| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4CylindricalSurface.cc,v 1.8 2006/06/29 18:42:08 gunter Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-02-ref-02 $
|
|---|
| 29 | //
|
|---|
| 30 | // ----------------------------------------------------------------------
|
|---|
| 31 | // GEANT 4 class source file
|
|---|
| 32 | //
|
|---|
| 33 | // G4CylindricalSurface.cc
|
|---|
| 34 | //
|
|---|
| 35 | // ----------------------------------------------------------------------
|
|---|
| 36 |
|
|---|
| 37 | #include "G4CylindricalSurface.hh"
|
|---|
| 38 | #include "G4Sort.hh"
|
|---|
| 39 | #include "G4Globals.hh"
|
|---|
| 40 |
|
|---|
| 41 | G4CylindricalSurface::G4CylindricalSurface() : G4Surface()
|
|---|
| 42 | {
|
|---|
| 43 | // default constructor
|
|---|
| 44 | // default axis is ( 1.0, 0.0, 0.0 ), default radius is 1.0
|
|---|
| 45 | axis = G4Vector3D( 1.0, 0.0, 0.0 );
|
|---|
| 46 | radius = 1.0;
|
|---|
| 47 | }
|
|---|
| 48 |
|
|---|
| 49 |
|
|---|
| 50 | G4CylindricalSurface::G4CylindricalSurface( const G4Vector3D& o,
|
|---|
| 51 | const G4Vector3D& a,
|
|---|
| 52 | G4double r ) //: G4Surface( o )
|
|---|
| 53 | {
|
|---|
| 54 | // Normal constructor
|
|---|
| 55 | // require axis to be a unit vector
|
|---|
| 56 | G4double amag = a.mag();
|
|---|
| 57 | if ( amag != 0.0 )
|
|---|
| 58 | axis = a * (1/ amag); // this makes the axis a unit vector
|
|---|
| 59 | else
|
|---|
| 60 | {
|
|---|
| 61 | G4cerr << "Error in G4CylindricalSurface::G4CylindricalSurface--axis "
|
|---|
| 62 | <<"has zero length\n"
|
|---|
| 63 | << "\tDefault axis ( 1.0, 0.0, 0.0 ) is used.\n";
|
|---|
| 64 |
|
|---|
| 65 | axis = G4Vector3D( 1.0, 0.0, 0.0 );
|
|---|
| 66 | }
|
|---|
| 67 |
|
|---|
| 68 | // Require radius to be non-negative
|
|---|
| 69 | if ( r >= 0.0 )
|
|---|
| 70 | radius = r;
|
|---|
| 71 | else
|
|---|
| 72 | {
|
|---|
| 73 | G4cerr << "Error in G4CylindricalSurface::G4CylindricalSurface"
|
|---|
| 74 | << "--asked for negative radius\n"
|
|---|
| 75 | << "\tDefault radius of 1.0 is used.\n";
|
|---|
| 76 |
|
|---|
| 77 | radius = 1.0;
|
|---|
| 78 | }
|
|---|
| 79 |
|
|---|
| 80 | origin =o;
|
|---|
| 81 | }
|
|---|
| 82 |
|
|---|
| 83 |
|
|---|
| 84 | G4CylindricalSurface::~G4CylindricalSurface()
|
|---|
| 85 | {
|
|---|
| 86 | }
|
|---|
| 87 |
|
|---|
| 88 | /*
|
|---|
| 89 | G4CylindricalSurface::G4CylindricalSurface( const G4CylindricalSurface& c )
|
|---|
| 90 | : G4Surface( c.origin )
|
|---|
| 91 | {
|
|---|
| 92 | axis = c.axis; radius = c.radius;
|
|---|
| 93 | }
|
|---|
| 94 | */
|
|---|
| 95 |
|
|---|
| 96 | const char* G4CylindricalSurface::NameOf() const
|
|---|
| 97 | {
|
|---|
| 98 | return "G4CylindricalSurface";
|
|---|
| 99 | }
|
|---|
| 100 |
|
|---|
| 101 | void G4CylindricalSurface::PrintOn( std::ostream& os ) const
|
|---|
| 102 | {
|
|---|
| 103 | // printing function using C++ std::ostream class
|
|---|
| 104 | os << "G4CylindricalSurface surface with origin: " << origin << "\t"
|
|---|
| 105 | << "radius: " << radius << "\tand axis " << axis << "\n";
|
|---|
| 106 | }
|
|---|
| 107 |
|
|---|
| 108 | //G4int G4Surface::Intersect(const G4Ray& ry)
|
|---|
| 109 | G4int G4CylindricalSurface::Intersect(const G4Ray& ry)
|
|---|
| 110 | {
|
|---|
| 111 |
|
|---|
| 112 | // L. Broglia : copy of G4FCylindricalSurface::Intersect
|
|---|
| 113 |
|
|---|
| 114 | // Distance along a Ray (straight line with G4ThreeVec) to leave or enter
|
|---|
| 115 | // a G4CylindricalSurface. The input variable which_way should be set
|
|---|
| 116 | // to +1 to indicate leaving a G4CylindricalSurface, -1 to indicate
|
|---|
| 117 | // entering a G4CylindricalSurface.
|
|---|
| 118 | // p is the point of intersection of the Ray with the G4CylindricalSurface.
|
|---|
| 119 | // If the G4Vector3D of the Ray is opposite to that of the Normal to
|
|---|
| 120 | // the G4CylindricalSurface at the intersection point, it will not leave
|
|---|
| 121 | // the G4CylindricalSurface.
|
|---|
| 122 | // Similarly, if the G4Vector3D of the Ray is along that of the Normal
|
|---|
| 123 | // to the G4CylindricalSurface at the intersection point, it will not enter
|
|---|
| 124 | // the G4CylindricalSurface.
|
|---|
| 125 | // This method is called by all finite shapes sub-classed to
|
|---|
| 126 | // G4CylindricalSurface.
|
|---|
| 127 | // Use the virtual function table to check if the intersection point
|
|---|
| 128 | // is within the boundary of the finite shape.
|
|---|
| 129 | // A negative result means no intersection.
|
|---|
| 130 | // If no valid intersection point is found, set the distance
|
|---|
| 131 | // and intersection point to large numbers.
|
|---|
| 132 |
|
|---|
| 133 | // G4int which_way = -1;
|
|---|
| 134 | //Originally a parameter.Read explanation above.
|
|---|
| 135 |
|
|---|
| 136 | G4int which_way=1;
|
|---|
| 137 |
|
|---|
| 138 | if(!Inside(ry.GetStart()))
|
|---|
| 139 | which_way = -1;
|
|---|
| 140 |
|
|---|
| 141 | distance = FLT_MAXX;
|
|---|
| 142 | G4Vector3D lv ( FLT_MAXX, FLT_MAXX, FLT_MAXX );
|
|---|
| 143 |
|
|---|
| 144 | closest_hit = lv;
|
|---|
| 145 |
|
|---|
| 146 | // Origin and G4Vector3D unit vector of Ray.
|
|---|
| 147 | G4Vector3D x = ry.GetStart();
|
|---|
| 148 | G4Vector3D dhat = ry.GetDir();
|
|---|
| 149 |
|
|---|
| 150 | // Axis unit vector of the G4CylindricalSurface.
|
|---|
| 151 | G4Vector3D ahat = GetAxis();
|
|---|
| 152 | G4int isoln = 0,
|
|---|
| 153 | maxsoln = 2;
|
|---|
| 154 |
|
|---|
| 155 | // array of solutions in distance along the Ray
|
|---|
| 156 | G4double s[2];
|
|---|
| 157 | s[0] = -1.0;
|
|---|
| 158 | s[1] = -1.0 ;
|
|---|
| 159 |
|
|---|
| 160 | // calculate the two solutions (quadratic equation)
|
|---|
| 161 | G4Vector3D d = x - GetOrigin();
|
|---|
| 162 | G4double radiu = GetRadius();
|
|---|
| 163 |
|
|---|
| 164 | //quit with no intersection if the radius of the G4CylindricalSurface is zero
|
|---|
| 165 | // if ( radiu <= 0.0 )
|
|---|
| 166 | // return 0;
|
|---|
| 167 |
|
|---|
| 168 | G4double dsq = d * d;
|
|---|
| 169 | G4double da = d * ahat;
|
|---|
| 170 | G4double dasq = da * da;
|
|---|
| 171 | G4double rsq = radiu * radiu;
|
|---|
| 172 | G4double qsq = dsq - dasq;
|
|---|
| 173 | G4double dira = dhat * ahat;
|
|---|
| 174 | G4double a = 1.0 - dira * dira;
|
|---|
| 175 |
|
|---|
| 176 | if ( a <= 0.0 )
|
|---|
| 177 | return 0;
|
|---|
| 178 |
|
|---|
| 179 | G4double b = 2. * ( d * dhat - da * dira );
|
|---|
| 180 | G4double c = rsq - qsq;
|
|---|
| 181 | G4double radical = b * b + 4. * a * c;
|
|---|
| 182 |
|
|---|
| 183 | if ( radical < 0.0 )
|
|---|
| 184 | return 0;
|
|---|
| 185 |
|
|---|
| 186 | G4double root = std::sqrt( radical );
|
|---|
| 187 | s[0] = ( - b + root ) / ( 2. * a );
|
|---|
| 188 | s[1] = ( - b - root ) / ( 2. * a );
|
|---|
| 189 |
|
|---|
| 190 | // order the possible solutions by increasing distance along the Ray
|
|---|
| 191 | // (G4Sorting routines are in support/G4Sort.h)
|
|---|
| 192 | sort_double( s, isoln, maxsoln-1 );
|
|---|
| 193 |
|
|---|
| 194 | // now loop over each positive solution, keeping the first one (smallest
|
|---|
| 195 | // distance along the Ray) which is within the boundary of the sub-shape
|
|---|
| 196 | // and which also has the correct G4Vector3D with respect to the Normal to
|
|---|
| 197 | // the G4CylindricalSurface at the intersection point
|
|---|
| 198 | for ( isoln = 0; isoln < maxsoln; isoln++ )
|
|---|
| 199 | {
|
|---|
| 200 | if ( s[isoln] >= kCarTolerance*0.5 )
|
|---|
| 201 | {
|
|---|
| 202 | if ( s[isoln] >= FLT_MAXX ) // quit if too large
|
|---|
| 203 | return 0;
|
|---|
| 204 |
|
|---|
| 205 | distance = s[isoln];
|
|---|
| 206 | closest_hit = ry.GetPoint( distance );
|
|---|
| 207 | G4double tmp = dhat * (Normal( closest_hit ));
|
|---|
| 208 |
|
|---|
| 209 | if ((tmp * which_way) >= 0.0 )
|
|---|
| 210 | if ( WithinBoundary( closest_hit ) == 1 )
|
|---|
| 211 | distance = distance*distance;
|
|---|
| 212 |
|
|---|
| 213 | return 1;
|
|---|
| 214 | }
|
|---|
| 215 | }
|
|---|
| 216 |
|
|---|
| 217 | // get here only if there was no solution within the boundary, Reset
|
|---|
| 218 | // distance and intersection point to large numbers
|
|---|
| 219 | distance = FLT_MAXX;
|
|---|
| 220 | closest_hit = lv;
|
|---|
| 221 |
|
|---|
| 222 |
|
|---|
| 223 | return 0;
|
|---|
| 224 | }
|
|---|
| 225 |
|
|---|
| 226 |
|
|---|
| 227 |
|
|---|
| 228 |
|
|---|
| 229 | G4double G4CylindricalSurface::HowNear( const G4Vector3D& x ) const
|
|---|
| 230 | {
|
|---|
| 231 | // Distance from the point x to the infinite G4CylindricalSurface.
|
|---|
| 232 | // The distance will be positive if the point is Inside the
|
|---|
| 233 | // G4CylindricalSurface, negative if the point is outside.
|
|---|
| 234 | // Note that this may not be correct for a bounded cylindrical object
|
|---|
| 235 | // subclassed to G4CylindricalSurface.
|
|---|
| 236 | G4Vector3D d = x - origin;
|
|---|
| 237 | G4double dA = d * axis;
|
|---|
| 238 | G4double rad = std::sqrt( d.mag2() - dA*dA );
|
|---|
| 239 | G4double hownear = std::fabs( radius - rad );
|
|---|
| 240 |
|
|---|
| 241 | return hownear;
|
|---|
| 242 | }
|
|---|
| 243 |
|
|---|
| 244 |
|
|---|
| 245 | /*
|
|---|
| 246 | G4double G4CylindricalSurface::distanceAlongRay( G4int which_way, const G4Ray* ry,
|
|---|
| 247 | G4Vector3D& p ) const
|
|---|
| 248 | { // Distance along a Ray (straight line with G4Vector3D) to leave or enter
|
|---|
| 249 | // a G4CylindricalSurface. The input variable which_way should be set to +1
|
|---|
| 250 | // to indicate leaving a G4CylindricalSurface, -1 to indicate entering a
|
|---|
| 251 | // G4CylindricalSurface.
|
|---|
| 252 | // p is the point of intersection of the Ray with the G4CylindricalSurface.
|
|---|
| 253 | // If the G4Vector3D of the Ray is opposite to that of the Normal to
|
|---|
| 254 | // the G4CylindricalSurface at the intersection point, it will not leave the
|
|---|
| 255 | // G4CylindricalSurface.
|
|---|
| 256 | // Similarly, if the G4Vector3D of the Ray is along that of the Normal
|
|---|
| 257 | // to the G4CylindricalSurface at the intersection point, it will not enter
|
|---|
| 258 | // the G4CylindricalSurface.
|
|---|
| 259 | // This method is called by all finite shapes sub-classed to
|
|---|
| 260 | // G4CylindricalSurface.
|
|---|
| 261 | // Use the virtual function table to check if the intersection point
|
|---|
| 262 | // is within the boundary of the finite shape.
|
|---|
| 263 | // A negative result means no intersection.
|
|---|
| 264 | // If no valid intersection point is found, set the distance
|
|---|
| 265 | // and intersection point to large numbers.
|
|---|
| 266 | G4double Dist = FLT_MAXX;
|
|---|
| 267 | G4Vector3D lv ( FLT_MAXX, FLT_MAXX, FLT_MAXX );
|
|---|
| 268 | p = lv;
|
|---|
| 269 | // Origin and G4Vector3D unit vector of Ray.
|
|---|
| 270 | G4Vector3D x = ry->Position();
|
|---|
| 271 | G4Vector3D dhat = ry->Direction( 0.0 );
|
|---|
| 272 | // Axis unit vector of the G4CylindricalSurface.
|
|---|
| 273 | G4Vector3D ahat = GetAxis();
|
|---|
| 274 | G4int isoln = 0, maxsoln = 2;
|
|---|
| 275 | // array of solutions in distance along the Ray
|
|---|
| 276 | // G4double s[2] = { -1.0, -1.0 };
|
|---|
| 277 | G4double s[2];s[0] = -1.0; s[1]= -1.0 ;
|
|---|
| 278 | // calculate the two solutions (quadratic equation)
|
|---|
| 279 | G4Vector3D d = x - GetOrigin();
|
|---|
| 280 | G4double radius = GetRadius();
|
|---|
| 281 | // quit with no intersection if the radius of the G4CylindricalSurface is zero
|
|---|
| 282 | if ( radius <= 0.0 )
|
|---|
| 283 | return Dist;
|
|---|
| 284 | G4double dsq = d * d;
|
|---|
| 285 | G4double da = d * ahat;
|
|---|
| 286 | G4double dasq = da * da;
|
|---|
| 287 | G4double rsq = radius * radius;
|
|---|
| 288 | G4double qsq = dsq - dasq;
|
|---|
| 289 | G4double dira = dhat * ahat;
|
|---|
| 290 | G4double a = 1.0 - dira * dira;
|
|---|
| 291 | if ( a <= 0.0 )
|
|---|
| 292 | return Dist;
|
|---|
| 293 | G4double b = 2. * ( d * dhat - da * dira );
|
|---|
| 294 | G4double c = rsq - qsq;
|
|---|
| 295 | G4double radical = b * b + 4. * a * c;
|
|---|
| 296 | if ( radical < 0.0 )
|
|---|
| 297 | return Dist;
|
|---|
| 298 | G4double root = std::sqrt( radical );
|
|---|
| 299 | s[0] = ( - b + root ) / ( 2. * a );
|
|---|
| 300 | s[1] = ( - b - root ) / ( 2. * a );
|
|---|
| 301 | // order the possible solutions by increasing distance along the Ray
|
|---|
| 302 | // (G4Sorting routines are in support/G4Sort.h)
|
|---|
| 303 | G4Sort_double( s, isoln, maxsoln-1 );
|
|---|
| 304 | // now loop over each positive solution, keeping the first one (smallest
|
|---|
| 305 | // distance along the Ray) which is within the boundary of the sub-shape
|
|---|
| 306 | // and which also has the correct G4Vector3D with respect to the Normal to
|
|---|
| 307 | // the G4CylindricalSurface at the intersection point
|
|---|
| 308 | for ( isoln = 0; isoln < maxsoln; isoln++ ) {
|
|---|
| 309 | if ( s[isoln] >= 0.0 ) {
|
|---|
| 310 | if ( s[isoln] >= FLT_MAXX ) // quit if too large
|
|---|
| 311 | return Dist;
|
|---|
| 312 | Dist = s[isoln];
|
|---|
| 313 | p = ry->Position( Dist );
|
|---|
| 314 | if ( ( ( dhat * Normal( p ) * which_way ) >= 0.0 )
|
|---|
| 315 | && ( WithinBoundary( p ) == 1 ) )
|
|---|
| 316 | return Dist;
|
|---|
| 317 | }
|
|---|
| 318 | }
|
|---|
| 319 | // get here only if there was no solution within the boundary, Reset
|
|---|
| 320 | // distance and intersection point to large numbers
|
|---|
| 321 | p = lv;
|
|---|
| 322 | return FLT_MAXX;
|
|---|
| 323 | }
|
|---|
| 324 |
|
|---|
| 325 | */
|
|---|
| 326 |
|
|---|
| 327 |
|
|---|
| 328 | /*
|
|---|
| 329 |
|
|---|
| 330 |
|
|---|
| 331 | G4double G4CylindricalSurface::distanceAlongHelix( G4int which_way,
|
|---|
| 332 | const Helix* hx,
|
|---|
| 333 | G4Vector3D& p ) const
|
|---|
| 334 | { // Distance along a Helix to leave or enter a G4CylindricalSurface.
|
|---|
| 335 | // The input variable which_way should be set to +1 to
|
|---|
| 336 | // indicate leaving a G4CylindricalSurface, -1 to indicate entering a
|
|---|
| 337 | // G4CylindricalSurface.
|
|---|
| 338 | // p is the point of intersection of the Helix with the G4CylindricalSurface.
|
|---|
| 339 | // If the G4Vector3D of the Helix is opposite to that of the Normal to
|
|---|
| 340 | // the G4CylindricalSurface at the intersection point, it will not leave the
|
|---|
| 341 | // G4CylindricalSurface.
|
|---|
| 342 | // Similarly, if the G4Vector3D of the Helix is along that of the Normal
|
|---|
| 343 | // to the G4CylindricalSurface at the intersection point, it will not enter
|
|---|
| 344 | // the G4CylindricalSurface.
|
|---|
| 345 | // This method is called by all finite shapes sub-classed to
|
|---|
| 346 | // G4CylindricalSurface.
|
|---|
| 347 | // Use the virtual function table to check if the intersection point
|
|---|
| 348 | // is within the boundary of the finite shape.
|
|---|
| 349 | // If no valid intersection point is found, set the distance
|
|---|
| 350 | // and intersection point to large numbers.
|
|---|
| 351 | // Possible negative distance solutions are discarded.
|
|---|
| 352 | G4double Dist = FLT_MAXX;
|
|---|
| 353 | G4Vector3D lv ( FLT_MAXX, FLT_MAXX, FLT_MAXX );
|
|---|
| 354 | G4Vector3D zerovec; // zero G4Vector3D
|
|---|
| 355 | p = lv;
|
|---|
| 356 | G4int isoln = 0, maxsoln = 4;
|
|---|
| 357 | // Array of solutions in turning angle
|
|---|
| 358 | // G4double s[4] = { -1.0, -1.0, -1.0, -1.0 };
|
|---|
| 359 | G4double s[4];s[0]=-1.0;s[1]= -1.0;s[2]= -1.0;s[3]= -1.0;
|
|---|
| 360 |
|
|---|
| 361 |
|
|---|
| 362 | // Flag set to 1 if exact solution is found
|
|---|
| 363 | G4int exact = 0;
|
|---|
| 364 | // Helix parameters
|
|---|
| 365 | G4double rh = hx->GetRadius(); // radius of Helix
|
|---|
| 366 | G4Vector3D ah = hx->GetAxis(); // axis of Helix
|
|---|
| 367 | G4Vector3D oh = hx->position(); // origin of Helix
|
|---|
| 368 | G4Vector3D dh = hx->direction( 0.0 ); // initial G4Vector3D of Helix
|
|---|
| 369 | G4Vector3D prp = hx->getPerp(); // perpendicular vector
|
|---|
| 370 | G4double prpmag = prp.Magnitude();
|
|---|
| 371 | G4double rhp = rh / prpmag;
|
|---|
| 372 | // G4CylindricalSurface parameters
|
|---|
| 373 | G4double rc = GetRadius(); // radius of G4CylindricalSurface
|
|---|
| 374 | if ( rc == 0.0 ) // quit if zero radius
|
|---|
| 375 | return Dist;
|
|---|
| 376 | G4Vector3D oc = GetOrigin(); // origin of G4CylindricalSurface
|
|---|
| 377 | G4Vector3D ac = GetAxis(); // axis of G4CylindricalSurface
|
|---|
| 378 | //
|
|---|
| 379 | // Calculate quantities of use later on.
|
|---|
| 380 | G4Vector3D alpha = rhp * prp;
|
|---|
| 381 | G4Vector3D beta = rhp * dh;
|
|---|
| 382 | G4Vector3D gamma = oh - oc;
|
|---|
| 383 | // Declare variables used later on in several places.
|
|---|
| 384 | G4double rcd2 = 0.0, alpha2 = 0.0;
|
|---|
| 385 | G4double A = 0.0, B = 0.0, C = 0.0, F = 0.0, G = 0.0, H = 0.0;
|
|---|
| 386 | G4double CoverB = 0.0, radical = 0.0, root = 0.0, s1 = 0.0, s2 = 0.0;
|
|---|
| 387 | G4Vector3D ghat;
|
|---|
| 388 | //
|
|---|
| 389 | // Set flag for special cases
|
|---|
| 390 | G4int special_case = 0; // 0 means general case
|
|---|
| 391 | //
|
|---|
| 392 | // Test to see if axes of Helix and G4CylindricalSurface are parallel, in which
|
|---|
| 393 | // case there are exact solutions.
|
|---|
| 394 | if ( ( std::fabs( ah.AngleBetween(ac) ) < FLT_EPSILO )
|
|---|
| 395 | || ( std::fabs( ah.AngleBetween(ac) - pi ) < FLT_EPSILO ) ) {
|
|---|
| 396 | special_case = 1;
|
|---|
| 397 | // If, in addition, gamma is a zero vector or is parallel to the
|
|---|
| 398 | // G4CylindricalSurface axis, this simplifies the previous case.
|
|---|
| 399 | if ( gamma == zerovec ) {
|
|---|
| 400 | special_case = 3;
|
|---|
| 401 | ghat = gamma;
|
|---|
| 402 | }
|
|---|
| 403 | else {
|
|---|
| 404 | ghat = gamma / gamma.Magnitude();
|
|---|
| 405 | if ( ( std::fabs( ghat.AngleBetween(ac) ) < FLT_EPSILO )
|
|---|
| 406 | || ( std::fabs( ghat.AngleBetween(ac) - pi ) <
|
|---|
| 407 | FLT_EPSILO ) )
|
|---|
| 408 | special_case = 3;
|
|---|
| 409 | }
|
|---|
| 410 | // Test to see if, in addition to the axes of the Helix and G4CylindricalSurface
|
|---|
| 411 | // being parallel, the axis of the G4CylindricalSurface is perpendicular to the
|
|---|
| 412 | // initial G4Vector3D of the Helix.
|
|---|
| 413 | if ( std::fabs( ( ac * dh ) ) < FLT_EPSILO ) {
|
|---|
| 414 | // And, if, in addition to all this, the difference in origins of the Helix
|
|---|
| 415 | // and G4CylindricalSurface is perpendicular to the initial G4Vector3D of the
|
|---|
| 416 | // Helix, there is a separate special case.
|
|---|
| 417 | if ( std::fabs( ( ghat * dh ) ) < FLT_EPSILO )
|
|---|
| 418 | special_case = 4;
|
|---|
| 419 | }
|
|---|
| 420 | } // end of section with axes of Helix and G4CylindricalSurface parallel
|
|---|
| 421 | //
|
|---|
| 422 | // Another peculiar case occurs if the axis of the G4CylindricalSurface and the
|
|---|
| 423 | // initial G4Vector3D of the Helix line up and their origins are the same.
|
|---|
| 424 | // This will require a higher order approximation than the general case.
|
|---|
| 425 | if ( ( ( std::fabs( dh.AngleBetween(ac) ) < FLT_EPSILO )
|
|---|
| 426 | || ( std::fabs( dh.AngleBetween(ac) - pi ) < FLT_EPSILO ) )
|
|---|
| 427 | && ( gamma == zerovec ) )
|
|---|
| 428 | special_case = 2;
|
|---|
| 429 | //
|
|---|
| 430 | // Now all the special cases have been tagged, so solutions are found
|
|---|
| 431 | // for each case. Exact solutions are indicated by setting exact = 1.
|
|---|
| 432 | // [For some reason switch doesn't work here, so do series of if's.]
|
|---|
| 433 | if ( special_case == 0 ) { // approximate quadratic solutions
|
|---|
| 434 | A = beta * beta - ( beta * ac ) * ( beta * ac )
|
|---|
| 435 | + gamma * alpha - ( gamma * ac ) * ( alpha * ac );
|
|---|
| 436 | B = 2.0 * gamma * beta
|
|---|
| 437 | - 2.0 * ( gamma * ac ) * ( beta * ac );
|
|---|
| 438 | C = gamma * gamma
|
|---|
| 439 | - ( gamma * ac ) * ( gamma * ac ) - rc * rc;
|
|---|
| 440 | if ( std::fabs( A ) < FLT_EPSILO ) { // no quadratic term
|
|---|
| 441 | if ( B == 0.0 ) // no intersection, quit
|
|---|
| 442 | return Dist;
|
|---|
| 443 | else // B != 0
|
|---|
| 444 | s[0] = -C / B;
|
|---|
| 445 | }
|
|---|
| 446 | else { // A != 0, general quadratic solution
|
|---|
| 447 | radical = B * B - 4.0 * A * C;
|
|---|
| 448 | if ( radical < 0.0 ) // no solution, quit
|
|---|
| 449 | return Dist;
|
|---|
| 450 | root = std::sqrt( radical );
|
|---|
| 451 | s[0] = ( -B + root ) / ( 2.0 * A );
|
|---|
| 452 | s[1] = ( -B - root ) / ( 2.0 * A );
|
|---|
| 453 | if ( rh < 0.0 ) {
|
|---|
| 454 | s[0] = -s[0];
|
|---|
| 455 | s[1] = -s[1];
|
|---|
| 456 | }
|
|---|
| 457 | s[2] = s[0] + 2.0 * pi;
|
|---|
| 458 | s[3] = s[1] + 2.0 * pi;
|
|---|
| 459 | }
|
|---|
| 460 | }
|
|---|
| 461 | //
|
|---|
| 462 | else if ( special_case == 1 ) { // exact solutions
|
|---|
| 463 | exact = 1;
|
|---|
| 464 | H = 2.0 * ( alpha * alpha + gamma * alpha );
|
|---|
| 465 | F = gamma * gamma
|
|---|
| 466 | - ( ( gamma * ac ) * ( gamma * ac ) )
|
|---|
| 467 | - rc * rc + H;
|
|---|
| 468 | G = 2.0 * rhp *
|
|---|
| 469 | ( gamma * dh - ( gamma * ac ) * ( ac * dh ) );
|
|---|
| 470 | A = G * G + H * H;
|
|---|
| 471 | B = -2.0 * F * H;
|
|---|
| 472 | C = F * F - G * G;
|
|---|
| 473 | if ( std::fabs( A ) < FLT_EPSILO ) { // no quadratic term
|
|---|
| 474 | if ( B == 0.0 ) // no intersection, quit
|
|---|
| 475 | return Dist;
|
|---|
| 476 | else { // B != 0
|
|---|
| 477 | CoverB = -C / B;
|
|---|
| 478 | if ( std::fabs( CoverB ) > 1.0 )
|
|---|
| 479 | return Dist;
|
|---|
| 480 | s[0] = std::acos( CoverB );
|
|---|
| 481 | }
|
|---|
| 482 | }
|
|---|
| 483 | else { // A != 0, general quadratic solution
|
|---|
| 484 | // Try a different method of calculation using F, G, and H to avoid
|
|---|
| 485 | // precision problems.
|
|---|
| 486 | // radical = B * B - 4.0 * A * C;
|
|---|
| 487 | // if ( radical < 0.0 ) {
|
|---|
| 488 | if ( std::fabs( H ) > FLT_EPSILO ) {
|
|---|
| 489 | G4double r1 = G / H;
|
|---|
| 490 | G4double r2 = F / H;
|
|---|
| 491 | G4double radsq = 1.0 + r1*r1 - r2*r2;
|
|---|
| 492 | if ( radsq < 0.0 )
|
|---|
| 493 | return Dist;
|
|---|
| 494 | root = G * std::sqrt( radsq );
|
|---|
| 495 | G4double denominator = H * ( 1.0 + r1*r1 );
|
|---|
| 496 | s1 = ( F + root ) / denominator;
|
|---|
| 497 | s2 = ( F - root ) / denominator;
|
|---|
| 498 | }
|
|---|
| 499 | else
|
|---|
| 500 | return Dist;
|
|---|
| 501 | // } // end radical < 0 condition
|
|---|
| 502 | // else {
|
|---|
| 503 | // root = std::sqrt( radical );
|
|---|
| 504 | // s1 = ( -B + root ) / ( 2.0 * A );
|
|---|
| 505 | // s2 = ( -B - root ) / ( 2.0 * A );
|
|---|
| 506 | // }
|
|---|
| 507 | if ( std::fabs( s1 ) <= 1.0 ) {
|
|---|
| 508 | s[0] = std::acos( s1 );
|
|---|
| 509 | s[2] = 2.0 * pi - s[0];
|
|---|
| 510 | }
|
|---|
| 511 | if ( std::fabs( s2 ) <= 1.0 ) {
|
|---|
| 512 | s[1] = std::acos( s2 );
|
|---|
| 513 | s[3] = 2.0 * pi - s[1];
|
|---|
| 514 | }
|
|---|
| 515 | // Must take only solutions which satisfy original unsquared equation:
|
|---|
| 516 | // Gsin(s) - Hcos(s) + F = 0. Take best solution of pair and set false
|
|---|
| 517 | // solutions to -1. Only do this if the result is significantly different
|
|---|
| 518 | // from zero.
|
|---|
| 519 | G4double temp1 = 0.0, temp2 = 0.0;
|
|---|
| 520 | G4double rsign = 1.0;
|
|---|
| 521 | if ( rh < 0.0 ) rsign = -1.0;
|
|---|
| 522 | if ( s[0] > 0.0 ) {
|
|---|
| 523 | temp1 = G * rsign * std::sin( s[0] )
|
|---|
| 524 | - H * std::cos( s[0] ) + F;
|
|---|
| 525 | temp2 = G * rsign * std::sin( s[2] )
|
|---|
| 526 | - H * std::cos( s[2] ) + F;
|
|---|
| 527 | if ( std::fabs( temp1 ) > std::fabs( temp2 ) )
|
|---|
| 528 | if ( std::fabs( temp1 ) > FLT_EPSILO )
|
|---|
| 529 | s[0] = -1.0;
|
|---|
| 530 | else
|
|---|
| 531 | if ( std::fabs( temp2 ) > FLT_EPSILO )
|
|---|
| 532 | s[2] = -1.0;
|
|---|
| 533 | }
|
|---|
| 534 | if ( s[1] > 0.0 ) {
|
|---|
| 535 | temp1 = G * rsign * std::sin( s[1] )
|
|---|
| 536 | - H * std::cos( s[1] ) + F;
|
|---|
| 537 | temp2 = G * rsign * std::sin( s[3] )
|
|---|
| 538 | - H * std::cos( s[3] ) + F;
|
|---|
| 539 | if ( std::fabs( temp1 ) > std::fabs( temp2 ) )
|
|---|
| 540 | if ( std::fabs( temp1 ) > FLT_EPSILO )
|
|---|
| 541 | s[1] = -1.0;
|
|---|
| 542 | else
|
|---|
| 543 | if ( std::fabs( temp2 ) > FLT_EPSILO )
|
|---|
| 544 | s[3] = -1.0;
|
|---|
| 545 | }
|
|---|
| 546 | }
|
|---|
| 547 | }
|
|---|
| 548 | //
|
|---|
| 549 | else if ( special_case == 2 ) { // approximate solution
|
|---|
| 550 | G4Vector3D e = ah.cross( ac );
|
|---|
| 551 | G4double re = std::fabs( rhp ) * e.Magnitude();
|
|---|
| 552 | s[0] = std::sqrt( 2.0 * rc / re );
|
|---|
| 553 | }
|
|---|
| 554 | //
|
|---|
| 555 | else if ( special_case == 3 ) { // exact solutions
|
|---|
| 556 | exact = 1;
|
|---|
| 557 | alpha2 = alpha * alpha;
|
|---|
| 558 | rcd2 = rhp * rhp * ( 1.0 - ( (ac*dh) * (ac*dh) ) );
|
|---|
| 559 | A = alpha2 - rcd2;
|
|---|
| 560 | B = - 2.0 * alpha2;
|
|---|
| 561 | C = alpha2 + rcd2 - rc*rc;
|
|---|
| 562 | if ( std::fabs( A ) < FLT_EPSILO ) { // no quadratic term
|
|---|
| 563 | if ( B == 0.0 ) // no intersection, quit
|
|---|
| 564 | return Dist;
|
|---|
| 565 | else { // B != 0
|
|---|
| 566 | CoverB = -C / B;
|
|---|
| 567 | if ( std::fabs( CoverB ) > 1.0 )
|
|---|
| 568 | return Dist;
|
|---|
| 569 | s[0] = std::acos( CoverB );
|
|---|
| 570 | }
|
|---|
| 571 | }
|
|---|
| 572 | else { // A != 0, general quadratic solution
|
|---|
| 573 | radical = B * B - 4.0 * A * C;
|
|---|
| 574 | if ( radical < 0.0 )
|
|---|
| 575 | return Dist;
|
|---|
| 576 | root = std::sqrt( radical );
|
|---|
| 577 | s1 = ( -B + root ) / ( 2.0 * A );
|
|---|
| 578 | s2 = ( -B - root ) / ( 2.0 * A );
|
|---|
| 579 | if ( std::fabs( s1 ) <= 1.0 )
|
|---|
| 580 | s[0] = std::acos( s1 );
|
|---|
| 581 | if ( std::fabs( s2 ) <= 1.0 )
|
|---|
| 582 | s[1] = std::acos( s2 );
|
|---|
| 583 | }
|
|---|
| 584 | }
|
|---|
| 585 | //
|
|---|
| 586 | else if ( special_case == 4 ) { // exact solution
|
|---|
| 587 | exact = 1;
|
|---|
| 588 | F = gamma * gamma
|
|---|
| 589 | - ( ( gamma * ac ) * ( gamma * ac ) )
|
|---|
| 590 | - rc * rc;
|
|---|
| 591 | G = 2.0 * ( rhp * rhp + gamma * alpha );
|
|---|
| 592 | if ( G == 0.0 ) // no intersection, quit
|
|---|
| 593 | return Dist;
|
|---|
| 594 | G4double cs = 1.0 + ( F / G );
|
|---|
| 595 | if ( std::fabs( cs ) > 1.0 ) // no intersection, quit
|
|---|
| 596 | return Dist;
|
|---|
| 597 | s[0] = std::acos( cs );
|
|---|
| 598 | }
|
|---|
| 599 | //
|
|---|
| 600 | else // shouldn't get here
|
|---|
| 601 | return Dist;
|
|---|
| 602 | //
|
|---|
| 603 | // **************************************************************************
|
|---|
| 604 | //
|
|---|
| 605 | // Order the possible solutions by increasing turning angle
|
|---|
| 606 | // (G4Sorting routines are in support/G4Sort.h).
|
|---|
| 607 | G4Sort_double( s, isoln, maxsoln-1 );
|
|---|
| 608 | //
|
|---|
| 609 | // Now loop over each positive solution, keeping the first one (smallest
|
|---|
| 610 | // distance along the Helix) which is within the boundary of the sub-shape.
|
|---|
| 611 | for ( isoln = 0; isoln < maxsoln; isoln++ ) {
|
|---|
| 612 | if ( s[isoln] >= 0.0 ) {
|
|---|
| 613 | // Calculate distance along Helix and position and G4Vector3D vectors.
|
|---|
| 614 | Dist = s[isoln] * std::fabs( rhp );
|
|---|
| 615 | p = hx->position( Dist );
|
|---|
| 616 | G4Vector3D d = hx->direction( Dist );
|
|---|
| 617 | if ( exact == 0 ) { // only for approximate solns
|
|---|
| 618 | // Now do approximation to get remaining distance to correct this solution
|
|---|
| 619 | // iterate it until the accuracy is below the user-set surface precision.
|
|---|
| 620 | G4double delta = 0.0;
|
|---|
| 621 | G4double delta0 = FLT_MAXX;
|
|---|
| 622 | G4int dummy = 1;
|
|---|
| 623 | G4int iter = 0;
|
|---|
| 624 | G4int in0 = Inside( hx->position ( 0.0 ) );
|
|---|
| 625 | G4int in1 = Inside( p );
|
|---|
| 626 | G4double sc = Scale();
|
|---|
| 627 | while ( dummy ) {
|
|---|
| 628 | iter++;
|
|---|
| 629 | // Terminate loop after 50 iterations and Reset distance to large number,
|
|---|
| 630 | // indicating no intersection with G4CylindricalSurface.
|
|---|
| 631 | // This generally occurs if the Helix curls too tightly to Intersect it.
|
|---|
| 632 | if ( iter > 50 ) {
|
|---|
| 633 | Dist = FLT_MAXX;
|
|---|
| 634 | p = lv;
|
|---|
| 635 | break;
|
|---|
| 636 | }
|
|---|
| 637 | // Find distance from the current point along the above-calculated
|
|---|
| 638 | // G4Vector3D using a Ray.
|
|---|
| 639 | // The G4Vector3D of the Ray and the Sign of the distance are determined
|
|---|
| 640 | // by whether the starting point of the Helix is Inside or outside of
|
|---|
| 641 | // the G4CylindricalSurface.
|
|---|
| 642 | in1 = Inside( p );
|
|---|
| 643 | if ( in1 ) { // current point Inside
|
|---|
| 644 | if ( in0 ) { // starting point Inside
|
|---|
| 645 | Ray* r = new Ray( p, d );
|
|---|
| 646 | delta =
|
|---|
| 647 | distanceAlongRay( 1, r, p );
|
|---|
| 648 | delete r;
|
|---|
| 649 | }
|
|---|
| 650 | else { // starting point outside
|
|---|
| 651 | Ray* r = new Ray( p, -d );
|
|---|
| 652 | delta =
|
|---|
| 653 | -distanceAlongRay( 1, r, p );
|
|---|
| 654 | delete r;
|
|---|
| 655 | }
|
|---|
| 656 | }
|
|---|
| 657 | else { // current point outside
|
|---|
| 658 | if ( in0 ) { // starting point Inside
|
|---|
| 659 | Ray* r = new Ray( p, -d );
|
|---|
| 660 | delta =
|
|---|
| 661 | -distanceAlongRay( -1, r, p );
|
|---|
| 662 | delete r;
|
|---|
| 663 | }
|
|---|
| 664 | else { // starting point outside
|
|---|
| 665 | Ray* r = new Ray( p, d );
|
|---|
| 666 | delta =
|
|---|
| 667 | distanceAlongRay( -1, r, p );
|
|---|
| 668 | delete r;
|
|---|
| 669 | }
|
|---|
| 670 | }
|
|---|
| 671 | // Test if distance is less than the surface precision, if so Terminate loop.
|
|---|
| 672 | if ( std::fabs( delta / sc ) <= SURFACE_PRECISION )
|
|---|
| 673 | break;
|
|---|
| 674 | // If delta has not changed sufficiently from the previous iteration,
|
|---|
| 675 | // skip out of this loop.
|
|---|
| 676 | if ( std::fabs( ( delta - delta0 ) / sc ) <=
|
|---|
| 677 | SURFACE_PRECISION )
|
|---|
| 678 | break;
|
|---|
| 679 | // If delta has increased in absolute value from the previous iteration
|
|---|
| 680 | // either the Helix doesn't Intersect the G4CylindricalSurface or the approximate
|
|---|
| 681 | // solution is too far from the real solution. Try groping for a solution.
|
|---|
| 682 | // If not found, Reset distance to large number, indicating no intersection with
|
|---|
| 683 | // the G4CylindricalSurface.
|
|---|
| 684 | if ( std::fabs( delta ) > std::fabs( delta0 ) ) {
|
|---|
| 685 | Dist = std::fabs( rhp ) *
|
|---|
| 686 | gropeAlongHelix( hx );
|
|---|
| 687 | if ( Dist < 0.0 ) {
|
|---|
| 688 | Dist = FLT_MAXX;
|
|---|
| 689 | p = lv;
|
|---|
| 690 | }
|
|---|
| 691 | else
|
|---|
| 692 | p = hx->position( Dist );
|
|---|
| 693 | break;
|
|---|
| 694 | }
|
|---|
| 695 | // Set old delta to new one.
|
|---|
| 696 | delta0 = delta;
|
|---|
| 697 | // Add distance to G4CylindricalSurface to distance along Helix.
|
|---|
| 698 | Dist += delta;
|
|---|
| 699 | // Negative distance along Helix means Helix doesn't Intersect
|
|---|
| 700 | // G4CylindricalSurface.
|
|---|
| 701 | // Reset distance to large number, indicating no intersection with
|
|---|
| 702 | // G4CylindricalSurface.
|
|---|
| 703 | if ( Dist < 0.0 ) {
|
|---|
| 704 | Dist = FLT_MAXX;
|
|---|
| 705 | p = lv;
|
|---|
| 706 | break;
|
|---|
| 707 | }
|
|---|
| 708 | // Recalculate point along Helix and the G4Vector3D.
|
|---|
| 709 | p = hx->position( Dist );
|
|---|
| 710 | d = hx->direction( Dist );
|
|---|
| 711 | } // end of while loop
|
|---|
| 712 | } // end of exact == 0 condition
|
|---|
| 713 | // Now have best value of distance along Helix and position for this
|
|---|
| 714 | // solution, so test if it is within the boundary of the sub-shape
|
|---|
| 715 | // and require that it point in the correct G4Vector3D with respect to
|
|---|
| 716 | // the Normal to the G4CylindricalSurface.
|
|---|
| 717 | if ( ( Dist < FLT_MAXX ) &&
|
|---|
| 718 | ( ( hx->direction( Dist ) * Normal( p ) *
|
|---|
| 719 | which_way ) >= 0.0 ) &&
|
|---|
| 720 | ( WithinBoundary( p ) == 1 ) )
|
|---|
| 721 | return Dist;
|
|---|
| 722 | } // end of if s[isoln] >= 0.0 condition
|
|---|
| 723 | } // end of for loop over solutions
|
|---|
| 724 | // if one gets here, there is no solution, so set distance along Helix
|
|---|
| 725 | // and position to large numbers
|
|---|
| 726 | Dist = FLT_MAXX;
|
|---|
| 727 | p = lv;
|
|---|
| 728 | return Dist;
|
|---|
| 729 | }
|
|---|
| 730 | */
|
|---|
| 731 |
|
|---|
| 732 |
|
|---|
| 733 | G4Vector3D G4CylindricalSurface::Normal( const G4Vector3D& p ) const
|
|---|
| 734 | {
|
|---|
| 735 | // return the Normal unit vector to the G4CylindricalSurface
|
|---|
| 736 | // at a point p on (or nearly on) the G4CylindricalSurface
|
|---|
| 737 |
|
|---|
| 738 | G4Vector3D n = ( p - origin ) - ( ( p - origin ) * axis ) * axis;
|
|---|
| 739 | G4double nmag = n.mag();
|
|---|
| 740 |
|
|---|
| 741 | if ( nmag != 0.0 )
|
|---|
| 742 | n = n * (1/nmag);
|
|---|
| 743 |
|
|---|
| 744 | return n;
|
|---|
| 745 | }
|
|---|
| 746 |
|
|---|
| 747 |
|
|---|
| 748 | G4Vector3D G4CylindricalSurface::SurfaceNormal( const G4Point3D& p ) const
|
|---|
| 749 | {
|
|---|
| 750 | // return the Normal unit vector to the G4CylindricalSurface at a point
|
|---|
| 751 | // p on (or nearly on) the G4CylindricalSurface
|
|---|
| 752 |
|
|---|
| 753 | G4Vector3D n = ( p - origin ) - ( ( p - origin ) * axis ) * axis;
|
|---|
| 754 | G4double nmag = n.mag();
|
|---|
| 755 |
|
|---|
| 756 | if ( nmag != 0.0 )
|
|---|
| 757 | n = n * (1/nmag);
|
|---|
| 758 |
|
|---|
| 759 | return n;
|
|---|
| 760 | }
|
|---|
| 761 |
|
|---|
| 762 |
|
|---|
| 763 | G4int G4CylindricalSurface::Inside ( const G4Vector3D& x ) const
|
|---|
| 764 | {
|
|---|
| 765 | // Return 0 if point x is outside G4CylindricalSurface, 1 if Inside.
|
|---|
| 766 | // Outside means that the distance to the G4CylindricalSurface would
|
|---|
| 767 | // be negative.
|
|---|
| 768 | // Use the HowNear function to calculate this distance.
|
|---|
| 769 | if ( HowNear( x ) >= -0.5*kCarTolerance )
|
|---|
| 770 | return 1;
|
|---|
| 771 | else
|
|---|
| 772 | return 0;
|
|---|
| 773 | }
|
|---|
| 774 |
|
|---|
| 775 |
|
|---|
| 776 | G4int G4CylindricalSurface::WithinBoundary( const G4Vector3D& x ) const
|
|---|
| 777 | {
|
|---|
| 778 | // return 1 if point x is on the G4CylindricalSurface, otherwise return zero
|
|---|
| 779 | // base this on the surface precision factor set in support/globals.h
|
|---|
| 780 | if ( std::fabs( HowNear( x ) / Scale() ) <= SURFACE_PRECISION )
|
|---|
| 781 | return 1;
|
|---|
| 782 | else
|
|---|
| 783 | return 0;
|
|---|
| 784 | }
|
|---|
| 785 |
|
|---|
| 786 |
|
|---|
| 787 | G4double G4CylindricalSurface::Scale() const
|
|---|
| 788 | {
|
|---|
| 789 | // Returns the radius of a G4CylindricalSurface unless it is zero, in which
|
|---|
| 790 | // case returns the arbitrary number 1.0.
|
|---|
| 791 | // This is ok since derived finite-sized classes will overwrite this.
|
|---|
| 792 | // Used for Scale-invariant tests of surface thickness.
|
|---|
| 793 | if ( radius == 0.0 )
|
|---|
| 794 | return 1.0;
|
|---|
| 795 | else
|
|---|
| 796 | return radius;
|
|---|
| 797 | }
|
|---|
| 798 |
|
|---|
| 799 |
|
|---|
| 800 | //void G4CylindricalSurface::rotate( G4double alpha, G4double beta,
|
|---|
| 801 | // G4double gamma, G4ThreeMat& m, G4int inverse )
|
|---|
| 802 | // // rotate G4CylindricalSurface first about global x-axis by angle alpha,
|
|---|
| 803 | // second about global y-axis by angle beta,
|
|---|
| 804 | // and third about global z-axis by angle gamma
|
|---|
| 805 | // by creating and using G4ThreeMat objects in Surface::rotate
|
|---|
| 806 | // angles are assumed to be given in radians
|
|---|
| 807 | // if inverse is non-zero, the order of rotations is reversed
|
|---|
| 808 | // the axis is rotated here, the origin is rotated by calling
|
|---|
| 809 | // Surface::rotate
|
|---|
| 810 | // G4Surface::rotate( alpha, beta, gamma, m, inverse );
|
|---|
| 811 | // axis = m * axis;
|
|---|
| 812 | //}
|
|---|
| 813 |
|
|---|
| 814 | //void G4CylindricalSurface::rotate( G4double alpha, G4double beta,
|
|---|
| 815 | // G4double gamma, G4int inverse )
|
|---|
| 816 | //{ // rotate G4CylindricalSurface first about global x-axis by angle alpha,
|
|---|
| 817 | // second about global y-axis by angle beta,
|
|---|
| 818 | // and third about global z-axis by angle gamma
|
|---|
| 819 | // by creating and using G4ThreeMat objects in Surface::rotate
|
|---|
| 820 | // angles are assumed to be given in radians
|
|---|
| 821 | // if inverse is non-zero, the order of rotations is reversed
|
|---|
| 822 | // the axis is rotated here, the origin is rotated by calling
|
|---|
| 823 | // Surface::rotate
|
|---|
| 824 | // G4ThreeMat m;
|
|---|
| 825 | // G4Surface::rotate( alpha, beta, gamma, m, inverse );
|
|---|
| 826 | // axis = m * axis;
|
|---|
| 827 | //}
|
|---|
| 828 |
|
|---|
| 829 |
|
|---|
| 830 | void G4CylindricalSurface::SetRadius( G4double r )
|
|---|
| 831 | {
|
|---|
| 832 | // Reset the radius of the G4CylindricalSurface
|
|---|
| 833 | // Require radius to be non-negative
|
|---|
| 834 | if ( r >= 0.0 )
|
|---|
| 835 | radius = r;
|
|---|
| 836 | // use old value (do not change radius) if out of the range,
|
|---|
| 837 | // but Print message
|
|---|
| 838 | else
|
|---|
| 839 | {
|
|---|
| 840 | G4cerr << "Error in G4CylindricalSurface::SetRadius"
|
|---|
| 841 | << "--asked for negative radius\n"
|
|---|
| 842 | << "\tDefault radius of " << radius << " is used.\n";
|
|---|
| 843 | }
|
|---|
| 844 | }
|
|---|
| 845 |
|
|---|
| 846 |
|
|---|
| 847 | /*
|
|---|
| 848 | G4double G4CylindricalSurface::gropeAlongHelix( const Helix* hx ) const
|
|---|
| 849 | { // Grope for a solution of a Helix intersecting a G4CylindricalSurface.
|
|---|
| 850 | // This function returns the turning angle (in radians) where the
|
|---|
| 851 | // intersection occurs with only positive values allowed, or -1.0 if
|
|---|
| 852 | // no intersection is found.
|
|---|
| 853 | // The idea is to start at the beginning of the Helix, then take steps
|
|---|
| 854 | // of some fraction of a turn. If at the end of a Step, the current position
|
|---|
| 855 | // along the Helix and the previous position are on opposite sides of the
|
|---|
| 856 | // G4CylindricalSurface, then the solution must lie somewhere in between.
|
|---|
| 857 | G4int one_over_f = 8; // one over fraction of a turn to go in each Step
|
|---|
| 858 | G4double turn_angle = 0.0;
|
|---|
| 859 | G4double dist_along = 0.0;
|
|---|
| 860 | G4double d_new;
|
|---|
| 861 | G4double fk = 1.0 / G4double( one_over_f );
|
|---|
| 862 | G4double scal = Scale();
|
|---|
| 863 | G4double d_old = HowNear( hx->position( dist_along ) );
|
|---|
| 864 | G4double rh = hx->GetRadius(); // radius of Helix
|
|---|
| 865 | G4Vector3D prp = hx->getPerp(); // perpendicular vector
|
|---|
| 866 | G4double prpmag = prp.Magnitude();
|
|---|
| 867 | G4double rhp = rh / prpmag;
|
|---|
| 868 | G4int max_iter = one_over_f * HELIX_MAX_TURNS;
|
|---|
| 869 | // Take up to a user-settable number of turns along the Helix,
|
|---|
| 870 | // groping for an intersection point.
|
|---|
| 871 | for ( G4int k = 1; k < max_iter; k++ ) {
|
|---|
| 872 | turn_angle = 2.0 * pi * k / one_over_f;
|
|---|
| 873 | dist_along = turn_angle * std::fabs( rhp );
|
|---|
| 874 | d_new = HowNear( hx->position( dist_along ) );
|
|---|
| 875 | if ( ( d_old < 0.0 && d_new > 0.0 ) ||
|
|---|
| 876 | ( d_old > 0.0 && d_new < 0.0 ) ) {
|
|---|
| 877 | d_old = d_new;
|
|---|
| 878 | // Old and new points are on opposite sides of the G4CylindricalSurface, therefore
|
|---|
| 879 | // a solution lies in between, use a binary search to pin the point down
|
|---|
| 880 | // to the surface precision, but don't do more than 50 iterations.
|
|---|
| 881 | G4int itr = 0;
|
|---|
| 882 | while ( std::fabs( d_new / scal ) > SURFACE_PRECISION ) {
|
|---|
| 883 | itr++;
|
|---|
| 884 | if ( itr > 50 )
|
|---|
| 885 | return turn_angle;
|
|---|
| 886 | turn_angle -= fk * pi;
|
|---|
| 887 | dist_along = turn_angle * std::fabs( rhp );
|
|---|
| 888 | d_new = HowNear( hx->position( dist_along ) );
|
|---|
| 889 | if ( ( d_old < 0.0 && d_new > 0.0 ) ||
|
|---|
| 890 | ( d_old > 0.0 && d_new < 0.0 ) )
|
|---|
| 891 | fk *= -0.5;
|
|---|
| 892 | else
|
|---|
| 893 | fk *= 0.5;
|
|---|
| 894 | d_old = d_new;
|
|---|
| 895 | } // end of while loop
|
|---|
| 896 | return turn_angle; // this is the best solution
|
|---|
| 897 | } // end of if condition
|
|---|
| 898 | } // end of for loop
|
|---|
| 899 | // Get here only if no solution is found, so return -1.0 to indicate that.
|
|---|
| 900 | return -1.0;
|
|---|
| 901 | }
|
|---|
| 902 | */
|
|---|