| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4Ray.cc,v 1.12 2008/07/08 10:00:58 gcosmo Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-04-beta-01 $
|
|---|
| 29 | //
|
|---|
| 30 | // ----------------------------------------------------------------------
|
|---|
| 31 | // GEANT 4 class source file
|
|---|
| 32 | //
|
|---|
| 33 | // G4Ray.cc
|
|---|
| 34 | //
|
|---|
| 35 | // ----------------------------------------------------------------------
|
|---|
| 36 |
|
|---|
| 37 | #include "G4Ray.hh"
|
|---|
| 38 | #include "G4PointRat.hh"
|
|---|
| 39 |
|
|---|
| 40 | G4Ray::G4Ray()
|
|---|
| 41 | {
|
|---|
| 42 | }
|
|---|
| 43 |
|
|---|
| 44 | G4Ray::G4Ray(const G4Point3D& start0, const G4Vector3D& dir0)
|
|---|
| 45 | {
|
|---|
| 46 | Init(start0, dir0);
|
|---|
| 47 | }
|
|---|
| 48 |
|
|---|
| 49 | G4Ray::~G4Ray()
|
|---|
| 50 | {
|
|---|
| 51 | }
|
|---|
| 52 |
|
|---|
| 53 |
|
|---|
| 54 | const G4Plane& G4Ray::GetPlane(G4int number_of_plane) const
|
|---|
| 55 | {
|
|---|
| 56 | if(number_of_plane==1)
|
|---|
| 57 | { return plane2; }
|
|---|
| 58 | else
|
|---|
| 59 | { return plane1; }
|
|---|
| 60 | }
|
|---|
| 61 |
|
|---|
| 62 |
|
|---|
| 63 | void G4Ray::CreatePlanes()
|
|---|
| 64 | {
|
|---|
| 65 | // Creates two orthogonal planes(plane1,plane2) the ray (rray)
|
|---|
| 66 | // situated in the intersection of the planes. The planes are
|
|---|
| 67 | // used to project the surface (nurb) in two dimensions.
|
|---|
| 68 |
|
|---|
| 69 | G4Vector3D RayDir = dir;
|
|---|
| 70 | G4Point3D RayOrigin = start;
|
|---|
| 71 |
|
|---|
| 72 | G4Point3D p1, p2, p3, p4;
|
|---|
| 73 | G4Vector3D dir1, dir2;
|
|---|
| 74 | G4Vector3D invdir = G4Vector3D( PINFINITY );
|
|---|
| 75 |
|
|---|
| 76 | if(!NearZero(RayDir.x(), SQRT_SMALL_FASTF))
|
|---|
| 77 | { invdir.setX(1.0 / RayDir.x()); }
|
|---|
| 78 |
|
|---|
| 79 | if(!NearZero(RayDir.y(), SQRT_SMALL_FASTF))
|
|---|
| 80 | { invdir.setY(1.0 / RayDir.y()); }
|
|---|
| 81 |
|
|---|
| 82 | if(!NearZero(RayDir.z(), SQRT_SMALL_FASTF))
|
|---|
| 83 | { invdir.setZ(1.0 / RayDir.z()); }
|
|---|
| 84 |
|
|---|
| 85 | MatVecOrtho(dir1, RayDir);
|
|---|
| 86 |
|
|---|
| 87 | Vcross( dir2, RayDir, dir1);
|
|---|
| 88 | Vmove(p1, RayOrigin);
|
|---|
| 89 | Vadd2(p2, RayOrigin, RayDir);
|
|---|
| 90 | Vadd2(p3, RayOrigin, dir1);
|
|---|
| 91 | Vadd2(p4, RayOrigin, dir2);
|
|---|
| 92 |
|
|---|
| 93 | CalcPlane3Pts( plane1, p1, p3, p2);
|
|---|
| 94 | CalcPlane3Pts( plane2, p1, p2, p4);
|
|---|
| 95 | }
|
|---|
| 96 |
|
|---|
| 97 |
|
|---|
| 98 | void G4Ray::MatVecOrtho(register G4Vector3D &out,
|
|---|
| 99 | register const G4Vector3D &in )
|
|---|
| 100 | {
|
|---|
| 101 | register G4double f;
|
|---|
| 102 | G4int i_Which;
|
|---|
| 103 |
|
|---|
| 104 | if( NearZero(in.x(), 0.0001)
|
|---|
| 105 | && NearZero(in.y(), 0.0001)
|
|---|
| 106 | && NearZero(in.z(), 0.0001) )
|
|---|
| 107 | {
|
|---|
| 108 | Vsetall( out, 0 );
|
|---|
| 109 | return;
|
|---|
| 110 | }
|
|---|
| 111 |
|
|---|
| 112 | // Find component closest to zero
|
|---|
| 113 | f = std::fabs(in.x());
|
|---|
| 114 | i_Which=0;
|
|---|
| 115 |
|
|---|
| 116 | if( std::fabs(in.y()) < f )
|
|---|
| 117 | {
|
|---|
| 118 | f = std::fabs(in.y());
|
|---|
| 119 | i_Which=1;
|
|---|
| 120 | }
|
|---|
| 121 |
|
|---|
| 122 | if( std::fabs(in.z()) < f )
|
|---|
| 123 | {
|
|---|
| 124 | i_Which=2;
|
|---|
| 125 | }
|
|---|
| 126 |
|
|---|
| 127 | if(!i_Which)
|
|---|
| 128 | {
|
|---|
| 129 | f = std::sqrt((in.y())*(in.y())+(in.z())*(in.z())); // hypot(in.y(),in.z())
|
|---|
| 130 | }
|
|---|
| 131 | else
|
|---|
| 132 | {
|
|---|
| 133 | if(i_Which==1)
|
|---|
| 134 | {
|
|---|
| 135 | f = std::sqrt((in.z())*(in.z())+(in.x())*(in.x())); // hypot(in.z(),in.x())
|
|---|
| 136 | }
|
|---|
| 137 | else
|
|---|
| 138 | {
|
|---|
| 139 | f = std::sqrt((in.x())*(in.x())+(in.y())*(in.y())); // hypot(in.x(),in.y())
|
|---|
| 140 | }
|
|---|
| 141 | }
|
|---|
| 142 | if( NearZero( f, SMALL ) )
|
|---|
| 143 | {
|
|---|
| 144 | Vsetall( out, 0 );
|
|---|
| 145 | return;
|
|---|
| 146 | }
|
|---|
| 147 |
|
|---|
| 148 | f = 1.0/f;
|
|---|
| 149 |
|
|---|
| 150 | if(!i_Which)
|
|---|
| 151 | {
|
|---|
| 152 | out.setX(0.0);
|
|---|
| 153 | out.setY(-in.z()*f);
|
|---|
| 154 | out.setZ( in.y()*f);
|
|---|
| 155 | }
|
|---|
| 156 | else
|
|---|
| 157 | {
|
|---|
| 158 | if(i_Which==1)
|
|---|
| 159 | {
|
|---|
| 160 | out.setY(0.0);
|
|---|
| 161 | out.setZ(-in.x()*f);
|
|---|
| 162 | out.setX( in.y()*f);
|
|---|
| 163 | }
|
|---|
| 164 | else
|
|---|
| 165 | {
|
|---|
| 166 | out.setZ(0.0);
|
|---|
| 167 | out.setX(-in.z()*f);
|
|---|
| 168 | out.setY( in.y()*f);
|
|---|
| 169 | }
|
|---|
| 170 | }
|
|---|
| 171 | }
|
|---|
| 172 |
|
|---|
| 173 |
|
|---|
| 174 | // CALC_PLANE_3PTS
|
|---|
| 175 | //
|
|---|
| 176 | // Find the equation of a G4Plane that contains three points.
|
|---|
| 177 | // Note that Normal vector created is expected to point out (see vmath.h),
|
|---|
| 178 | // so the vector from A to C had better be counter-clockwise
|
|---|
| 179 | // (about the point A) from the vector from A to B.
|
|---|
| 180 | // This follows the outward-pointing Normal convention, and the
|
|---|
| 181 | // right-hand rule for cross products.
|
|---|
| 182 | //
|
|---|
| 183 | /*
|
|---|
| 184 | C
|
|---|
| 185 | *
|
|---|
| 186 | |\
|
|---|
| 187 | | \
|
|---|
| 188 | ^ N | \
|
|---|
| 189 | | \ | \
|
|---|
| 190 | | \ | \
|
|---|
| 191 | |C-A \ | \
|
|---|
| 192 | | \ | \
|
|---|
| 193 | | \ | \
|
|---|
| 194 | \| \
|
|---|
| 195 | *---------*
|
|---|
| 196 | A B
|
|---|
| 197 | ----->
|
|---|
| 198 | B-A
|
|---|
| 199 | */
|
|---|
| 200 | // If the points are given in the order A B C (eg, *counter*-clockwise),
|
|---|
| 201 | // then the outward pointing surface Normal N = (B-A) x (C-A).
|
|---|
| 202 | //
|
|---|
| 203 | // Explicit Return -
|
|---|
| 204 | // 0 OK
|
|---|
| 205 | // -1 Failure. At least two of the points were not distinct,
|
|---|
| 206 | // or all three were colinear.
|
|---|
| 207 | //
|
|---|
| 208 | // Implicit Return -
|
|---|
| 209 | // G4Plane The G4Plane equation is stored here.
|
|---|
| 210 |
|
|---|
| 211 |
|
|---|
| 212 | G4int G4Ray::CalcPlane3Pts(G4Plane &plane1,
|
|---|
| 213 | const G4Point3D& a,
|
|---|
| 214 | const G4Point3D& b,
|
|---|
| 215 | const G4Point3D& c )
|
|---|
| 216 | {
|
|---|
| 217 | // Creates the two orthogonal planes which are needed in projecting the
|
|---|
| 218 | // surface into 2D.
|
|---|
| 219 |
|
|---|
| 220 | G4Vector3D B_A;
|
|---|
| 221 | G4Vector3D C_A;
|
|---|
| 222 | G4Vector3D C_B;
|
|---|
| 223 |
|
|---|
| 224 | register G4double mag;
|
|---|
| 225 |
|
|---|
| 226 | Vsub2( B_A, b, a );
|
|---|
| 227 | Vsub2( C_A, c, a );
|
|---|
| 228 | Vsub2( C_B, c, b );
|
|---|
| 229 |
|
|---|
| 230 | Vcross( plane1, B_A, C_A );
|
|---|
| 231 |
|
|---|
| 232 | // Ensure unit length Normal
|
|---|
| 233 | mag = Magnitude(plane1);
|
|---|
| 234 | if( mag <= SQRT_SMALL_FASTF )
|
|---|
| 235 | {
|
|---|
| 236 | return(-1);// FAIL
|
|---|
| 237 | }
|
|---|
| 238 |
|
|---|
| 239 | mag = 1/mag;
|
|---|
| 240 |
|
|---|
| 241 | G4Plane pl2(plane1);
|
|---|
| 242 | Vscale( plane1, pl2, mag );
|
|---|
| 243 |
|
|---|
| 244 | // Find distance from the origin to the G4Plane
|
|---|
| 245 | plane1.d = Vdot( plane1, a );
|
|---|
| 246 |
|
|---|
| 247 | return(0); //ok
|
|---|
| 248 | }
|
|---|
| 249 |
|
|---|
| 250 |
|
|---|
| 251 | void G4Ray::RayCheck()
|
|---|
| 252 | {
|
|---|
| 253 | // Check that the ray has a G4Vector3D...
|
|---|
| 254 | if (dir==G4Vector3D(0, 0, 0))
|
|---|
| 255 | {
|
|---|
| 256 | G4Exception("G4Ray::RayCheck()", "InvalidInput", FatalException,
|
|---|
| 257 | "Invalid zero direction given !");
|
|---|
| 258 | }
|
|---|
| 259 |
|
|---|
| 260 | // Make sure that the vector is unit length
|
|---|
| 261 | dir= dir.unit();
|
|---|
| 262 | r_min = 0;
|
|---|
| 263 | r_max = 0;
|
|---|
| 264 | }
|
|---|
| 265 |
|
|---|
| 266 |
|
|---|
| 267 | void G4Ray::Vcross(G4Plane &a, const G4Vector3D &b, const G4Vector3D &c)
|
|---|
| 268 | {
|
|---|
| 269 | a.a = b.y() * c.z() - b.z() * c.y() ;
|
|---|
| 270 | a.b = b.z() * c.x() - b.x() * c.z() ;
|
|---|
| 271 | a.c = b.x() * c.y() - b.y() * c.x() ;
|
|---|
| 272 | }
|
|---|
| 273 |
|
|---|
| 274 |
|
|---|
| 275 | void G4Ray::Vcross(G4Vector3D &a, const G4Vector3D &b, const G4Vector3D &c)
|
|---|
| 276 | {
|
|---|
| 277 | a.setX(b.y() * c.z() - b.z() * c.y()) ;
|
|---|
| 278 | a.setY(b.z() * c.x() - b.x() * c.z()) ;
|
|---|
| 279 | a.setZ(b.x() * c.y() - b.y() * c.x()) ;
|
|---|
| 280 | }
|
|---|
| 281 |
|
|---|
| 282 |
|
|---|
| 283 | void G4Ray::Vmove(G4Point3D &a, const G4Point3D &b)
|
|---|
| 284 | {
|
|---|
| 285 | a.setX(b.x());
|
|---|
| 286 | a.setY(b.y());
|
|---|
| 287 | a.setZ(b.z());
|
|---|
| 288 | }
|
|---|
| 289 |
|
|---|
| 290 |
|
|---|
| 291 | void G4Ray::Vadd2(G4Point3D &a, const G4Point3D &b, const G4Vector3D &c)
|
|---|
| 292 | {
|
|---|
| 293 | a.setX(b.x() + c.x()) ;
|
|---|
| 294 | a.setY(b.y() + c.y()) ;
|
|---|
| 295 | a.setZ(b.z() + c.z()) ;
|
|---|
| 296 | }
|
|---|
| 297 |
|
|---|
| 298 |
|
|---|
| 299 | void G4Ray::Vsub2(G4Vector3D &a, const G4Point3D &b, const G4Point3D &c)
|
|---|
| 300 | {
|
|---|
| 301 | a.setX(b.x() - c.x());
|
|---|
| 302 | a.setY(b.y() - c.y());
|
|---|
| 303 | a.setZ(b.z() - c.z());
|
|---|
| 304 | }
|
|---|
| 305 |
|
|---|
| 306 |
|
|---|
| 307 | void G4Ray::Vscale(G4Plane& a, const G4Plane& b, G4double c)
|
|---|
| 308 | {
|
|---|
| 309 | a.a = b.a * c;
|
|---|
| 310 | a.b = b.b * c;
|
|---|
| 311 | a.c = b.c * c;
|
|---|
| 312 | }
|
|---|
| 313 |
|
|---|
| 314 |
|
|---|
| 315 | G4double G4Ray::Vdot(const G4Plane &a, const G4Point3D &b)
|
|---|
| 316 | {
|
|---|
| 317 | return (a.a * b.x() +
|
|---|
| 318 | a.b * b.y() +
|
|---|
| 319 | a.c * b.z());
|
|---|
| 320 | }
|
|---|
| 321 |
|
|---|
| 322 |
|
|---|
| 323 | G4double G4Ray::Magsq(const G4Plane &a)
|
|---|
| 324 | {
|
|---|
| 325 | return ( a.a * a.a + a.b * a.b + a.c *a.c );
|
|---|
| 326 | }
|
|---|
| 327 |
|
|---|
| 328 |
|
|---|
| 329 | G4double G4Ray::Magnitude(const G4Plane &a)
|
|---|
| 330 | {
|
|---|
| 331 | return (std::sqrt( Magsq( a )) );
|
|---|
| 332 | }
|
|---|