| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4FCylindricalSurface.cc,v 1.16 2006/06/29 18:42:14 gunter Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-02-ref-02 $
|
|---|
| 29 | //
|
|---|
| 30 | // ----------------------------------------------------------------------
|
|---|
| 31 | // GEANT 4 class source file
|
|---|
| 32 | //
|
|---|
| 33 | // G4FCylindricalSurface.cc
|
|---|
| 34 | //
|
|---|
| 35 | // ----------------------------------------------------------------------
|
|---|
| 36 |
|
|---|
| 37 | #include "G4FCylindricalSurface.hh"
|
|---|
| 38 | #include "G4Sort.hh"
|
|---|
| 39 |
|
|---|
| 40 |
|
|---|
| 41 | G4FCylindricalSurface::G4FCylindricalSurface()
|
|---|
| 42 | : length(1.)
|
|---|
| 43 | {
|
|---|
| 44 | }
|
|---|
| 45 |
|
|---|
| 46 |
|
|---|
| 47 | G4FCylindricalSurface::~G4FCylindricalSurface()
|
|---|
| 48 | {
|
|---|
| 49 | }
|
|---|
| 50 |
|
|---|
| 51 |
|
|---|
| 52 | G4FCylindricalSurface::G4FCylindricalSurface( const G4Point3D& o,
|
|---|
| 53 | const G4Vector3D& a,
|
|---|
| 54 | G4double r,
|
|---|
| 55 | G4double l
|
|---|
| 56 | )
|
|---|
| 57 | {
|
|---|
| 58 | // make a G4FCylindricalSurface with origin o, axis a,
|
|---|
| 59 | // radius r, and length l
|
|---|
| 60 | G4Vector3D dir(1,1,1);
|
|---|
| 61 | Position.Init(dir, a, o);
|
|---|
| 62 |
|
|---|
| 63 | origin = o;
|
|---|
| 64 | radius = r;
|
|---|
| 65 |
|
|---|
| 66 | // Require length to be positive or zero
|
|---|
| 67 | if ( l >= 0.0 )
|
|---|
| 68 | length = l;
|
|---|
| 69 | else
|
|---|
| 70 | {
|
|---|
| 71 | G4cerr << "Error in G4FCylindricalSurface::G4FCylindricalSurface"
|
|---|
| 72 | << "--asked for negative length\n"
|
|---|
| 73 | << "\tDefault length of 0.0 is used.\n";
|
|---|
| 74 |
|
|---|
| 75 | length = 0.0;
|
|---|
| 76 | }
|
|---|
| 77 |
|
|---|
| 78 | // Require radius to be non-negative (i.e., allow zero)
|
|---|
| 79 | if ( r >= 0.0 )
|
|---|
| 80 | radius = r;
|
|---|
| 81 | else
|
|---|
| 82 | {
|
|---|
| 83 | G4cerr << "Error in G4FCylindricalSurface::G4FCylindricalSurface"
|
|---|
| 84 | << "--asked for negative radius\n"
|
|---|
| 85 | << "\tDefault value of 0.0 is used.\n";
|
|---|
| 86 |
|
|---|
| 87 | radius = 0.0;
|
|---|
| 88 | }
|
|---|
| 89 | }
|
|---|
| 90 |
|
|---|
| 91 |
|
|---|
| 92 | const char* G4FCylindricalSurface::NameOf() const
|
|---|
| 93 | {
|
|---|
| 94 | return "G4FCylindricalSurface";
|
|---|
| 95 | }
|
|---|
| 96 |
|
|---|
| 97 |
|
|---|
| 98 | void G4FCylindricalSurface::PrintOn( std::ostream& os ) const
|
|---|
| 99 | {
|
|---|
| 100 | os << "G4FCylindricalSurface with origin: " << origin << "\t"
|
|---|
| 101 | << "and axis: " << Position.GetAxis() << "\n"
|
|---|
| 102 | << "\t radius: " << radius << "\t and length: "
|
|---|
| 103 | << length << "\n";
|
|---|
| 104 | }
|
|---|
| 105 |
|
|---|
| 106 |
|
|---|
| 107 | G4double G4FCylindricalSurface::Area() const
|
|---|
| 108 | {
|
|---|
| 109 | return ( 2.0 * pi * radius * length );
|
|---|
| 110 | }
|
|---|
| 111 |
|
|---|
| 112 |
|
|---|
| 113 | // Added 18.7-95
|
|---|
| 114 | // Modified by L. Broglia (01/12/98)
|
|---|
| 115 | void G4FCylindricalSurface::CalcBBox()
|
|---|
| 116 | {
|
|---|
| 117 | // Finds the bounds of the surface iow
|
|---|
| 118 | // calculates the bounds for a bounding box
|
|---|
| 119 | // to the surface. The bounding box is used
|
|---|
| 120 | // for a preliminary check of intersection.
|
|---|
| 121 | G4Point3D Max = G4Point3D(-PINFINITY);
|
|---|
| 122 | G4Point3D Min = G4Point3D( PINFINITY);
|
|---|
| 123 |
|
|---|
| 124 | G4Point3D Tmp;
|
|---|
| 125 | G4Point3D Origin = Position.GetLocation();
|
|---|
| 126 | G4Point3D EndOrigin = G4Point3D( Origin + (length*Position.GetAxis()) );
|
|---|
| 127 | G4Point3D Radius(radius, radius, 0);
|
|---|
| 128 |
|
|---|
| 129 | // Default BBox
|
|---|
| 130 | G4Point3D Tolerance(kCarTolerance, kCarTolerance, kCarTolerance);
|
|---|
| 131 | G4Point3D BoxMin(Origin-Tolerance);
|
|---|
| 132 | G4Point3D BoxMax(Origin+Tolerance);
|
|---|
| 133 |
|
|---|
| 134 | bbox = new G4BoundingBox3D();
|
|---|
| 135 | bbox->Init(BoxMin, BoxMax);
|
|---|
| 136 |
|
|---|
| 137 |
|
|---|
| 138 | Tmp = (Origin - Radius);
|
|---|
| 139 | bbox->Extend(Tmp);
|
|---|
| 140 |
|
|---|
| 141 | Tmp = Origin + Radius;
|
|---|
| 142 | bbox->Extend(Tmp);
|
|---|
| 143 |
|
|---|
| 144 | Tmp = EndOrigin - Radius;
|
|---|
| 145 | bbox->Extend(Tmp);
|
|---|
| 146 |
|
|---|
| 147 | Tmp = EndOrigin + Radius;
|
|---|
| 148 | bbox->Extend(Tmp);
|
|---|
| 149 | }
|
|---|
| 150 |
|
|---|
| 151 |
|
|---|
| 152 | G4int G4FCylindricalSurface::Intersect( const G4Ray& ry )
|
|---|
| 153 | {
|
|---|
| 154 | // This function count the number of intersections of a
|
|---|
| 155 | // bounded cylindrical surface by a ray.
|
|---|
| 156 | // At first, calculates the intersections with the infinite
|
|---|
| 157 | // cylindrical surfsace. After, count the intersections within the
|
|---|
| 158 | // finite cylindrical surface boundaries, and set "distance" to the
|
|---|
| 159 | // closest distance from the start point to the nearest intersection
|
|---|
| 160 | // If the point is on the surface it returns or the intersection with
|
|---|
| 161 | // the opposite surface or kInfinity
|
|---|
| 162 |
|
|---|
| 163 | // If no intersection is founded, set distance = kInfinity and
|
|---|
| 164 | // return 0
|
|---|
| 165 |
|
|---|
| 166 | distance = kInfinity;
|
|---|
| 167 | closest_hit = PINFINITY;
|
|---|
| 168 |
|
|---|
| 169 | // origin and direction of the ray
|
|---|
| 170 | G4Point3D x = ry.GetStart();
|
|---|
| 171 | G4Vector3D dhat = ry.GetDir();
|
|---|
| 172 |
|
|---|
| 173 | // cylinder axis
|
|---|
| 174 | G4Vector3D ahat = Position.GetAxis();
|
|---|
| 175 |
|
|---|
| 176 | // array of solutions in distance along the ray
|
|---|
| 177 | G4double s[2];
|
|---|
| 178 | s[0]=-1.0;
|
|---|
| 179 | s[1]=-1.0;
|
|---|
| 180 |
|
|---|
| 181 | // calculate the two intersections (quadratic equation)
|
|---|
| 182 | G4Vector3D gamma = G4Vector3D( x - Position.GetLocation() );
|
|---|
| 183 |
|
|---|
| 184 | G4double ga = gamma * ahat;
|
|---|
| 185 | G4double da = dhat * ahat;
|
|---|
| 186 |
|
|---|
| 187 | G4double A = da * da - dhat * dhat;
|
|---|
| 188 | G4double B = 2 * ( -gamma * dhat + ga * da );
|
|---|
| 189 | G4double C = -gamma * gamma + ga * ga + radius * radius ;
|
|---|
| 190 |
|
|---|
| 191 | G4double radical = B * B - 4.0 * A * C;
|
|---|
| 192 |
|
|---|
| 193 | if ( radical < 0.0 )
|
|---|
| 194 | // no intersection
|
|---|
| 195 | return 0;
|
|---|
| 196 | else
|
|---|
| 197 | {
|
|---|
| 198 | G4double root = std::sqrt( radical );
|
|---|
| 199 | s[0] = ( - B + root ) / ( 2. * A );
|
|---|
| 200 | s[1] = ( - B - root ) / ( 2. * A );
|
|---|
| 201 | }
|
|---|
| 202 |
|
|---|
| 203 | // validity of the solutions
|
|---|
| 204 | // the hit point must be into the bounding box of the cylindrical surface
|
|---|
| 205 | G4Point3D p0 = G4Point3D( x + s[0]*dhat );
|
|---|
| 206 | G4Point3D p1 = G4Point3D( x + s[1]*dhat );
|
|---|
| 207 |
|
|---|
| 208 | if( !GetBBox()->Inside(p0) )
|
|---|
| 209 | s[0] = kInfinity;
|
|---|
| 210 |
|
|---|
| 211 | if( !GetBBox()->Inside(p1) )
|
|---|
| 212 | s[1] = kInfinity;
|
|---|
| 213 |
|
|---|
| 214 | // now loop over each positive solution, keeping the first one (smallest
|
|---|
| 215 | // distance along the Ray) which is within the boundary of the sub-shape
|
|---|
| 216 | G4int nbinter = 0;
|
|---|
| 217 | distance = kInfinity;
|
|---|
| 218 |
|
|---|
| 219 | for ( G4int i = 0; i < 2; i++ )
|
|---|
| 220 | {
|
|---|
| 221 | if(s[i] < kInfinity) {
|
|---|
| 222 | if ( s[i] >= kCarTolerance*0.5 ) {
|
|---|
| 223 | nbinter ++;
|
|---|
| 224 | // real intersection
|
|---|
| 225 | // set the distance if it is the smallest
|
|---|
| 226 | if( distance > s[i]*s[i]) {
|
|---|
| 227 | distance = s[i]*s[i];
|
|---|
| 228 | }
|
|---|
| 229 | }
|
|---|
| 230 | }
|
|---|
| 231 | }
|
|---|
| 232 |
|
|---|
| 233 | return nbinter;
|
|---|
| 234 | }
|
|---|
| 235 |
|
|---|
| 236 |
|
|---|
| 237 | G4double G4FCylindricalSurface::HowNear( const G4Vector3D& x ) const
|
|---|
| 238 | {
|
|---|
| 239 | // Shortest distance from the point x to the G4FCylindricalSurface.
|
|---|
| 240 | // The distance will be always positive
|
|---|
| 241 |
|
|---|
| 242 | G4double hownear;
|
|---|
| 243 |
|
|---|
| 244 | G4Vector3D upcorner = G4Vector3D ( radius, 0 , origin.z()+length);
|
|---|
| 245 | G4Vector3D downcorner = G4Vector3D ( radius, 0 , origin.z());
|
|---|
| 246 | G4Vector3D xd;
|
|---|
| 247 |
|
|---|
| 248 | xd = G4Vector3D ( std::sqrt ( x.x()*x.x() + x.y()*x.y() ) , 0 , x.z() );
|
|---|
| 249 |
|
|---|
| 250 |
|
|---|
| 251 | G4double Zinter = (xd.z()) ;
|
|---|
| 252 |
|
|---|
| 253 | if ( ((Zinter >= downcorner.z()) && (Zinter <=upcorner.z())) ) {
|
|---|
| 254 | hownear = std::fabs( radius - xd.x() );
|
|---|
| 255 | } else {
|
|---|
| 256 | hownear = std::min ( (xd-upcorner).mag() , (xd-downcorner).mag() );
|
|---|
| 257 | }
|
|---|
| 258 |
|
|---|
| 259 | return hownear;
|
|---|
| 260 | }
|
|---|
| 261 |
|
|---|
| 262 | G4int G4FCylindricalSurface::WithinBoundary( const G4Vector3D& x ) const
|
|---|
| 263 | {
|
|---|
| 264 | // return 1 if point x is within the boundaries of the G4FCylindricalSurface
|
|---|
| 265 | // return 0 otherwise (assume it is on the cylinder)
|
|---|
| 266 | if ( std::fabs( ( x - Position.GetLocation()) * Position.GetAxis() )
|
|---|
| 267 | <= 0.5 * length )
|
|---|
| 268 | return 1;
|
|---|
| 269 | else
|
|---|
| 270 | return 0;
|
|---|
| 271 | }
|
|---|
| 272 |
|
|---|
| 273 |
|
|---|
| 274 | G4double G4FCylindricalSurface::Scale() const
|
|---|
| 275 | {
|
|---|
| 276 | // Returns the radius of a G4FCylindricalSurface unless it is zero,
|
|---|
| 277 | // in which case returns the length.
|
|---|
| 278 | // Used for Scale-invariant tests of surface thickness.
|
|---|
| 279 | if ( radius == 0.0 )
|
|---|
| 280 | return length;
|
|---|
| 281 | else
|
|---|
| 282 | return radius;
|
|---|
| 283 | }
|
|---|
| 284 |
|
|---|
| 285 |
|
|---|
| 286 | G4Vector3D G4FCylindricalSurface::SurfaceNormal( const G4Point3D& p ) const
|
|---|
| 287 | {
|
|---|
| 288 | // return the Normal unit vector to the G4CylindricalSurface at a point
|
|---|
| 289 | // p on (or nearly on) the G4CylindricalSurface
|
|---|
| 290 |
|
|---|
| 291 | G4Vector3D n = G4Vector3D( ( p - Position.GetLocation() ) -
|
|---|
| 292 | ( ( p - Position.GetLocation()) *
|
|---|
| 293 | Position.GetAxis() ) * Position.GetAxis() );
|
|---|
| 294 | G4double nmag = n.mag();
|
|---|
| 295 |
|
|---|
| 296 | if ( nmag != 0.0 )
|
|---|
| 297 | n = n * (1/nmag);
|
|---|
| 298 |
|
|---|
| 299 | if( !sameSense )
|
|---|
| 300 | n = -n;
|
|---|
| 301 |
|
|---|
| 302 | return n;
|
|---|
| 303 | }
|
|---|
| 304 |
|
|---|
| 305 | G4int G4FCylindricalSurface::Inside ( const G4Vector3D& x ) const
|
|---|
| 306 | {
|
|---|
| 307 | // Return 0 if point x is outside G4CylindricalSurface, 1 if Inside.
|
|---|
| 308 | // Outside means that the distance to the G4CylindricalSurface would
|
|---|
| 309 | // be negative.
|
|---|
| 310 | // Use the HowNear function to calculate this distance.
|
|---|
| 311 | if ( HowNear( x ) >= -0.5*kCarTolerance )
|
|---|
| 312 | return 1;
|
|---|
| 313 | else
|
|---|
| 314 | return 0;
|
|---|
| 315 | }
|
|---|
| 316 |
|
|---|
| 317 |
|
|---|
| 318 | void G4FCylindricalSurface::resize( G4double r, G4double l )
|
|---|
| 319 | {
|
|---|
| 320 | // Resize a G4FCylindricalSurface to a new radius r and new length l
|
|---|
| 321 | // Require radius to be non-negative
|
|---|
| 322 | if ( r >= 0.0 )
|
|---|
| 323 | radius = r;
|
|---|
| 324 | else
|
|---|
| 325 | {
|
|---|
| 326 | G4cerr << "Error in G4FCylindricalSurface::resize"
|
|---|
| 327 | << "--asked for negative radius\n"
|
|---|
| 328 | << "\tOriginal value of " << radius << " is retained.\n";
|
|---|
| 329 | }
|
|---|
| 330 |
|
|---|
| 331 | // Require length to be positive
|
|---|
| 332 | if ( l > 0.0 )
|
|---|
| 333 | length = l;
|
|---|
| 334 | else
|
|---|
| 335 | {
|
|---|
| 336 | G4cerr << "Error in G4FCylindricalSurface::resize"
|
|---|
| 337 | << "--asked for negative or zero length\n"
|
|---|
| 338 | << "\tOriginal value of " << length << " is retained.\n";
|
|---|
| 339 | }
|
|---|
| 340 | }
|
|---|