| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4FPlane.cc,v 1.16 2006/06/29 18:42:16 gunter Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-04-beta-01 $
|
|---|
| 29 | //
|
|---|
| 30 | // ----------------------------------------------------------------------
|
|---|
| 31 | // GEANT 4 class source file
|
|---|
| 32 | //
|
|---|
| 33 | // G4FPlane.cc
|
|---|
| 34 | //
|
|---|
| 35 | // ----------------------------------------------------------------------
|
|---|
| 36 | // Corrections by S.Giani:
|
|---|
| 37 | // - The constructor using iVec now properly stores both the internal and
|
|---|
| 38 | // external boundaries in the bounds vector.
|
|---|
| 39 | // - Proper initialization of sameSense in both the constructors.
|
|---|
| 40 | // - Addition of third argument (sense) in the second constructor to ensure
|
|---|
| 41 | // consistent setting of the normal in all the client code.
|
|---|
| 42 | // - Proper use of the tolerance in the Intersect function.
|
|---|
| 43 | // ----------------------------------------------------------------------
|
|---|
| 44 |
|
|---|
| 45 | #include "G4FPlane.hh"
|
|---|
| 46 | #include "G4CompositeCurve.hh"
|
|---|
| 47 |
|
|---|
| 48 |
|
|---|
| 49 | G4FPlane::G4FPlane( const G4Vector3D& direction,
|
|---|
| 50 | const G4Vector3D& axis ,
|
|---|
| 51 | const G4Point3D& Pt0, G4int sense )
|
|---|
| 52 | : pplace(direction, axis, Pt0)
|
|---|
| 53 | {
|
|---|
| 54 | G4Point3D Pt1 = G4Point3D( Pt0 + direction );
|
|---|
| 55 |
|
|---|
| 56 | // The plane include direction and axis is the normal,
|
|---|
| 57 | // so axis^direction is included in the plane
|
|---|
| 58 | G4Point3D Pt2 = G4Point3D( Pt0 + axis.cross(direction) );
|
|---|
| 59 |
|
|---|
| 60 | G4Ray::CalcPlane3Pts( Pl, Pt0, Pt1, Pt2 );
|
|---|
| 61 |
|
|---|
| 62 | active = 1;
|
|---|
| 63 | sameSense = sense;
|
|---|
| 64 | CalcNormal();
|
|---|
| 65 | distance = kInfinity;
|
|---|
| 66 | Type = 1;
|
|---|
| 67 | }
|
|---|
| 68 |
|
|---|
| 69 |
|
|---|
| 70 | G4FPlane::G4FPlane(const G4Point3DVector* pVec,
|
|---|
| 71 | const G4Point3DVector* iVec,
|
|---|
| 72 | G4int sense)
|
|---|
| 73 | : pplace( (*pVec)[0]-(*pVec)[1], // direction
|
|---|
| 74 | ((*pVec)[pVec->size()-1]-(*pVec)[0])
|
|---|
| 75 | .cross((*pVec)[0]-(*pVec)[1]), // axis
|
|---|
| 76 | (*pVec)[0] ) // location
|
|---|
| 77 |
|
|---|
| 78 | {
|
|---|
| 79 | G4Ray::CalcPlane3Pts( Pl, (*pVec)[0], (*pVec)[1], (*pVec)[2] );
|
|---|
| 80 |
|
|---|
| 81 | G4CurveVector bounds;
|
|---|
| 82 | G4CompositeCurve* polygon;
|
|---|
| 83 |
|
|---|
| 84 | projectedBoundary = new G4SurfaceBoundary;
|
|---|
| 85 |
|
|---|
| 86 | sameSense = sense;
|
|---|
| 87 |
|
|---|
| 88 | // Outer boundary
|
|---|
| 89 |
|
|---|
| 90 | polygon= new G4CompositeCurve(*pVec);
|
|---|
| 91 |
|
|---|
| 92 | for (size_t i=0; i< polygon->GetSegments().size(); i++)
|
|---|
| 93 | polygon->GetSegments()[i]->SetSameSense(sameSense);
|
|---|
| 94 |
|
|---|
| 95 | bounds.push_back(polygon);
|
|---|
| 96 |
|
|---|
| 97 | // Eventual inner boundary
|
|---|
| 98 |
|
|---|
| 99 | if (iVec)
|
|---|
| 100 | {
|
|---|
| 101 | polygon= new G4CompositeCurve(*iVec);
|
|---|
| 102 |
|
|---|
| 103 | for (size_t i=0; i< polygon->GetSegments().size(); i++)
|
|---|
| 104 | polygon->GetSegments()[i]->SetSameSense(sameSense);
|
|---|
| 105 |
|
|---|
| 106 | bounds.push_back(polygon);
|
|---|
| 107 | }
|
|---|
| 108 |
|
|---|
| 109 | // Set sense for boundaries
|
|---|
| 110 |
|
|---|
| 111 | for (size_t j=0; j< bounds.size(); j++)
|
|---|
| 112 | bounds[j]->SetSameSense(sameSense);
|
|---|
| 113 |
|
|---|
| 114 |
|
|---|
| 115 | SetBoundaries(&bounds);
|
|---|
| 116 |
|
|---|
| 117 | CalcNormal();
|
|---|
| 118 | IsConvex();
|
|---|
| 119 | distance = kInfinity;
|
|---|
| 120 | Type=1;
|
|---|
| 121 | }
|
|---|
| 122 |
|
|---|
| 123 |
|
|---|
| 124 | G4FPlane::~G4FPlane()
|
|---|
| 125 | {
|
|---|
| 126 | delete NormalX;
|
|---|
| 127 | }
|
|---|
| 128 |
|
|---|
| 129 |
|
|---|
| 130 | void G4FPlane::CalcBBox()
|
|---|
| 131 | {
|
|---|
| 132 | // This is needed since the bounds are used for the Solid
|
|---|
| 133 | // bbox calculation. The bbox test is NOT performed for
|
|---|
| 134 | // planar surfaces.
|
|---|
| 135 |
|
|---|
| 136 | // Finds the bounds of the G4Plane surface iow
|
|---|
| 137 | // calculates the bounds for a bounding box
|
|---|
| 138 | // to the surface. The bounding box is used
|
|---|
| 139 | // for a preliminary check of intersection.
|
|---|
| 140 |
|
|---|
| 141 | bbox= new G4BoundingBox3D(surfaceBoundary.BBox().GetBoxMin(),
|
|---|
| 142 | surfaceBoundary.BBox().GetBoxMax());
|
|---|
| 143 |
|
|---|
| 144 | }
|
|---|
| 145 |
|
|---|
| 146 |
|
|---|
| 147 | void G4FPlane::CalcNormal()
|
|---|
| 148 | {
|
|---|
| 149 | /*
|
|---|
| 150 | // Calc Normal for surface which is used for the projection
|
|---|
| 151 | // Make planes
|
|---|
| 152 | G4Vector3D norm;
|
|---|
| 153 |
|
|---|
| 154 | G4Vector3D RefDirection = pplace.GetRefDirection();
|
|---|
| 155 | G4Vector3D Axis = pplace.GetAxis();
|
|---|
| 156 |
|
|---|
| 157 | // L. Broglia : before in G4Placement
|
|---|
| 158 | if( RefDirection == Axis )
|
|---|
| 159 | norm = RefDirection;
|
|---|
| 160 | else
|
|---|
| 161 | {
|
|---|
| 162 | // L. Broglia : error on setY, and it`s better to use cross function
|
|---|
| 163 | // norm.setX( RefDirection.y() * Axis.z() - RefDirection.z() * Axis.y() );
|
|---|
| 164 | // norm.setY( RefDirection.x() * Axis.z() - RefDirection.z() * Axis.x() );
|
|---|
| 165 | // norm.setZ( RefDirection.x() * Axis.y() - RefDirection.y() * Axis.x() );
|
|---|
| 166 |
|
|---|
| 167 | norm = RefDirection.cross(Axis);
|
|---|
| 168 | }
|
|---|
| 169 |
|
|---|
| 170 | // const G4Point3D& tmp = pplace.GetSrfPoint();
|
|---|
| 171 | const G4Point3D tmp = pplace.GetLocation();
|
|---|
| 172 | */
|
|---|
| 173 |
|
|---|
| 174 | // L. Broglia
|
|---|
| 175 | // The direction of the normal is the axis of his location
|
|---|
| 176 | // Its sense depend on the orientation of the bounded curve
|
|---|
| 177 | const G4Point3D tmp = pplace.GetLocation();
|
|---|
| 178 | G4Vector3D norm;
|
|---|
| 179 | G4int sense = GetSameSense();
|
|---|
| 180 |
|
|---|
| 181 | if (sense)
|
|---|
| 182 | norm = pplace.GetAxis();
|
|---|
| 183 | else
|
|---|
| 184 | norm = - pplace.GetAxis();
|
|---|
| 185 |
|
|---|
| 186 | NormalX = new G4Ray(tmp, norm);
|
|---|
| 187 | NormalX->RayCheck();
|
|---|
| 188 | NormalX->CreatePlanes();
|
|---|
| 189 | }
|
|---|
| 190 |
|
|---|
| 191 |
|
|---|
| 192 | void G4FPlane::Project()
|
|---|
| 193 | {
|
|---|
| 194 | // Project
|
|---|
| 195 | // const G4Plane& Plane1 = NormalX->GetPlane(1);
|
|---|
| 196 | // const G4Plane& Plane2 = NormalX->GetPlane(2);
|
|---|
| 197 |
|
|---|
| 198 | // probably not necessary
|
|---|
| 199 | // projections of the boundary should be handled by the intersection
|
|---|
| 200 | // OuterBoundary->ProjectBoundaryTo2D(Plane1, Plane2, 0);
|
|---|
| 201 | }
|
|---|
| 202 |
|
|---|
| 203 |
|
|---|
| 204 | G4int G4FPlane::IsConvex() const
|
|---|
| 205 | {
|
|---|
| 206 | return -1;
|
|---|
| 207 | }
|
|---|
| 208 |
|
|---|
| 209 |
|
|---|
| 210 | G4int G4FPlane::Intersect(const G4Ray& rayref)
|
|---|
| 211 | {
|
|---|
| 212 | // This function count the number of intersections of a
|
|---|
| 213 | // bounded surface by a ray.
|
|---|
| 214 |
|
|---|
| 215 |
|
|---|
| 216 | // Find the intersection with the infinite plane
|
|---|
| 217 | Intersected =1;
|
|---|
| 218 |
|
|---|
| 219 | // s is solution, line is p + tq, n is G4Plane Normal, r is point on G4Plane
|
|---|
| 220 | // all parameters are pointers to arrays of three elements
|
|---|
| 221 |
|
|---|
| 222 | hitpoint = PINFINITY;
|
|---|
| 223 | register G4double a, b, t;
|
|---|
| 224 |
|
|---|
| 225 | register const G4Vector3D& RayDir = rayref.GetDir();
|
|---|
| 226 | register const G4Point3D& RayStart = rayref.GetStart();
|
|---|
| 227 |
|
|---|
| 228 | G4double dirx = RayDir.x();
|
|---|
| 229 | G4double diry = RayDir.y();
|
|---|
| 230 | G4double dirz = RayDir.z();
|
|---|
| 231 |
|
|---|
| 232 | G4Vector3D norm = (*NormalX).GetDir();
|
|---|
| 233 | G4Point3D srf_point = pplace.GetLocation();
|
|---|
| 234 |
|
|---|
| 235 | b = norm.x() * dirx + norm.y() * diry + norm.z() * dirz;
|
|---|
| 236 |
|
|---|
| 237 | if ( std::fabs(b) < perMillion )
|
|---|
| 238 | {
|
|---|
| 239 | // G4cout << "\nLine is parallel to G4Plane.No Hit.";
|
|---|
| 240 | }
|
|---|
| 241 | else
|
|---|
| 242 | {
|
|---|
| 243 | G4double startx = RayStart.x();
|
|---|
| 244 | G4double starty = RayStart.y();
|
|---|
| 245 | G4double startz = RayStart.z();
|
|---|
| 246 |
|
|---|
| 247 | a = norm.x() * (srf_point.x() - startx) +
|
|---|
| 248 | norm.y() * (srf_point.y() - starty) +
|
|---|
| 249 | norm.z() * (srf_point.z() - startz) ;
|
|---|
| 250 |
|
|---|
| 251 | t = a/b;
|
|---|
| 252 |
|
|---|
| 253 | // substitute t into line equation
|
|---|
| 254 | // to calculate final solution
|
|---|
| 255 | G4double solx,soly,solz;
|
|---|
| 256 | solx = startx + t * dirx;
|
|---|
| 257 | soly = starty + t * diry;
|
|---|
| 258 | solz = startz + t * dirz;
|
|---|
| 259 |
|
|---|
| 260 | // solve tolerance problem
|
|---|
| 261 | if( (t*dirx >= -kCarTolerance/2) && (t*dirx <= kCarTolerance/2) )
|
|---|
| 262 | solx = startx;
|
|---|
| 263 |
|
|---|
| 264 | if( (t*diry >= -kCarTolerance/2) && (t*diry <= kCarTolerance/2) )
|
|---|
| 265 | soly = starty;
|
|---|
| 266 |
|
|---|
| 267 | if( (t*dirz >= -kCarTolerance/2) && (t*dirz <= kCarTolerance/2) )
|
|---|
| 268 | solz = startz;
|
|---|
| 269 |
|
|---|
| 270 | G4bool xhit = (dirx < 0 && solx <= startx) || (dirx >= 0 && solx >= startx);
|
|---|
| 271 | G4bool yhit = (diry < 0 && soly <= starty) || (diry >= 0 && soly >= starty);
|
|---|
| 272 | G4bool zhit = (dirz < 0 && solz <= startz) || (dirz >= 0 && solz >= startz);
|
|---|
| 273 |
|
|---|
| 274 | if( xhit && yhit && zhit ) {
|
|---|
| 275 | hitpoint= G4Point3D(solx, soly, solz);
|
|---|
| 276 | }
|
|---|
| 277 | }
|
|---|
| 278 |
|
|---|
| 279 | // closest_hit is a public Point3D in G4Surface
|
|---|
| 280 | closest_hit = hitpoint;
|
|---|
| 281 |
|
|---|
| 282 | if(closest_hit.x() == kInfinity)
|
|---|
| 283 | {
|
|---|
| 284 | // no hit
|
|---|
| 285 | active=0;
|
|---|
| 286 | SetDistance(kInfinity);
|
|---|
| 287 | return 0;
|
|---|
| 288 | }
|
|---|
| 289 | else
|
|---|
| 290 | {
|
|---|
| 291 | // calculate the squared distance from the point to the intersection
|
|---|
| 292 | // and set it in the distance data member (all clients know they have
|
|---|
| 293 | // to take the sqrt)
|
|---|
| 294 | SetDistance( RayStart.distance2(closest_hit) );
|
|---|
| 295 |
|
|---|
| 296 | // now, we have to verify that the hit point founded
|
|---|
| 297 | // is included into the G4FPlane boundaries
|
|---|
| 298 |
|
|---|
| 299 | // project the hit to the xy plane,
|
|---|
| 300 | // with the same projection that took the boundary
|
|---|
| 301 | // into projectedBoundary
|
|---|
| 302 | G4Point3D projectedHit= pplace.GetToPlacementCoordinates() * closest_hit;
|
|---|
| 303 |
|
|---|
| 304 | // test ray from the hit on the xy plane
|
|---|
| 305 | G4Ray testRay( projectedHit, G4Vector3D(1, 0.01, 0) );
|
|---|
| 306 |
|
|---|
| 307 | // check if it intersects the boundary
|
|---|
| 308 | G4int nbinter = projectedBoundary->IntersectRay2D(testRay);
|
|---|
| 309 |
|
|---|
| 310 | // If this number is par, it`s signify that the projected point
|
|---|
| 311 | // is outside the projected surface, so the hit point is outside
|
|---|
| 312 | // the bounded surface
|
|---|
| 313 | if(nbinter&1)
|
|---|
| 314 | {
|
|---|
| 315 | // the intersection point is into the boundaries
|
|---|
| 316 | // check if the intersection point is on the surface
|
|---|
| 317 | if(distance <= kCarTolerance*0.5*kCarTolerance*0.5)
|
|---|
| 318 | {
|
|---|
| 319 | // the point is on the surface, set the distance to 0
|
|---|
| 320 | SetDistance(0);
|
|---|
| 321 | }
|
|---|
| 322 | else
|
|---|
| 323 | {
|
|---|
| 324 | // the point is outside the surface
|
|---|
| 325 | }
|
|---|
| 326 |
|
|---|
| 327 | return 1 ;
|
|---|
| 328 | }
|
|---|
| 329 | else
|
|---|
| 330 | {
|
|---|
| 331 | // the intersection point is out the boundaries
|
|---|
| 332 | // it is not a real intersection
|
|---|
| 333 | active=0;
|
|---|
| 334 | SetDistance(kInfinity);
|
|---|
| 335 | return 0;
|
|---|
| 336 | }
|
|---|
| 337 | }
|
|---|
| 338 | }
|
|---|
| 339 |
|
|---|
| 340 |
|
|---|
| 341 | G4double G4FPlane::ClosestDistanceToPoint(const G4Point3D& Pt)
|
|---|
| 342 | {
|
|---|
| 343 | // Calculates signed distance of point Pt to G4Plane Pl
|
|---|
| 344 | // Be careful, the equation of the plane is :
|
|---|
| 345 | // ax + by + cz = d
|
|---|
| 346 | G4double dist = Pt.x()*Pl.a + Pt.y()*Pl.b + Pt.z()*Pl.c - Pl.d;
|
|---|
| 347 |
|
|---|
| 348 | return dist;
|
|---|
| 349 | }
|
|---|
| 350 |
|
|---|
| 351 |
|
|---|
| 352 | void G4FPlane::InitBounded()
|
|---|
| 353 | {
|
|---|
| 354 | // L. Broglia
|
|---|
| 355 |
|
|---|
| 356 | projectedBoundary =
|
|---|
| 357 | surfaceBoundary.Project( pplace.GetToPlacementCoordinates() );
|
|---|
| 358 | }
|
|---|
| 359 |
|
|---|
| 360 | G4double G4FPlane::HowNear( const G4Vector3D& Pt ) const
|
|---|
| 361 | {
|
|---|
| 362 | G4double hownear = Pt.x()*Pl.a + Pt.y()*Pl.b + Pt.z()*Pl.c - Pl.d;
|
|---|
| 363 |
|
|---|
| 364 | return hownear;
|
|---|
| 365 | }
|
|---|