
|
|---|
| 70 | << "\tAxis has zero length" << G4endl
|
|---|
| 71 | << "\tDefault axis ( 1.0, 0.0, 0.0 ) is used." << G4endl;
|
|---|
| 72 |
|
|---|
| 73 | axis = G4Vector3D( 1.0, 0.0, 0.0 );
|
|---|
| 74 | }
|
|---|
| 75 |
|
|---|
| 76 | // Require angle to range from 0 to PI/2
|
|---|
| 77 | if ( ( e > 0.0 ) && ( e < ( 0.5 * pi ) ) )
|
|---|
| 78 | angle = e;
|
|---|
| 79 | else {
|
|---|
| 80 | G4cerr << "WARNING - G4ConicalSurface::G4ConicalSurface" << G4endl
|
|---|
| 81 | << "\tAsked for angle out of allowed range of 0 to "
|
|---|
| 82 | << 0.5*pi << " (PI/2): " << e << G4endl
|
|---|
| 83 | << "\tDefault angle of 1.0 is used." << G4endl;
|
|---|
| 84 |
|
|---|
| 85 | angle = 1.0;
|
|---|
| 86 | }
|
|---|
| 87 | }
|
|---|
| 88 |
|
|---|
| 89 | G4ConicalSurface::~G4ConicalSurface()
|
|---|
| 90 | {
|
|---|
| 91 | }
|
|---|
| 92 |
|
|---|
| 93 | /*
|
|---|
| 94 | G4ConicalSurface::G4ConicalSurface( const G4ConicalSurface& c )
|
|---|
| 95 | : G4Surface( c.origin )
|
|---|
| 96 | {
|
|---|
| 97 | axis = c.axis; angle = c.angle;
|
|---|
| 98 | }
|
|---|
| 99 | */
|
|---|
| 100 |
|
|---|
| 101 | const char* G4ConicalSurface::NameOf() const
|
|---|
| 102 | {
|
|---|
| 103 | return "G4ConicalSurface";
|
|---|
| 104 | }
|
|---|
| 105 |
|
|---|
| 106 | void G4ConicalSurface::CalcBBox()
|
|---|
| 107 | {
|
|---|
| 108 | // Created by L. Broglia
|
|---|
| 109 | // copy of G4FPlane::CalcBBox()
|
|---|
| 110 |
|
|---|
| 111 | bbox= new G4BoundingBox3D(surfaceBoundary.BBox().GetBoxMin(),
|
|---|
| 112 | surfaceBoundary.BBox().GetBoxMax());
|
|---|
| 113 | }
|
|---|
| 114 |
|
|---|
| 115 | void G4ConicalSurface::PrintOn( std::ostream& os ) const
|
|---|
| 116 | {
|
|---|
| 117 | // printing function using C++ std::ostream class
|
|---|
| 118 | os << "G4ConicalSurface surface with origin: " << origin << "\t"
|
|---|
| 119 | << "angle: " << angle << " radians \tand axis " << axis << "\n";
|
|---|
| 120 | }
|
|---|
| 121 |
|
|---|
| 122 |
|
|---|
| 123 | G4double G4ConicalSurface::HowNear( const G4Vector3D& x ) const
|
|---|
| 124 | {
|
|---|
| 125 | // Distance from the point x to the semi-infinite G4ConicalSurface.
|
|---|
| 126 | // The distance will be positive if the point is Inside the G4ConicalSurface,
|
|---|
| 127 | // negative if the point is outside.
|
|---|
| 128 | // Note that this may not be correct for a bounded conical object
|
|---|
| 129 | // subclassed to G4ConicalSurface.
|
|---|
| 130 |
|
|---|
| 131 | G4Vector3D d = G4Vector3D( x - origin );
|
|---|
| 132 | G4double l = d * axis;
|
|---|
| 133 | G4Vector3D q = G4Vector3D( origin + l * axis );
|
|---|
| 134 | G4Vector3D v = G4Vector3D( x - q );
|
|---|
| 135 |
|
|---|
| 136 | /* L. Broglia
|
|---|
| 137 | G4double Dist = ( l * std::tan( angle ) - v.Magnitude() ) * std::cos ( angle );
|
|---|
| 138 | */
|
|---|
| 139 | G4double Dist = ( l*std::tan(angle) - v.mag2() ) * std::cos(angle);
|
|---|
| 140 |
|
|---|
| 141 | return Dist;
|
|---|
| 142 | }
|
|---|
| 143 |
|
|---|
| 144 |
|
|---|
| 145 | G4int G4ConicalSurface::Intersect( const G4Ray& ry )
|
|---|
| 146 | {
|
|---|
| 147 | // Distance along a Ray (straight line with G4Vector3D) to leave or enter
|
|---|
| 148 | // a G4ConicalSurface. The input variable which_way should be set to +1 to
|
|---|
| 149 | // indicate leaving a G4ConicalSurface, -1 to indicate entering a
|
|---|
| 150 | // G4ConicalSurface.
|
|---|
| 151 | // p is the point of intersection of the Ray with the G4ConicalSurface.
|
|---|
| 152 | // If the G4Vector3D of the Ray is opposite to that of the Normal to
|
|---|
| 153 | // the G4ConicalSurface at the intersection point, it will not leave the
|
|---|
| 154 | // G4ConicalSurface.
|
|---|
| 155 | // Similarly, if the G4Vector3D of the Ray is along that of the Normal
|
|---|
| 156 | // to the G4ConicalSurface at the intersection point, it will not enter the
|
|---|
| 157 | // G4ConicalSurface.
|
|---|
| 158 | // This method is called by all finite shapes sub-classed to
|
|---|
| 159 | // G4ConicalSurface.
|
|---|
| 160 | // Use the virtual function table to check if the intersection point
|
|---|
| 161 | // is within the boundary of the finite shape.
|
|---|
| 162 | // A negative result means no intersection.
|
|---|
| 163 | // If no valid intersection point is found, set the distance
|
|---|
| 164 | // and intersection point to large numbers.
|
|---|
| 165 |
|
|---|
| 166 | G4int which_way = -1; //Originally a parameter.Read explanation above.
|
|---|
| 167 |
|
|---|
| 168 | distance = FLT_MAXX;
|
|---|
| 169 |
|
|---|
| 170 | // G4Vector3D lv ( FLT_MAXX, FLT_MAXX, FLT_MAXX );
|
|---|
| 171 | G4Vector3D lv ( FLT_MAXX, FLT_MAXX, FLT_MAXX );
|
|---|
| 172 |
|
|---|
| 173 | // p = lv;
|
|---|
| 174 | closest_hit = lv;
|
|---|
| 175 |
|
|---|
| 176 | // Origin and G4Vector3D unit vector of Ray.
|
|---|
| 177 | // G4Vector3D x = ry->position();
|
|---|
| 178 | G4Vector3D x = G4Vector3D( ry.GetStart() );
|
|---|
| 179 |
|
|---|
| 180 | // G4Vector3D dhat = ry->direction( 0.0 );
|
|---|
| 181 | G4Vector3D dhat = ry.GetDir();
|
|---|
| 182 |
|
|---|
| 183 |
|
|---|
| 184 | // Cone angle and axis unit vector.
|
|---|
| 185 | G4double ta = std::tan( GetAngle() );
|
|---|
| 186 | G4Vector3D ahat = GetAxis();
|
|---|
| 187 | G4int isoln = 0,
|
|---|
| 188 | maxsoln = 2;
|
|---|
| 189 |
|
|---|
| 190 | // array of solutions in distance along the Ray
|
|---|
| 191 | // G4double s[2] = { -1.0, -1.0 };
|
|---|
| 192 | G4double s[2];
|
|---|
| 193 | s[0] = -1.0;
|
|---|
| 194 | s[1] = -1.0 ;
|
|---|
| 195 |
|
|---|
| 196 | // calculate the two solutions (quadratic equation)
|
|---|
| 197 | G4Vector3D gamma = G4Vector3D( x - GetOrigin() );
|
|---|
| 198 | G4double T = 1.0 + ta * ta;
|
|---|
| 199 | G4double ga = gamma * ahat;
|
|---|
| 200 | G4double da = dhat * ahat;
|
|---|
| 201 | G4double A = 1.0 - T * da * da;
|
|---|
| 202 | G4double B = 2.0 * ( gamma * dhat - T * ga * da );
|
|---|
| 203 | G4double C = gamma * gamma - T * ga * ga;
|
|---|
| 204 |
|
|---|
| 205 | // if quadratic term vanishes, just do the simple solution
|
|---|
| 206 | if ( std::fabs( A ) < FLT_EPSILO )
|
|---|
| 207 | {
|
|---|
| 208 | if ( B == 0.0 )
|
|---|
| 209 | return 1;
|
|---|
| 210 | else
|
|---|
| 211 | s[0] = -C / B;
|
|---|
| 212 | }
|
|---|
| 213 |
|
|---|
| 214 | // Normal quadratic case, no intersection if radical is less than zero
|
|---|
| 215 | else
|
|---|
| 216 | {
|
|---|
| 217 | G4double radical = B * B - 4.0 * A * C;
|
|---|
| 218 | if ( radical < 0.0 )
|
|---|
| 219 | return 1;
|
|---|
| 220 | else
|
|---|
| 221 | {
|
|---|
| 222 | G4double root = std::sqrt( radical );
|
|---|
| 223 | s[0] = ( - B + root ) / ( 2. * A );
|
|---|
| 224 | s[1] = ( - B - root ) / ( 2. * A );
|
|---|
| 225 | }
|
|---|
| 226 | }
|
|---|
| 227 |
|
|---|
| 228 | // order the possible solutions by increasing distance along the Ray
|
|---|
| 229 | // (G4Sorting routines are in support/G4Sort.h)
|
|---|
| 230 | sort_double( s, isoln, maxsoln-1 );
|
|---|
| 231 |
|
|---|
| 232 | // now loop over each positive solution, keeping the first one (smallest
|
|---|
| 233 | // distance along the Ray) which is within the boundary of the sub-shape
|
|---|
| 234 | // and which also has the correct G4Vector3D with respect to the Normal to
|
|---|
| 235 | // the G4ConicalSurface at the intersection point
|
|---|
| 236 | for ( isoln = 0; isoln < maxsoln; isoln++ )
|
|---|
| 237 | {
|
|---|
| 238 | if ( s[isoln] >= 0.0 )
|
|---|
| 239 | {
|
|---|
| 240 | if ( s[isoln] >= FLT_MAXX ) // quit if too large
|
|---|
| 241 | return 1;
|
|---|
| 242 |
|
|---|
| 243 | distance = s[isoln];
|
|---|
| 244 | closest_hit = ry.GetPoint( distance );
|
|---|
| 245 |
|
|---|
| 246 | // Following line necessary to select non-reflective solutions.
|
|---|
| 247 | if (( ahat * ( closest_hit - GetOrigin() ) > 0.0 ) &&
|
|---|
| 248 | ((( dhat * SurfaceNormal( closest_hit ) * which_way )) >= 0.0 ) &&
|
|---|
| 249 | ( std::fabs(HowNear( closest_hit )) < 0.1) )
|
|---|
| 250 | return 1;
|
|---|
| 251 | }
|
|---|
| 252 | }
|
|---|
| 253 |
|
|---|
| 254 | // get here only if there was no solution within the boundary, Reset
|
|---|
| 255 | // distance and intersection point to large numbers
|
|---|
| 256 | distance = FLT_MAXX;
|
|---|
| 257 | closest_hit = lv;
|
|---|
| 258 | return 0;
|
|---|
| 259 | }
|
|---|
| 260 |
|
|---|
| 261 |
|
|---|
| 262 | /*
|
|---|
| 263 | G4double G4ConicalSurface::distanceAlongHelix(G4int which_way, const Helix* hx,
|
|---|
| 264 | G4Vector3D& p ) const
|
|---|
| 265 | { // Distance along a Helix to leave or enter a G4ConicalSurface.
|
|---|
| 266 | // The input variable which_way should be set to +1 to
|
|---|
| 267 | // indicate leaving a G4ConicalSurface, -1 to indicate entering a
|
|---|
| 268 | // G4ConicalSurface.
|
|---|
| 269 | // p is the point of intersection of the Helix with the G4ConicalSurface.
|
|---|
| 270 | // If the G4Vector3D of the Helix is opposite to that of the Normal to
|
|---|
| 271 | // the G4ConicalSurface at the intersection point, it will not leave the
|
|---|
| 272 | // G4ConicalSurface.
|
|---|
| 273 | // Similarly, if the G4Vector3D of the Helix is along that of the Normal
|
|---|
| 274 | // to the G4ConicalSurface at the intersection point, it will not enter the
|
|---|
| 275 | // G4ConicalSurface.
|
|---|
| 276 | // This method is called by all finite shapes sub-classed to
|
|---|
| 277 | // G4ConicalSurface.
|
|---|
| 278 | // Use the virtual function table to check if the intersection point
|
|---|
| 279 | // is within the boundary of the finite shape.
|
|---|
| 280 | // If no valid intersection point is found, set the distance
|
|---|
| 281 | // and intersection point to large numbers.
|
|---|
| 282 | // Possible negative distance solutions are discarded.
|
|---|
| 283 | G4double Dist = FLT_MAXX;
|
|---|
| 284 | G4Vector3D lv ( FLT_MAXX, FLT_MAXX, FLT_MAXX );
|
|---|
| 285 | p = lv;
|
|---|
| 286 | G4int isoln = 0, maxsoln = 4;
|
|---|
| 287 |
|
|---|
| 288 | // Array of solutions in turning angle
|
|---|
| 289 | // G4double s[4] = { -1.0, -1.0, -1.0, -1.0 };
|
|---|
| 290 | G4double s[4];s[0] = -1.0; s[1]= -1.0 ;s[2] = -1.0; s[3]= -1.0 ;
|
|---|
| 291 |
|
|---|
| 292 | // Flag set to 1 if exact solution is found
|
|---|
| 293 | G4int exact = 0;
|
|---|
| 294 |
|
|---|
| 295 | // Helix parameters
|
|---|
| 296 | G4double rh = hx->GetRadius(); // radius of Helix
|
|---|
| 297 | G4Vector3D oh = hx->position(); // origin of Helix
|
|---|
| 298 | G4Vector3D dh = hx->direction( 0.0 ); // initial G4Vector3D of Helix
|
|---|
| 299 | G4Vector3D prp = hx->getPerp(); // perpendicular vector
|
|---|
| 300 | G4double prpmag = prp.Magnitude();
|
|---|
| 301 | G4double rhp = rh / prpmag;
|
|---|
| 302 |
|
|---|
| 303 | // G4ConicalSurface parameters
|
|---|
| 304 | G4double ta = std::tan( GetAngle() ); // tangent of angle of G4ConicalSurface
|
|---|
| 305 | G4Vector3D oc = GetOrigin(); // origin of G4ConicalSurface
|
|---|
| 306 | G4Vector3D ac = GetAxis(); // axis of G4ConicalSurface
|
|---|
| 307 |
|
|---|
| 308 | // Calculate quantities of use later on
|
|---|
| 309 | G4Vector3D alpha = rhp * prp;
|
|---|
| 310 | G4Vector3D beta = rhp * dh;
|
|---|
| 311 | G4Vector3D gamma = oh - oc;
|
|---|
| 312 | G4double T = 1.0 + ta * ta;
|
|---|
| 313 | G4double gc = gamma * ac;
|
|---|
| 314 | G4double bc = beta * ac;
|
|---|
| 315 |
|
|---|
| 316 | // General approximate solution for std::sin(s)-->s and std::cos(s)-->1-s**2/2,
|
|---|
| 317 | // keeping only terms to second order in s
|
|---|
| 318 | G4double A = gamma * alpha - T * ( gc * alpha * ac - bc * bc ) +
|
|---|
| 319 | beta * beta;
|
|---|
| 320 | G4double B = 2.0 * ( gamma * beta - gc * bc * T );
|
|---|
| 321 | G4double C = gamma * gamma - gc * gc * T;
|
|---|
| 322 |
|
|---|
| 323 | // Solution for no quadratic term
|
|---|
| 324 | if ( std::fabs( A ) < FLT_EPSILO )
|
|---|
| 325 | {
|
|---|
| 326 | if ( B == 0.0 )
|
|---|
| 327 | return Dist;
|
|---|
| 328 | else
|
|---|
| 329 | s[0] = -C / B;
|
|---|
| 330 | }
|
|---|
| 331 |
|
|---|
| 332 | // General quadratic solutions
|
|---|
| 333 | else {
|
|---|
| 334 | G4double radical = B * B - 4.0 * A * C;
|
|---|
| 335 | if ( radical < 0.0 )
|
|---|
| 336 | // Radical is less than zero, either there is no intersection, or the
|
|---|
| 337 | // approximation doesn't hold, so try a cruder technique to find a
|
|---|
| 338 | // possible intersection point using the gropeAlongHelix function.
|
|---|
| 339 | s[0] = gropeAlongHelix( hx );
|
|---|
| 340 | // Normal non-negative radical solutions
|
|---|
| 341 | else {
|
|---|
| 342 | G4double root = std::sqrt( radical );
|
|---|
| 343 | s[0] = ( -B + root ) / ( 2.0 * A );
|
|---|
| 344 | s[1] = ( -B - root ) / ( 2.0 * A );
|
|---|
| 345 | if ( rh < 0.0 ) {
|
|---|
| 346 | s[0] = -s[0];
|
|---|
| 347 | s[1] = -s[1];
|
|---|
| 348 | }
|
|---|
| 349 | s[2] = s[0] + 2.0 * pi;
|
|---|
| 350 | s[3] = s[1] + 2.0 * pi;
|
|---|
| 351 | }
|
|---|
| 352 | }
|
|---|
| 353 | //
|
|---|
| 354 | // Order the possible solutions by increasing turning angle
|
|---|
| 355 | // (G4Sorting routines are in support/G4Sort.h).
|
|---|
| 356 | G4Sort_double( s, isoln, maxsoln-1 );
|
|---|
| 357 | //
|
|---|
| 358 | // Now loop over each positive solution, keeping the first one (smallest
|
|---|
| 359 | // distance along the Helix) which is within the boundary of the sub-shape.
|
|---|
| 360 | for ( isoln = 0; isoln < maxsoln; isoln++ ) {
|
|---|
| 361 | if ( s[isoln] >= 0.0 ) {
|
|---|
| 362 | // Calculate distance along Helix and position and G4Vector3D vectors.
|
|---|
| 363 | Dist = s[isoln] * std::fabs( rhp );
|
|---|
| 364 | p = hx->position( Dist );
|
|---|
| 365 | G4Vector3D d = hx->direction( Dist );
|
|---|
| 366 | if ( exact == 0 ) { // only for approximate solns
|
|---|
| 367 | // Now do approximation to get remaining distance to correct this solution.
|
|---|
| 368 | // Iterate it until the accuracy is below the user-set surface precision.
|
|---|
| 369 | G4double delta = 0.;
|
|---|
| 370 | G4double delta0 = FLT_MAXX;
|
|---|
| 371 | G4int dummy = 1;
|
|---|
| 372 | G4int iter = 0;
|
|---|
| 373 | G4int in0 = Inside( hx->position() );
|
|---|
| 374 | G4int in1 = Inside( p );
|
|---|
| 375 | G4double sc = Scale();
|
|---|
| 376 | while ( dummy ) {
|
|---|
| 377 | iter++;
|
|---|
| 378 | // Terminate loop after 50 iterations and Reset distance to large number,
|
|---|
| 379 | // indicating no intersection with G4ConicalSurface.
|
|---|
| 380 | // This generally occurs if the Helix curls too tightly to Intersect it.
|
|---|
| 381 | if ( iter > 50 ) {
|
|---|
| 382 | Dist = FLT_MAXX;
|
|---|
| 383 | p = lv;
|
|---|
| 384 | break;
|
|---|
| 385 | }
|
|---|
| 386 | // Find distance from the current point along the above-calculated
|
|---|
| 387 | // G4Vector3D using a Ray.
|
|---|
| 388 | // The G4Vector3D of the Ray and the Sign of the distance are determined
|
|---|
| 389 | // by whether the starting point of the Helix is Inside or outside of
|
|---|
| 390 | // the G4ConicalSurface.
|
|---|
| 391 | in1 = Inside( p );
|
|---|
| 392 | if ( in1 ) { // current point Inside
|
|---|
| 393 | if ( in0 ) { // starting point Inside
|
|---|
| 394 | Ray* r = new Ray( p, d );
|
|---|
| 395 | delta =
|
|---|
| 396 | distanceAlongRay( 1, r, p );
|
|---|
| 397 | delete r;
|
|---|
| 398 | }
|
|---|
| 399 | else { // starting point outside
|
|---|
| 400 | Ray* r = new Ray( p, -d );
|
|---|
| 401 | delta =
|
|---|
| 402 | -distanceAlongRay( 1, r, p );
|
|---|
| 403 | delete r;
|
|---|
| 404 | }
|
|---|
| 405 | }
|
|---|
| 406 | else { // current point outside
|
|---|
| 407 | if ( in0 ) { // starting point Inside
|
|---|
| 408 | Ray* r = new Ray( p, -d );
|
|---|
| 409 | delta =
|
|---|
| 410 | -distanceAlongRay( -1, r, p );
|
|---|
| 411 | delete r;
|
|---|
| 412 | }
|
|---|
| 413 | else { // starting point outside
|
|---|
| 414 | Ray* r = new Ray( p, d );
|
|---|
| 415 | delta =
|
|---|
| 416 | distanceAlongRay( -1, r, p );
|
|---|
| 417 | delete r;
|
|---|
| 418 | }
|
|---|
| 419 | }
|
|---|
| 420 | // Test if distance is less than the surface precision, if so Terminate loop.
|
|---|
| 421 | if ( std::fabs( delta / sc ) <= SURFACE_PRECISION )
|
|---|
| 422 | break;
|
|---|
| 423 | // If delta has not changed sufficiently from the previous iteration,
|
|---|
| 424 | // skip out of this loop.
|
|---|
| 425 | if ( std::fabs( ( delta - delta0 ) / sc ) <=
|
|---|
| 426 | SURFACE_PRECISION )
|
|---|
| 427 | break;
|
|---|
| 428 | // If delta has increased in absolute value from the previous iteration
|
|---|
| 429 | // either the Helix doesn't Intersect the G4ConicalSurface or the approximate solution
|
|---|
| 430 | // is too far from the real solution. Try groping for a solution. If not
|
|---|
| 431 | // found, Reset distance to large number, indicating no intersection with
|
|---|
| 432 | // the G4ConicalSurface.
|
|---|
| 433 | if ( std::fabs( delta ) > std::fabs( delta0 ) ) {
|
|---|
| 434 | Dist = std::fabs( rhp ) *
|
|---|
| 435 | gropeAlongHelix( hx );
|
|---|
| 436 | if ( Dist < 0.0 ) {
|
|---|
| 437 | Dist = FLT_MAXX;
|
|---|
| 438 | p = lv;
|
|---|
| 439 | }
|
|---|
| 440 | else
|
|---|
| 441 | p = hx->position( Dist );
|
|---|
| 442 | break;
|
|---|
| 443 | }
|
|---|
| 444 | // Set old delta to new one.
|
|---|
| 445 | delta0 = delta;
|
|---|
| 446 | // Add distance to G4ConicalSurface to distance along Helix.
|
|---|
| 447 | Dist += delta;
|
|---|
| 448 | // Negative distance along Helix means Helix doesn't Intersect G4ConicalSurface.
|
|---|
| 449 | // Reset distance to large number, indicating no intersection with G4ConicalSurface.
|
|---|
| 450 | if ( Dist < 0.0 ) {
|
|---|
| 451 | Dist = FLT_MAXX;
|
|---|
| 452 | p = lv;
|
|---|
| 453 | break;
|
|---|
| 454 | }
|
|---|
| 455 | // Recalculate point along Helix and the G4Vector3D.
|
|---|
| 456 | p = hx->position( Dist );
|
|---|
| 457 | d = hx->direction( Dist );
|
|---|
| 458 | } // end of while loop
|
|---|
| 459 | } // end of exact == 0 condition
|
|---|
| 460 | // Now have best value of distance along Helix and position for this
|
|---|
| 461 | // solution, so test if it is within the boundary of the sub-shape
|
|---|
| 462 | // and require that it point in the correct G4Vector3D with respect to
|
|---|
| 463 | // the Normal to the G4ConicalSurface.
|
|---|
| 464 | if ( ( Dist < FLT_MAXX ) &&
|
|---|
| 465 | ( ( hx->direction( Dist ) * Normal( p ) *
|
|---|
| 466 | which_way ) >= 0.0 ) &&
|
|---|
| 467 | ( WithinBoundary( p ) == 1 ) )
|
|---|
| 468 | return Dist;
|
|---|
| 469 | } // end of if s[isoln] >= 0.0 condition
|
|---|
| 470 | } // end of for loop over solutions
|
|---|
| 471 | // If one gets here, there is no solution, so set distance along Helix
|
|---|
| 472 | // and position to large numbers.
|
|---|
| 473 | Dist = FLT_MAXX;
|
|---|
| 474 | p = lv;
|
|---|
| 475 | return Dist;
|
|---|
| 476 | }
|
|---|
| 477 | */
|
|---|
| 478 |
|
|---|
| 479 |
|
|---|
| 480 | G4Vector3D G4ConicalSurface::SurfaceNormal( const G4Point3D& p ) const
|
|---|
| 481 | {
|
|---|
| 482 | // return the Normal unit vector to the G4ConicalSurface at a point p
|
|---|
| 483 | // on (or nearly on) the G4ConicalSurface
|
|---|
| 484 | G4Vector3D s = G4Vector3D( p - origin );
|
|---|
| 485 | /* L. Broglia
|
|---|
| 486 | G4double smag = s.Magnitude();
|
|---|
| 487 | */
|
|---|
| 488 | G4double smag = s.mag2();
|
|---|
| 489 |
|
|---|
| 490 | // if the point happens to be at the origin, calculate a unit vector Normal
|
|---|
| 491 | // to the axis, with zero z component
|
|---|
| 492 | if ( smag == 0.0 )
|
|---|
| 493 | {
|
|---|
| 494 | G4double ax = axis.x();
|
|---|
| 495 | G4double ay = axis.y();
|
|---|
| 496 | G4double ap = std::sqrt( ax * ax + ay * ay );
|
|---|
| 497 |
|
|---|
| 498 | if ( ap == 0.0 )
|
|---|
| 499 | return G4Vector3D( 1.0, 0.0, 0.0 );
|
|---|
| 500 | else
|
|---|
| 501 | return G4Vector3D( ay / ap, -ax / ap, 0.0 );
|
|---|
| 502 | }
|
|---|
| 503 |
|
|---|
| 504 | // otherwise do the calculation of the Normal to the conical surface
|
|---|
| 505 | else
|
|---|
| 506 | {
|
|---|
| 507 | G4double l = s * axis;
|
|---|
| 508 | /* L. Broglia
|
|---|
| 509 | s = s / smag;
|
|---|
| 510 | */
|
|---|
| 511 | s = s*(1/smag);
|
|---|
| 512 | G4Vector3D q = G4Vector3D( origin + l * axis );
|
|---|
| 513 | G4Vector3D v = G4Vector3D( p - q );
|
|---|
| 514 | /* L. Broglia
|
|---|
| 515 | G4double sl = v.Magnitude() * std::sin( angle );
|
|---|
| 516 | */
|
|---|
| 517 | G4double sl = v.mag2() * std::sin( angle );
|
|---|
| 518 | G4Vector3D n = G4Vector3D( v - sl * s );
|
|---|
| 519 | /* L. Broglia
|
|---|
| 520 | G4double nmag = n.Magnitude();
|
|---|
| 521 | */
|
|---|
| 522 | G4double nmag = n.mag2();
|
|---|
| 523 |
|
|---|
| 524 | if ( nmag != 0.0 )
|
|---|
| 525 | /* L. Broglia
|
|---|
| 526 | n = n / nmag;
|
|---|
| 527 | */
|
|---|
| 528 | n=n*(1/nmag);
|
|---|
| 529 | return n;
|
|---|
| 530 | }
|
|---|
| 531 | }
|
|---|
| 532 |
|
|---|
| 533 |
|
|---|
| 534 | G4int G4ConicalSurface::Inside ( const G4Vector3D& x ) const
|
|---|
| 535 | {
|
|---|
| 536 | // Return 0 if point x is outside G4ConicalSurface, 1 if Inside.
|
|---|
| 537 | // Outside means that the distance to the G4ConicalSurface would be negative.
|
|---|
| 538 | // Use the HowNear function to calculate this distance.
|
|---|
| 539 | if ( HowNear( x ) >= -0.5*kCarTolerance )
|
|---|
| 540 | return 1;
|
|---|
| 541 | else
|
|---|
| 542 | return 0;
|
|---|
| 543 | }
|
|---|
| 544 |
|
|---|
| 545 |
|
|---|
| 546 | G4int G4ConicalSurface::WithinBoundary( const G4Vector3D& x ) const
|
|---|
| 547 | {
|
|---|
| 548 | // return 1 if point x is on the G4ConicalSurface, otherwise return zero
|
|---|
| 549 | // base this on the surface precision factor set in support/globals.h
|
|---|
| 550 | if ( std::fabs( HowNear( x ) / Scale() ) <= SURFACE_PRECISION )
|
|---|
| 551 | return 1;
|
|---|
| 552 | else
|
|---|
| 553 | return 0;
|
|---|
| 554 | }
|
|---|
| 555 |
|
|---|
| 556 | G4double G4ConicalSurface::Scale() const
|
|---|
| 557 | {
|
|---|
| 558 | return 1.0;
|
|---|
| 559 | }
|
|---|
| 560 |
|
|---|
| 561 | void G4ConicalSurface::SetAngle( G4double e )
|
|---|
| 562 | {
|
|---|
| 563 | // Reset the angle of the G4ConicalSurface
|
|---|
| 564 | // Require angle to range from 0 to PI/2
|
|---|
| 565 | // if ( ( e > 0.0 ) && ( e < ( 0.5 * pi ) ) )
|
|---|
| 566 | if ( (e > 0.0) && (e <= ( 0.5 * pi )) )
|
|---|
| 567 | angle = e;
|
|---|
| 568 | // use old value (do not change angle) if out of the range,
|
|---|
| 569 | //but Print message
|
|---|
| 570 | else
|
|---|
| 571 | {
|
|---|
| 572 | G4cerr << "WARNING - G4ConicalSurface::SetAngle" << G4endl
|
|---|
| 573 | << "\tAsked for angle out of allowed range of 0 to "
|
|---|
| 574 | << 0.5*pi << " (PI/2):" << e << G4endl
|
|---|
| 575 | << "\tDefault angle of " << angle << " is used." << G4endl;
|
|---|
| 576 | }
|
|---|
| 577 | }
|
|---|
| 578 |
|
|---|