| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4FConicalSurface.cc,v 1.19 2006/06/29 18:42:12 gunter Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-04-beta-01 $
|
|---|
| 29 | //
|
|---|
| 30 | // ----------------------------------------------------------------------
|
|---|
| 31 | // GEANT 4 class source file
|
|---|
| 32 | //
|
|---|
| 33 | // G4FConicalSurface.cc
|
|---|
| 34 | //
|
|---|
| 35 | // ----------------------------------------------------------------------
|
|---|
| 36 |
|
|---|
| 37 | #include "G4FConicalSurface.hh"
|
|---|
| 38 | #include "G4Sort.hh"
|
|---|
| 39 | #include "G4CircularCurve.hh"
|
|---|
| 40 |
|
|---|
| 41 |
|
|---|
| 42 | G4FConicalSurface::G4FConicalSurface()
|
|---|
| 43 | {
|
|---|
| 44 | length = 1.0;
|
|---|
| 45 | small_radius = 0.0;
|
|---|
| 46 | large_radius = 1.0;
|
|---|
| 47 | tan_angle = (large_radius-small_radius)/length;
|
|---|
| 48 | }
|
|---|
| 49 |
|
|---|
| 50 | G4FConicalSurface::~G4FConicalSurface()
|
|---|
| 51 | {
|
|---|
| 52 | }
|
|---|
| 53 |
|
|---|
| 54 | G4FConicalSurface::G4FConicalSurface(const G4Point3D& o,
|
|---|
| 55 | const G4Vector3D& a,
|
|---|
| 56 | G4double l,
|
|---|
| 57 | G4double sr,
|
|---|
| 58 | G4double lr
|
|---|
| 59 | )
|
|---|
| 60 | {
|
|---|
| 61 | // Make a G4FConicalSurface with origin o, axis a, length l, small radius
|
|---|
| 62 | // sr, and large radius lr. The angle is calculated below and the SetAngle
|
|---|
| 63 | // function of G4ConicalSurface is used to set it properly from the default
|
|---|
| 64 | // value used above in the initialization.
|
|---|
| 65 |
|
|---|
| 66 | // Create the position with origin o, axis a, and a direction
|
|---|
| 67 |
|
|---|
| 68 | G4Vector3D dir(1,1,1);
|
|---|
| 69 | Position.Init(dir, a, o);
|
|---|
| 70 | origin = o;
|
|---|
| 71 |
|
|---|
| 72 | // Require length to be nonnegative
|
|---|
| 73 | if (l >=0)
|
|---|
| 74 | length = l;
|
|---|
| 75 | else
|
|---|
| 76 | {
|
|---|
| 77 | G4cerr << "Error in G4FConicalSurface::G4FConicalSurface"
|
|---|
| 78 | << "--asked for negative length\n"
|
|---|
| 79 | << "\tDefault length of 0.0 is used.\n";
|
|---|
| 80 |
|
|---|
| 81 | length = 0.0;
|
|---|
| 82 | }
|
|---|
| 83 |
|
|---|
| 84 | // Require small radius to be non-negative (i.e., allow zero)
|
|---|
| 85 | if ( sr >= 0.0 )
|
|---|
| 86 | small_radius = sr;
|
|---|
| 87 | else
|
|---|
| 88 | {
|
|---|
| 89 | G4cerr << "Error in G4FConicalSurface::G4FConicalSurface"
|
|---|
| 90 | << "--asked for negative small radius\n"
|
|---|
| 91 | << "\tDefault value of 0.0 is used.\n";
|
|---|
| 92 |
|
|---|
| 93 | small_radius = 0.0;
|
|---|
| 94 | }
|
|---|
| 95 |
|
|---|
| 96 | // Require large radius to exceed small radius
|
|---|
| 97 | if ( lr > small_radius )
|
|---|
| 98 | large_radius = lr;
|
|---|
| 99 | else
|
|---|
| 100 | {
|
|---|
| 101 | G4cerr << "Error in G4FConicalSurface::G4FConicalSurface"
|
|---|
| 102 | << "--large radius must exceed small radius\n"
|
|---|
| 103 | << "\tDefault value of small radius +1 is used.\n";
|
|---|
| 104 |
|
|---|
| 105 | large_radius = small_radius + 1.0;
|
|---|
| 106 | }
|
|---|
| 107 |
|
|---|
| 108 | // Calculate the angle of the G4ConicalSurface from the length and radii
|
|---|
| 109 | tan_angle = ( large_radius - small_radius ) / length ;
|
|---|
| 110 | }
|
|---|
| 111 |
|
|---|
| 112 |
|
|---|
| 113 | const char* G4FConicalSurface::Name() const
|
|---|
| 114 | {
|
|---|
| 115 | return "G4FConicalSurface";
|
|---|
| 116 | }
|
|---|
| 117 |
|
|---|
| 118 | // Modified by L. Broglia (01/12/98)
|
|---|
| 119 | void G4FConicalSurface::CalcBBox()
|
|---|
| 120 | {
|
|---|
| 121 | G4Point3D Max = G4Point3D(-PINFINITY);
|
|---|
| 122 | G4Point3D Min = G4Point3D( PINFINITY);
|
|---|
| 123 | G4Point3D Tmp;
|
|---|
| 124 |
|
|---|
| 125 | G4Point3D Origin = Position.GetLocation();
|
|---|
| 126 | G4Point3D EndOrigin = G4Point3D( Origin + (length * Position.GetAxis()) );
|
|---|
| 127 |
|
|---|
| 128 | G4double radius = large_radius;
|
|---|
| 129 | G4Point3D Radius(radius, radius, 0);
|
|---|
| 130 |
|
|---|
| 131 | // Default BBox
|
|---|
| 132 | G4Point3D Tolerance(kCarTolerance, kCarTolerance, kCarTolerance);
|
|---|
| 133 | G4Point3D BoxMin(Origin-Tolerance);
|
|---|
| 134 | G4Point3D BoxMax(Origin+Tolerance);
|
|---|
| 135 |
|
|---|
| 136 | bbox = new G4BoundingBox3D();
|
|---|
| 137 | bbox->Init(BoxMin, BoxMax);
|
|---|
| 138 |
|
|---|
| 139 | Tmp = (Origin - Radius);
|
|---|
| 140 | bbox->Extend(Tmp);
|
|---|
| 141 |
|
|---|
| 142 | Tmp = Origin + Radius;
|
|---|
| 143 | bbox->Extend(Tmp);
|
|---|
| 144 |
|
|---|
| 145 | Tmp = EndOrigin - Radius;
|
|---|
| 146 | bbox->Extend(Tmp);
|
|---|
| 147 |
|
|---|
| 148 | Tmp = EndOrigin + Radius;
|
|---|
| 149 | bbox->Extend(Tmp);
|
|---|
| 150 | }
|
|---|
| 151 |
|
|---|
| 152 |
|
|---|
| 153 | void G4FConicalSurface::PrintOn( std::ostream& os ) const
|
|---|
| 154 | {
|
|---|
| 155 | // printing function using C++ std::ostream class
|
|---|
| 156 | os << "G4FConicalSurface with origin: " << origin << "\t"
|
|---|
| 157 | << "and axis: " << Position.GetAxis() << "\n"
|
|---|
| 158 | << "\t small radius: " << small_radius
|
|---|
| 159 | << "\t large radius: " << large_radius
|
|---|
| 160 | << "\t and length: " << length << "\n";
|
|---|
| 161 | }
|
|---|
| 162 |
|
|---|
| 163 |
|
|---|
| 164 | G4int G4FConicalSurface::operator==( const G4FConicalSurface& c ) const
|
|---|
| 165 | {
|
|---|
| 166 | return ( origin == c.origin &&
|
|---|
| 167 | Position.GetAxis() == c.Position.GetAxis() &&
|
|---|
| 168 | small_radius == c.small_radius &&
|
|---|
| 169 | large_radius == c.large_radius &&
|
|---|
| 170 | length == c.length &&
|
|---|
| 171 | tan_angle == c.tan_angle );
|
|---|
| 172 | }
|
|---|
| 173 |
|
|---|
| 174 |
|
|---|
| 175 | G4int G4FConicalSurface::WithinBoundary( const G4Vector3D& x ) const
|
|---|
| 176 | {
|
|---|
| 177 | // return 1 if point x is within the boundaries of the G4FConicalSurface
|
|---|
| 178 | // return 0 otherwise (assume it is on the G4ConicalSurface)
|
|---|
| 179 | G4Vector3D q = G4Vector3D( x - origin );
|
|---|
| 180 |
|
|---|
| 181 | G4double qmag = q.mag();
|
|---|
| 182 | G4double s = std::sin( std::atan2(large_radius-small_radius, length) );
|
|---|
| 183 | G4double ls = small_radius / s;
|
|---|
| 184 | G4double ll = large_radius / s;
|
|---|
| 185 |
|
|---|
| 186 | if ( ( qmag >= ls ) && ( qmag <= ll ) )
|
|---|
| 187 | return 1;
|
|---|
| 188 | else
|
|---|
| 189 | return 0;
|
|---|
| 190 | }
|
|---|
| 191 |
|
|---|
| 192 |
|
|---|
| 193 | G4double G4FConicalSurface::Scale() const
|
|---|
| 194 | {
|
|---|
| 195 | // Returns the small radius of a G4FConicalSurface unless it is zero, in
|
|---|
| 196 | // which case returns the large radius.
|
|---|
| 197 | // Used for Scale-invariant tests of surface thickness.
|
|---|
| 198 | if ( small_radius == 0.0 )
|
|---|
| 199 | return large_radius;
|
|---|
| 200 | else
|
|---|
| 201 | return small_radius;
|
|---|
| 202 | }
|
|---|
| 203 |
|
|---|
| 204 |
|
|---|
| 205 | G4double G4FConicalSurface::Area() const
|
|---|
| 206 | {
|
|---|
| 207 | // Returns the Area of a G4FConicalSurface
|
|---|
| 208 | G4double rdif = large_radius - small_radius;
|
|---|
| 209 |
|
|---|
| 210 | return ( pi * ( small_radius + large_radius ) *
|
|---|
| 211 | std::sqrt( length * length + rdif * rdif ) );
|
|---|
| 212 | }
|
|---|
| 213 |
|
|---|
| 214 |
|
|---|
| 215 | void G4FConicalSurface::resize( G4double l, G4double sr, G4double lr )
|
|---|
| 216 | {
|
|---|
| 217 | // Resize a G4FConicalSurface to a new length l, and new radii sr and lr.
|
|---|
| 218 | // Must Reset angle of the G4ConicalSurface as well based on these new
|
|---|
| 219 | // values.
|
|---|
| 220 | // Require length to be non-negative
|
|---|
| 221 |
|
|---|
| 222 | // if ( l > 0.0 )
|
|---|
| 223 | if ( l >= 0.0 )
|
|---|
| 224 | length = l;
|
|---|
| 225 | else
|
|---|
| 226 | {
|
|---|
| 227 | G4cerr << "Error in G4FConicalSurface::resize"
|
|---|
| 228 | << "--asked for negative length\n"
|
|---|
| 229 | << "\tOriginal value of " << length << " is retained.\n";
|
|---|
| 230 | }
|
|---|
| 231 |
|
|---|
| 232 | // Require small radius to be non-negative (i.e., allow zero)
|
|---|
| 233 | if ( sr >= 0.0 )
|
|---|
| 234 | small_radius = sr;
|
|---|
| 235 | else
|
|---|
| 236 | {
|
|---|
| 237 | G4cerr << "Error in G4FConicalSurface::resize"
|
|---|
| 238 | << "--asked for negative small radius\n"
|
|---|
| 239 | << "\tOriginal value of " << small_radius
|
|---|
| 240 | << " is retained.\n";
|
|---|
| 241 | }
|
|---|
| 242 |
|
|---|
| 243 | // Require large radius to exceed small radius
|
|---|
| 244 | if ( lr > small_radius )
|
|---|
| 245 | large_radius = lr;
|
|---|
| 246 | else
|
|---|
| 247 | {
|
|---|
| 248 | G4double r = small_radius + 1.0;
|
|---|
| 249 | lr = ( large_radius <= small_radius ) ? r : large_radius;
|
|---|
| 250 | large_radius = lr;
|
|---|
| 251 |
|
|---|
| 252 | G4cerr << "Error in G4FConicalSurface::G4FConicalSurface"
|
|---|
| 253 | << "--large radius must exceed small radius\n"
|
|---|
| 254 | << "\tDefault value of " << large_radius << " is used.\n";
|
|---|
| 255 | }
|
|---|
| 256 |
|
|---|
| 257 | // Calculate the angle of the G4ConicalSurface from the length and radii
|
|---|
| 258 | tan_angle = ( large_radius - small_radius ) / length ;
|
|---|
| 259 |
|
|---|
| 260 | }
|
|---|
| 261 |
|
|---|
| 262 |
|
|---|
| 263 | G4int G4FConicalSurface::Intersect(const G4Ray& ry )
|
|---|
| 264 | {
|
|---|
| 265 | // This function count the number of intersections of a
|
|---|
| 266 | // bounded conical surface by a ray.
|
|---|
| 267 | // At first, calculates the intersections with the semi-infinite
|
|---|
| 268 | // conical surfsace. After, count the intersections within the
|
|---|
| 269 | // finite conical surface boundaries, and set "distance" to the
|
|---|
| 270 | // closest distance from the start point to the nearest intersection
|
|---|
| 271 | // If the point is on the surface it returns or the intersection with
|
|---|
| 272 | // the opposite surface or kInfinity
|
|---|
| 273 | // If no intersection is founded, set distance = kInfinity and
|
|---|
| 274 | // return 0
|
|---|
| 275 |
|
|---|
| 276 | distance = kInfinity;
|
|---|
| 277 | closest_hit = PINFINITY;
|
|---|
| 278 |
|
|---|
| 279 | // origin and direction of the ray
|
|---|
| 280 | G4Point3D x = ry.GetStart();
|
|---|
| 281 | G4Vector3D dhat = ry.GetDir();
|
|---|
| 282 |
|
|---|
| 283 | // cone angle and axis
|
|---|
| 284 | G4double ta = tan_angle;
|
|---|
| 285 | G4Vector3D ahat = Position.GetAxis();
|
|---|
| 286 |
|
|---|
| 287 | // array of solutions in distance along the ray
|
|---|
| 288 | G4double s[2];
|
|---|
| 289 | s[0]=-1.0;
|
|---|
| 290 | s[1]=-1.0;
|
|---|
| 291 |
|
|---|
| 292 | // calculate the two intersections (quadratic equation)
|
|---|
| 293 | G4Vector3D gamma = G4Vector3D( x - Position.GetLocation() );
|
|---|
| 294 |
|
|---|
| 295 | G4double t = 1 + ta * ta;
|
|---|
| 296 | G4double ga = gamma * ahat;
|
|---|
| 297 | G4double da = dhat * ahat;
|
|---|
| 298 |
|
|---|
| 299 | G4double A = t * da * da - dhat * dhat;
|
|---|
| 300 | G4double B = 2 * ( -gamma * dhat + t * ga * da - large_radius * ta * da);
|
|---|
| 301 | G4double C = ( -gamma * gamma + t * ga * ga
|
|---|
| 302 | - 2 * large_radius * ta * ga
|
|---|
| 303 | + large_radius * large_radius );
|
|---|
| 304 |
|
|---|
| 305 | G4double radical = B * B - 4.0 * A * C;
|
|---|
| 306 |
|
|---|
| 307 | if ( radical < 0.0 )
|
|---|
| 308 | // no intersection
|
|---|
| 309 | return 0;
|
|---|
| 310 | else
|
|---|
| 311 | {
|
|---|
| 312 | G4double root = std::sqrt( radical );
|
|---|
| 313 | s[0] = ( - B + root ) / ( 2. * A );
|
|---|
| 314 | s[1] = ( - B - root ) / ( 2. * A );
|
|---|
| 315 | }
|
|---|
| 316 |
|
|---|
| 317 | // validity of the solutions
|
|---|
| 318 | // the hit point must be into the bounding box of the conical surface
|
|---|
| 319 | G4Point3D p0 = G4Point3D( x + s[0]*dhat );
|
|---|
| 320 | G4Point3D p1 = G4Point3D( x + s[1]*dhat );
|
|---|
| 321 |
|
|---|
| 322 | if( !GetBBox()->Inside(p0) )
|
|---|
| 323 | s[0] = kInfinity;
|
|---|
| 324 |
|
|---|
| 325 | if( !GetBBox()->Inside(p1) )
|
|---|
| 326 | s[1] = kInfinity;
|
|---|
| 327 |
|
|---|
| 328 | // now loop over each positive solution, keeping the first one (smallest
|
|---|
| 329 | // distance along the ray) which is within the boundary of the sub-shape
|
|---|
| 330 | G4int nbinter = 0;
|
|---|
| 331 | distance = kInfinity;
|
|---|
| 332 |
|
|---|
| 333 | for ( G4int i = 0; i < 2; i++ )
|
|---|
| 334 | {
|
|---|
| 335 | if(s[i] < kInfinity) {
|
|---|
| 336 | if ( (s[i] > kCarTolerance*0.5) ) {
|
|---|
| 337 | nbinter++;
|
|---|
| 338 | if ( distance > (s[i]*s[i]) ) {
|
|---|
| 339 | distance = s[i]*s[i];
|
|---|
| 340 | }
|
|---|
| 341 | }
|
|---|
| 342 | }
|
|---|
| 343 | }
|
|---|
| 344 |
|
|---|
| 345 | return nbinter;
|
|---|
| 346 | }
|
|---|
| 347 |
|
|---|
| 348 |
|
|---|
| 349 | G4double G4FConicalSurface::HowNear( const G4Vector3D& x ) const
|
|---|
| 350 | {
|
|---|
| 351 | // Shortest distance from the point x to the G4FConicalSurface.
|
|---|
| 352 | // The distance will be always positive
|
|---|
| 353 | // This function works only with Cone axis equal (0,0,1) or (0,0,-1), it project
|
|---|
| 354 | // the surface and the point on the x,z plane and compute the distance in analytical
|
|---|
| 355 | // way
|
|---|
| 356 |
|
|---|
| 357 | G4double hownear ;
|
|---|
| 358 |
|
|---|
| 359 | G4Vector3D upcorner = G4Vector3D ( small_radius, 0 , origin.z()+Position.GetAxis().z()*length);
|
|---|
| 360 | G4Vector3D downcorner = G4Vector3D ( large_radius, 0 , origin.z());
|
|---|
| 361 | G4Vector3D xd;
|
|---|
| 362 |
|
|---|
| 363 | xd = G4Vector3D ( std::sqrt ( x.x()*x.x() + x.y()*x.y() ) , 0 , x.z() );
|
|---|
| 364 |
|
|---|
| 365 | G4double m = (upcorner.z() - downcorner.z()) / (upcorner.x() - downcorner.x());
|
|---|
| 366 | G4double q = (downcorner.z()*upcorner.x() - upcorner.z()*downcorner.x()) /
|
|---|
| 367 | (upcorner.x() - downcorner.x());
|
|---|
| 368 |
|
|---|
| 369 | G4double Zinter = (xd.z()*m*m + xd.x()*m +q)/(1+m*m) ;
|
|---|
| 370 |
|
|---|
| 371 | if ( ((Zinter >= downcorner.z()) && (Zinter <=upcorner.z())) ||
|
|---|
| 372 | ((Zinter >= upcorner.z()) && (Zinter <=downcorner.z())) ) {
|
|---|
| 373 | hownear = std::fabs(m*xd.x()-xd.z()+q)/std::sqrt(1+m*m);
|
|---|
| 374 | return hownear;
|
|---|
| 375 | } else {
|
|---|
| 376 | hownear = std::min ( (xd-upcorner).mag() , (xd-downcorner).mag() );
|
|---|
| 377 | return hownear;
|
|---|
| 378 | }
|
|---|
| 379 |
|
|---|
| 380 |
|
|---|
| 381 | }
|
|---|
| 382 |
|
|---|
| 383 |
|
|---|
| 384 | G4Vector3D G4FConicalSurface::SurfaceNormal( const G4Point3D& p ) const
|
|---|
| 385 | {
|
|---|
| 386 | // return the Normal unit vector to the G4ConicalSurface at a point p
|
|---|
| 387 | // on (or nearly on) the G4ConicalSurface
|
|---|
| 388 | G4Vector3D s = G4Vector3D( p - origin );
|
|---|
| 389 | G4double da = s * Position.GetAxis();
|
|---|
| 390 | G4double r = std::sqrt( s*s - da*da);
|
|---|
| 391 | G4double z = tan_angle * r;
|
|---|
| 392 |
|
|---|
| 393 | if (Position.GetAxis().z() < 0)
|
|---|
| 394 | z = -z;
|
|---|
| 395 |
|
|---|
| 396 | G4Vector3D n(p.x(), p.y(), z);
|
|---|
| 397 | n = n.unit();
|
|---|
| 398 |
|
|---|
| 399 | if( !sameSense )
|
|---|
| 400 | n = -n;
|
|---|
| 401 |
|
|---|
| 402 | return n;
|
|---|
| 403 | }
|
|---|
| 404 |
|
|---|
| 405 | G4int G4FConicalSurface::Inside ( const G4Vector3D& x ) const
|
|---|
| 406 | {
|
|---|
| 407 | // Return 0 if point x is outside G4ConicalSurface, 1 if Inside.
|
|---|
| 408 | if ( HowNear( x ) >= -0.5*kCarTolerance )
|
|---|
| 409 | return 1;
|
|---|
| 410 | else
|
|---|
| 411 | return 0;
|
|---|
| 412 | }
|
|---|
| 413 |
|
|---|