| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4SphericalSurface.cc,v 1.10 2006/06/29 18:42:41 gunter Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-03 $
|
|---|
| 29 | //
|
|---|
| 30 | // ----------------------------------------------------------------------
|
|---|
| 31 | // GEANT 4 class source file
|
|---|
| 32 | //
|
|---|
| 33 | // G4SphericalSurface.cc
|
|---|
| 34 | //
|
|---|
| 35 | // ----------------------------------------------------------------------
|
|---|
| 36 |
|
|---|
| 37 | #include "G4SphericalSurface.hh"
|
|---|
| 38 |
|
|---|
| 39 |
|
|---|
| 40 | /*
|
|---|
| 41 | G4SphericalSurface::G4SphericalSurface() : G4Surface()
|
|---|
| 42 | { // default constructor
|
|---|
| 43 | // default x_axis is ( 1.0, 0.0, 0.0 ), z_axis is ( 0.0, 0.0, 1.0 ),
|
|---|
| 44 | // default radius is 1.0
|
|---|
| 45 | // default phi_1 is 0, phi_2 is 2*PI
|
|---|
| 46 | // default theta_1 is 0, theta_2 is PI
|
|---|
| 47 | x_axis = G4Vector3D( 1.0, 0.0, 0.0 );
|
|---|
| 48 | z_axis = G4Vector3D( 0.0, 0.0, 1.0 );
|
|---|
| 49 | radius = 1.0;
|
|---|
| 50 | phi_1 = 0.0;
|
|---|
| 51 | phi_2 = 2*pi;
|
|---|
| 52 | theta_1 = 0.0;
|
|---|
| 53 | theta_2 = pi;
|
|---|
| 54 | // OuterBoundary = new G4BREPPolyline();
|
|---|
| 55 | }
|
|---|
| 56 | */
|
|---|
| 57 |
|
|---|
| 58 |
|
|---|
| 59 | G4SphericalSurface::G4SphericalSurface( const G4Vector3D&,
|
|---|
| 60 | const G4Vector3D& xhat,
|
|---|
| 61 | const G4Vector3D& zhat,
|
|---|
| 62 | G4double r,
|
|---|
| 63 | G4double ph1, G4double ph2,
|
|---|
| 64 | G4double th1, G4double th2)
|
|---|
| 65 | //: G4Surface( o )
|
|---|
| 66 | {
|
|---|
| 67 | // Require both x_axis and z_axis to be unit vectors
|
|---|
| 68 | G4double xhatmag = xhat.mag();
|
|---|
| 69 | if ( xhatmag != 0.0 )
|
|---|
| 70 | x_axis = xhat * (1/ xhatmag); // this makes the x_axis a unit vector
|
|---|
| 71 | else
|
|---|
| 72 | {
|
|---|
| 73 | G4cerr << "Error in G4SphericalSurface::G4SphericalSurface--"
|
|---|
| 74 | <<"x_axis has zero length\n"
|
|---|
| 75 | << "\tDefault x_axis of (1, 0, 0) is used.\n";
|
|---|
| 76 |
|
|---|
| 77 | x_axis = G4Vector3D( 1.0, 0.0, 0.0 );
|
|---|
| 78 | }
|
|---|
| 79 |
|
|---|
| 80 | G4double zhatmag = zhat.mag();
|
|---|
| 81 |
|
|---|
| 82 | if (zhatmag != 0.0)
|
|---|
| 83 | z_axis = zhat *(1/ zhatmag); // this makes the z_axis a unit vector
|
|---|
| 84 | else
|
|---|
| 85 | {
|
|---|
| 86 | G4cerr << "Error in G4SphericalSurface::G4SphericalSurface--"
|
|---|
| 87 | <<"z_axis has zero length\n"
|
|---|
| 88 | << "\tDefault z_axis of (0, 0, 1) is used. \n";
|
|---|
| 89 |
|
|---|
| 90 | z_axis = G4Vector3D( 0.0, 0.0, 1.0 );
|
|---|
| 91 | }
|
|---|
| 92 |
|
|---|
| 93 | // Require radius to be non-negative
|
|---|
| 94 | if ( r >= 0.0 )
|
|---|
| 95 | radius = r;
|
|---|
| 96 | else
|
|---|
| 97 | {
|
|---|
| 98 | G4cerr << "Error in G4SphericalSurface::G4SphericalSurface"
|
|---|
| 99 | << "--radius cannot be less than zero.\n"
|
|---|
| 100 | << "\tDefault radius of 1.0 is used.\n";
|
|---|
| 101 |
|
|---|
| 102 | radius = 1.0;
|
|---|
| 103 | }
|
|---|
| 104 |
|
|---|
| 105 | // Require phi_1 in the range: 0 <= phi_1 < 2*PI
|
|---|
| 106 | // and phi_2 in the range: phi_1 < phi_2 <= phi_1 + 2*PI
|
|---|
| 107 | if ( ( ph1 >= 0.0 ) && ( ph1 < 2*pi ) )
|
|---|
| 108 | phi_1 = ph1;
|
|---|
| 109 | else
|
|---|
| 110 | {
|
|---|
| 111 | G4cerr << "Error in G4SphericalSurface::G4SphericalSurface"
|
|---|
| 112 | << "--lower azimuthal limit is out of range\n"
|
|---|
| 113 | << "\tDefault angle of 0 is used.\n";
|
|---|
| 114 |
|
|---|
| 115 | phi_1 = 0.0;
|
|---|
| 116 | }
|
|---|
| 117 |
|
|---|
| 118 | if ( ( ph2 > phi_1 ) && ( ph2 <= ( phi_1 + twopi ) ) )
|
|---|
| 119 | phi_2 = ph2;
|
|---|
| 120 | else
|
|---|
| 121 | {
|
|---|
| 122 | G4cerr << "Error in G4SphericalSurface::G4SphericalSurface"
|
|---|
| 123 | << "--upper azimuthal limit is out of range\n"
|
|---|
| 124 | << "\tDefault angle of 2*PI is used.\n";
|
|---|
| 125 |
|
|---|
| 126 | phi_2 = twopi;
|
|---|
| 127 | }
|
|---|
| 128 |
|
|---|
| 129 | // Require theta_1 in the range: 0 <= theta_1 < PI
|
|---|
| 130 | // and theta-2 in the range: theta_1 < theta_2 <= theta_1 + PI
|
|---|
| 131 | if ( ( th1 >= 0.0 ) && ( th1 < pi ) )
|
|---|
| 132 | theta_1 = th1;
|
|---|
| 133 | else
|
|---|
| 134 | {
|
|---|
| 135 | G4cerr << "Error in G4SphericalSurface::G4SphericalSurface"
|
|---|
| 136 | << "--lower polar limit is out of range\n"
|
|---|
| 137 | << "\tDefault angle of 0 is used.\n";
|
|---|
| 138 |
|
|---|
| 139 | theta_1 = 0.0;
|
|---|
| 140 | }
|
|---|
| 141 |
|
|---|
| 142 | if ( ( th2 > theta_1 ) && ( th2 <= ( theta_1 + pi ) ) )
|
|---|
| 143 | theta_2 =th2;
|
|---|
| 144 | else
|
|---|
| 145 | {
|
|---|
| 146 | G4cerr << "Error in G4SphericalSurface::G4SphericalSurface"
|
|---|
| 147 | << "--upper polar limit is out of range\n"
|
|---|
| 148 | << "\tDefault angle of PI is used.\n";
|
|---|
| 149 |
|
|---|
| 150 | theta_2 = pi;
|
|---|
| 151 | }
|
|---|
| 152 | }
|
|---|
| 153 |
|
|---|
| 154 |
|
|---|
| 155 | G4SphericalSurface::~G4SphericalSurface()
|
|---|
| 156 | {
|
|---|
| 157 | }
|
|---|
| 158 |
|
|---|
| 159 | /*
|
|---|
| 160 | G4SphericalSurface::G4SphericalSurface( const G4SphericalSurface& s )
|
|---|
| 161 | : G4Surface( s.origin )
|
|---|
| 162 | { x_axis = s.x_axis;
|
|---|
| 163 | z_axis = s.z_axis;
|
|---|
| 164 | radius = s.radius;
|
|---|
| 165 | phi_1 = s.phi_1;
|
|---|
| 166 | phi_2 = s.phi_2;
|
|---|
| 167 | theta_1 = s.theta_1;
|
|---|
| 168 | theta_2 = s.theta_2;
|
|---|
| 169 | }
|
|---|
| 170 | */
|
|---|
| 171 |
|
|---|
| 172 | const char* G4SphericalSurface::NameOf() const
|
|---|
| 173 | {
|
|---|
| 174 | return "G4SphericalSurface";
|
|---|
| 175 | }
|
|---|
| 176 |
|
|---|
| 177 | void G4SphericalSurface::PrintOn( std::ostream& os ) const
|
|---|
| 178 | {
|
|---|
| 179 | // printing function using C++ std::ostream class
|
|---|
| 180 | os << "G4SphericalSurface surface with origin: " << origin << "\t"
|
|---|
| 181 | << "radius: " << radius << "\n"
|
|---|
| 182 | << "\t local x_axis: " << x_axis
|
|---|
| 183 | << "\t local z_axis: " << z_axis << "\n"
|
|---|
| 184 | << "\t lower azimuthal limit: " << phi_1 << " radians\n"
|
|---|
| 185 | << "\t upper azimuthal limit: " << phi_2 << " radians\n"
|
|---|
| 186 | << "\t lower polar limit : " << theta_1 << " radians\n"
|
|---|
| 187 | << "\t upper polar limit : " << theta_2 << " radians\n";
|
|---|
| 188 | }
|
|---|
| 189 |
|
|---|
| 190 |
|
|---|
| 191 | G4double G4SphericalSurface::HowNear( const G4Vector3D& x ) const
|
|---|
| 192 | {
|
|---|
| 193 | // Distance from the point x to the G4SphericalSurface.
|
|---|
| 194 | // The distance will be positive if the point is Inside the
|
|---|
| 195 | // G4SphericalSurface, negative if the point is outside.
|
|---|
| 196 | G4Vector3D d = G4Vector3D( x - origin );
|
|---|
| 197 | G4double rad = d.mag();
|
|---|
| 198 | return (radius - rad);
|
|---|
| 199 | }
|
|---|
| 200 |
|
|---|
| 201 |
|
|---|
| 202 | /*
|
|---|
| 203 | G4double G4SphericalSurface::distanceAlongRay( G4int which_way,
|
|---|
| 204 | const G4Ray* ry,
|
|---|
| 205 | G4Vector3D& p ) const
|
|---|
| 206 | { // Distance along a Ray (straight line with G4Vector3D) to leave or enter
|
|---|
| 207 | // a G4SphericalSurface. The input variable which_way should be set to +1 to
|
|---|
| 208 | // indicate leaving a G4SphericalSurface, -1 to indicate entering the surface.
|
|---|
| 209 | // p is the point of intersection of the Ray with the G4SphericalSurface.
|
|---|
| 210 | // If the G4Vector3D of the Ray is opposite to that of the Normal to
|
|---|
| 211 | // the G4SphericalSurface at the intersection point, it will not leave the
|
|---|
| 212 | // G4SphericalSurface.
|
|---|
| 213 | // Similarly, if the G4Vector3D of the Ray is along that of the Normal
|
|---|
| 214 | // to the G4SphericalSurface at the intersection point, it will not enter the
|
|---|
| 215 | // G4SphericalSurface.
|
|---|
| 216 | // This method is called by all finite shapes sub-classed to G4SphericalSurface.
|
|---|
| 217 | // Use the virtual function table to check if the intersection point
|
|---|
| 218 | // is within the boundary of the finite shape.
|
|---|
| 219 | // A negative result means no intersection.
|
|---|
| 220 | // If no valid intersection point is found, set the distance
|
|---|
| 221 | // and intersection point to large numbers.
|
|---|
| 222 | G4double Dist = FLT_MAXX;
|
|---|
| 223 | G4Vector3D lv ( FLT_MAXX, FLT_MAXX, FLT_MAXX );
|
|---|
| 224 | p = lv;
|
|---|
| 225 | // Origin and G4Vector3D unit vector of Ray.
|
|---|
| 226 | G4Vector3D x = ry->Position( 0.0 );
|
|---|
| 227 | G4Vector3D dhat = ry->Direction( 0.0 );
|
|---|
| 228 | G4int isoln = 0, maxsoln = 2;
|
|---|
| 229 | // array of solutions in distance along the Ray
|
|---|
| 230 | // G4double s[2] = { -1.0, -1.0 };
|
|---|
| 231 | G4double s[2];s[0] = -1.0; s[1]= -1.0 ;
|
|---|
| 232 | // calculate the two solutions (quadratic equation)
|
|---|
| 233 | G4Vector3D d = x - GetOrigin();
|
|---|
| 234 | G4double radius = GetRadius();
|
|---|
| 235 | // quit with no intersection if the radius of the G4SphericalSurface is zero
|
|---|
| 236 | if ( radius <= 0.0 )
|
|---|
| 237 | return Dist;
|
|---|
| 238 | G4double dsq = d * d;
|
|---|
| 239 | G4double rsq = radius * radius;
|
|---|
| 240 | G4double b = d * dhat;
|
|---|
| 241 | G4double c = dsq - rsq;
|
|---|
| 242 | G4double radical = b * b - c;
|
|---|
| 243 | // quit with no intersection if the radical is negative
|
|---|
| 244 | if ( radical < 0.0 )
|
|---|
| 245 | return Dist;
|
|---|
| 246 | G4double root = std::sqrt( radical );
|
|---|
| 247 | s[0] = -b + root;
|
|---|
| 248 | s[1] = -b - root;
|
|---|
| 249 | // order the possible solutions by increasing distance along the Ray
|
|---|
| 250 | // (G4Sorting routines are in support/G4Sort.h)
|
|---|
| 251 | G4Sort_double( s, isoln, maxsoln-1 );
|
|---|
| 252 | // now loop over each positive solution, keeping the first one (smallest
|
|---|
| 253 | // distance along the Ray) which is within the boundary of the sub-shape
|
|---|
| 254 | // and which also has the correct G4Vector3D with respect to the Normal to
|
|---|
| 255 | // the G4SphericalSurface at the intersection point
|
|---|
| 256 | for ( isoln = 0; isoln < maxsoln; isoln++ ) {
|
|---|
| 257 | if ( s[isoln] >= 0.0 ) {
|
|---|
| 258 | if ( s[isoln] >= FLT_MAXX ) // quit if too large
|
|---|
| 259 | return Dist;
|
|---|
| 260 | Dist = s[isoln];
|
|---|
| 261 | p = ry->Position( Dist );
|
|---|
| 262 | if ( ( ( dhat * Normal( p ) * which_way ) >= 0.0 )
|
|---|
| 263 | && ( WithinBoundary( p ) == 1 ) )
|
|---|
| 264 | return Dist;
|
|---|
| 265 | }
|
|---|
| 266 | }
|
|---|
| 267 | // get here only if there was no solution within the boundary, Reset
|
|---|
| 268 | // distance and intersection point to large numbers
|
|---|
| 269 | p = lv;
|
|---|
| 270 | return FLT_MAXX;
|
|---|
| 271 | }
|
|---|
| 272 | */
|
|---|
| 273 |
|
|---|
| 274 |
|
|---|
| 275 | void G4SphericalSurface::CalcBBox()
|
|---|
| 276 | {
|
|---|
| 277 | G4double x_min = origin.x() - radius;
|
|---|
| 278 | G4double y_min = origin.y() - radius;
|
|---|
| 279 | G4double z_min = origin.z() - radius;
|
|---|
| 280 | G4double x_max = origin.x() + radius;
|
|---|
| 281 | G4double y_max = origin.y() + radius;
|
|---|
| 282 | G4double z_max = origin.z() + radius;
|
|---|
| 283 |
|
|---|
| 284 | G4Point3D Min(x_min, y_min, z_min);
|
|---|
| 285 | G4Point3D Max(x_max, y_max, z_max);
|
|---|
| 286 | bbox = new G4BoundingBox3D( Min, Max);
|
|---|
| 287 | }
|
|---|
| 288 |
|
|---|
| 289 |
|
|---|
| 290 | G4int G4SphericalSurface::Intersect( const G4Ray& ry )
|
|---|
| 291 | {
|
|---|
| 292 | // Distance along a Ray (straight line with G4Vector3D) to leave or enter
|
|---|
| 293 | // a G4SphericalSurface. The input variable which_way should be set to +1
|
|---|
| 294 | // to indicate leaving a G4SphericalSurface, -1 to indicate entering a
|
|---|
| 295 | // G4SphericalSurface.
|
|---|
| 296 | // p is the point of intersection of the Ray with the G4SphericalSurface.
|
|---|
| 297 | // If the G4Vector3D of the Ray is opposite to that of the Normal to
|
|---|
| 298 | // the G4SphericalSurface at the intersection point, it will not leave the
|
|---|
| 299 | // G4SphericalSurface.
|
|---|
| 300 | // Similarly, if the G4Vector3D of the Ray is along that of the Normal
|
|---|
| 301 | // to the G4SphericalSurface at the intersection point, it will not enter
|
|---|
| 302 | // the G4SphericalSurface.
|
|---|
| 303 | // This method is called by all finite shapes sub-classed to
|
|---|
| 304 | // G4SphericalSurface.
|
|---|
| 305 | // Use the virtual function table to check if the intersection point
|
|---|
| 306 | // is within the boundary of the finite shape.
|
|---|
| 307 | // A negative result means no intersection.
|
|---|
| 308 | // If no valid intersection point is found, set the distance
|
|---|
| 309 | // and intersection point to large numbers.
|
|---|
| 310 |
|
|---|
| 311 | G4int which_way = (G4int)HowNear(ry.GetStart());
|
|---|
| 312 | //Originally a parameter.Read explanation above.
|
|---|
| 313 |
|
|---|
| 314 | if(!which_way)which_way =-1;
|
|---|
| 315 | distance = FLT_MAXX;
|
|---|
| 316 |
|
|---|
| 317 | G4Vector3D lv ( FLT_MAXX, FLT_MAXX, FLT_MAXX );
|
|---|
| 318 |
|
|---|
| 319 | // p = lv;
|
|---|
| 320 | closest_hit = lv;
|
|---|
| 321 |
|
|---|
| 322 | // Origin and G4Vector3D unit vector of Ray.
|
|---|
| 323 | // G4Vector3D x = ry->position( 0.0 );
|
|---|
| 324 | G4Vector3D x= G4Vector3D( ry.GetStart() );
|
|---|
| 325 |
|
|---|
| 326 | // G4Vector3D dhat = ry->direction( 0.0 );
|
|---|
| 327 | G4Vector3D dhat = ry.GetDir();
|
|---|
| 328 | G4int isoln = 0, maxsoln = 2;
|
|---|
| 329 |
|
|---|
| 330 | // array of solutions in distance along the Ray
|
|---|
| 331 | G4double s[2];
|
|---|
| 332 | s[0] = -1.0 ;
|
|---|
| 333 | s[1] = -1.0 ;
|
|---|
| 334 |
|
|---|
| 335 | // calculate the two solutions (quadratic equation)
|
|---|
| 336 | G4Vector3D d = G4Vector3D( x - GetOrigin() );
|
|---|
| 337 | G4double r = GetRadius();
|
|---|
| 338 |
|
|---|
| 339 | // quit with no intersection if the radius of the G4SphericalSurface is zero
|
|---|
| 340 | if ( r <= 0.0 )
|
|---|
| 341 | return 0;
|
|---|
| 342 |
|
|---|
| 343 | G4double dsq = d * d;
|
|---|
| 344 | G4double rsq = r * r;
|
|---|
| 345 | G4double b = d * dhat;
|
|---|
| 346 | G4double c = dsq - rsq;
|
|---|
| 347 | G4double radical = b * b - c;
|
|---|
| 348 |
|
|---|
| 349 | // quit with no intersection if the radical is negative
|
|---|
| 350 | if ( radical < 0.0 )
|
|---|
| 351 | return 0;
|
|---|
| 352 |
|
|---|
| 353 | G4double root = std::sqrt( radical );
|
|---|
| 354 | s[0] = -b + root;
|
|---|
| 355 | s[1] = -b - root;
|
|---|
| 356 |
|
|---|
| 357 | // order the possible solutions by increasing distance along the Ray
|
|---|
| 358 | // (G4Sorting routines are in support/G4Sort.h)
|
|---|
| 359 | // G4Sort_double( s, isoln, maxsoln-1 );
|
|---|
| 360 | if(s[0] > s[1])
|
|---|
| 361 | {
|
|---|
| 362 | G4double tmp =s[0];
|
|---|
| 363 | s[0] = s[1];
|
|---|
| 364 | s[1] = tmp;
|
|---|
| 365 | }
|
|---|
| 366 |
|
|---|
| 367 | // now loop over each positive solution, keeping the first one (smallest
|
|---|
| 368 | // distance along the Ray) which is within the boundary of the sub-shape
|
|---|
| 369 | // and which also has the correct G4Vector3D with respect to the Normal to
|
|---|
| 370 | // the G4SphericalSurface at the intersection point
|
|---|
| 371 | for ( isoln = 0; isoln < maxsoln; isoln++ )
|
|---|
| 372 | {
|
|---|
| 373 | if ( s[isoln] >= kCarTolerance*0.5 )
|
|---|
| 374 | {
|
|---|
| 375 | if ( s[isoln] >= FLT_MAXX ) // quit if too large
|
|---|
| 376 | return 0;
|
|---|
| 377 |
|
|---|
| 378 | distance = s[isoln];
|
|---|
| 379 | closest_hit = ry.GetPoint( distance );
|
|---|
| 380 | if ( ( ( dhat * Normal( closest_hit ) * which_way ) >= 0.0 ) &&
|
|---|
| 381 | ( WithinBoundary( closest_hit ) == 1 ) )
|
|---|
| 382 | {
|
|---|
| 383 | distance = distance*distance;
|
|---|
| 384 | return 1;
|
|---|
| 385 | }
|
|---|
| 386 | }
|
|---|
| 387 | }
|
|---|
| 388 |
|
|---|
| 389 | // get here only if there was no solution within the boundary, Reset
|
|---|
| 390 | // distance and intersection point to large numbers
|
|---|
| 391 | // p = lv;
|
|---|
| 392 | // return FLT_MAXX;
|
|---|
| 393 | distance = FLT_MAXX;
|
|---|
| 394 | closest_hit = lv;
|
|---|
| 395 | return 0;
|
|---|
| 396 | }
|
|---|
| 397 |
|
|---|
| 398 |
|
|---|
| 399 | /*
|
|---|
| 400 | G4double G4SphericalSurface::distanceAlongHelix( G4int which_way,
|
|---|
| 401 | const Helix* hx,
|
|---|
| 402 | G4Vector3D& p ) const
|
|---|
| 403 | { // Distance along a Helix to leave or enter a G4SphericalSurface.
|
|---|
| 404 | // The input variable which_way should be set to +1 to
|
|---|
| 405 | // indicate leaving a G4SphericalSurface, -1 to indicate entering a G4SphericalSurface.
|
|---|
| 406 | // p is the point of intersection of the Helix with the G4SphericalSurface.
|
|---|
| 407 | // If the G4Vector3D of the Helix is opposite to that of the Normal to
|
|---|
| 408 | // the G4SphericalSurface at the intersection point, it will not leave the
|
|---|
| 409 | // G4SphericalSurface.
|
|---|
| 410 | // Similarly, if the G4Vector3D of the Helix is along that of the Normal
|
|---|
| 411 | // to the G4SphericalSurface at the intersection point, it will not enter the
|
|---|
| 412 | // G4SphericalSurface.
|
|---|
| 413 | // This method is called by all finite shapes sub-classed to G4SphericalSurface.
|
|---|
| 414 | // Use the virtual function table to check if the intersection point
|
|---|
| 415 | // is within the boundary of the finite shape.
|
|---|
| 416 | // If no valid intersection point is found, set the distance
|
|---|
| 417 | // and intersection point to large numbers.
|
|---|
| 418 | // Possible negative distance solutions are discarded.
|
|---|
| 419 | G4double Dist = FLT_MAXX;
|
|---|
| 420 | G4Vector3D lv ( FLT_MAXX, FLT_MAXX, FLT_MAXX );
|
|---|
| 421 | p = lv;
|
|---|
| 422 | G4int isoln = 0, maxsoln = 4;
|
|---|
| 423 | // Array of solutions in turning angle
|
|---|
| 424 | // G4double s[4] = { -1.0, -1.0, -1.0, -1.0 };
|
|---|
| 425 | G4double s[4];s[0] = -1.0; s[1]= -1.0 ;s[2] = -1.0; s[3]= -1.0 ;
|
|---|
| 426 |
|
|---|
| 427 | // Helix parameters
|
|---|
| 428 | G4double rh = hx->GetRadius(); // radius of Helix
|
|---|
| 429 | G4Vector3D oh = hx->position( 0.0 ); // origin of Helix
|
|---|
| 430 | G4Vector3D dh = hx->direction( 0.0 ); // initial G4Vector3D of Helix
|
|---|
| 431 | G4Vector3D prp = hx->getPerp(); // perpendicular vector
|
|---|
| 432 | G4double prpmag = prp.mag();
|
|---|
| 433 | G4double rhp = rh / prpmag;
|
|---|
| 434 | // G4SphericalSurface parameters
|
|---|
| 435 | G4double rs = GetRadius(); // radius of G4SphericalSurface
|
|---|
| 436 | if ( rs == 0.0 ) // quit if zero radius
|
|---|
| 437 | return Dist;
|
|---|
| 438 | G4Vector3D os = GetOrigin(); // origin of G4SphericalSurface
|
|---|
| 439 | //
|
|---|
| 440 | // Calculate quantities of use later on
|
|---|
| 441 | G4Vector3D alpha = rhp * prp;
|
|---|
| 442 | G4Vector3D beta = rhp * dh;
|
|---|
| 443 | G4Vector3D gamma = oh - os;
|
|---|
| 444 | //
|
|---|
| 445 | // Only consider approximate solutions to quadratic order in the turning
|
|---|
| 446 | // angle along the Helix
|
|---|
| 447 | G4double A = beta * beta + gamma * alpha;
|
|---|
| 448 | G4double B = 2.0 * gamma * beta;
|
|---|
| 449 | G4double C = gamma * gamma - rs * rs;
|
|---|
| 450 | // Case if quadratic term is zero
|
|---|
| 451 | if ( std::fabs( A ) < FLT_EPSILO ) {
|
|---|
| 452 | if ( B == 0.0 ) // no intersection, quit
|
|---|
| 453 | return Dist;
|
|---|
| 454 | else // B != 0
|
|---|
| 455 | s[0] = -C / B;
|
|---|
| 456 | }
|
|---|
| 457 | // General quadratic solution, A != 0
|
|---|
| 458 | else {
|
|---|
| 459 | G4double radical = B * B - 4.0 * A * C;
|
|---|
| 460 | if ( radical < 0.0 ) // no intersection, quit
|
|---|
| 461 | return Dist;
|
|---|
| 462 | G4double root = std::sqrt( radical );
|
|---|
| 463 | s[0] = ( -B + root ) / ( 2.0 * A );
|
|---|
| 464 | s[1] = ( -B - root ) / ( 2.0 * A );
|
|---|
| 465 | if ( rh < 0.0 ) {
|
|---|
| 466 | s[0] = -s[0];
|
|---|
| 467 | s[1] = -s[1];
|
|---|
| 468 | }
|
|---|
| 469 | s[2] = s[0] + twopi;
|
|---|
| 470 | s[3] = s[1] + twopi;
|
|---|
| 471 | }
|
|---|
| 472 | //
|
|---|
| 473 | // Order the possible solutions by increasing turning angle
|
|---|
| 474 | // (G4Sorting routines are in support/G4Sort.h).
|
|---|
| 475 | G4Sort_double( s, isoln, maxsoln-1 );
|
|---|
| 476 | //
|
|---|
| 477 | // Now loop over each positive solution, keeping the first one (smallest
|
|---|
| 478 | // distance along the Helix) which is within the boundary of the sub-shape.
|
|---|
| 479 | for ( isoln = 0; isoln < maxsoln; isoln++ ) {
|
|---|
| 480 | if ( s[isoln] >= 0.0 ) {
|
|---|
| 481 | // Calculate distance along Helix and position and G4Vector3D vectors.
|
|---|
| 482 | Dist = s[isoln] * std::fabs( rhp );
|
|---|
| 483 | p = hx->position( Dist );
|
|---|
| 484 | G4Vector3D d = hx->direction( Dist );
|
|---|
| 485 | // Now do approximation to get remaining distance to correct this solution
|
|---|
| 486 | // iterate it until the accuracy is below the user-set surface precision.
|
|---|
| 487 | G4double delta = 0.;
|
|---|
| 488 | G4double delta0 = FLT_MAXX;
|
|---|
| 489 | G4int dummy = 1;
|
|---|
| 490 | G4int iter = 0;
|
|---|
| 491 | G4int in0 = Inside( hx->position ( 0.0 ) );
|
|---|
| 492 | G4int in1 = Inside( p );
|
|---|
| 493 | G4double sc = Scale();
|
|---|
| 494 | while ( dummy ) {
|
|---|
| 495 | iter++;
|
|---|
| 496 | // Terminate loop after 50 iterations and Reset distance to large number,
|
|---|
| 497 | // indicating no intersection with G4SphericalSurface.
|
|---|
| 498 | // This generally occurs if the Helix curls too tightly to Intersect it.
|
|---|
| 499 | if ( iter > 50 ) {
|
|---|
| 500 | Dist = FLT_MAXX;
|
|---|
| 501 | p = lv;
|
|---|
| 502 | break;
|
|---|
| 503 | }
|
|---|
| 504 | // Find distance from the current point along the above-calculated
|
|---|
| 505 | // G4Vector3D using a Ray.
|
|---|
| 506 | // The G4Vector3D of the Ray and the Sign of the distance are determined
|
|---|
| 507 | // by whether the starting point of the Helix is Inside or outside of
|
|---|
| 508 | // the G4SphericalSurface.
|
|---|
| 509 | in1 = Inside( p );
|
|---|
| 510 | if ( in1 ) { // current point Inside
|
|---|
| 511 | if ( in0 ) { // starting point Inside
|
|---|
| 512 | Ray* r = new Ray( p, d );
|
|---|
| 513 | delta =
|
|---|
| 514 | distanceAlongRay( 1, r, p );
|
|---|
| 515 | delete r;
|
|---|
| 516 | }
|
|---|
| 517 | else { // starting point outside
|
|---|
| 518 | Ray* r = new Ray( p, -d );
|
|---|
| 519 | delta =
|
|---|
| 520 | -distanceAlongRay( 1, r, p );
|
|---|
| 521 | delete r;
|
|---|
| 522 | }
|
|---|
| 523 | }
|
|---|
| 524 | else { // current point outside
|
|---|
| 525 | if ( in0 ) { // starting point Inside
|
|---|
| 526 | Ray* r = new Ray( p, -d );
|
|---|
| 527 | delta =
|
|---|
| 528 | -distanceAlongRay( -1, r, p );
|
|---|
| 529 | delete r;
|
|---|
| 530 | }
|
|---|
| 531 | else { // starting point outside
|
|---|
| 532 | Ray* r = new Ray( p, d );
|
|---|
| 533 | delta =
|
|---|
| 534 | distanceAlongRay( -1, r, p );
|
|---|
| 535 | delete r;
|
|---|
| 536 | }
|
|---|
| 537 | }
|
|---|
| 538 | // Test if distance is less than the surface precision, if so Terminate loop.
|
|---|
| 539 | if ( std::fabs( delta / sc ) <= SURFACE_PRECISION )
|
|---|
| 540 | break;
|
|---|
| 541 | // Ff delta has not changed sufficiently from the previous iteration,
|
|---|
| 542 | // skip out of this loop.
|
|---|
| 543 | if ( std::fabs( ( delta - delta0 ) / sc ) <=
|
|---|
| 544 | SURFACE_PRECISION )
|
|---|
| 545 | break;
|
|---|
| 546 | // If delta has increased in absolute value from the previous iteration
|
|---|
| 547 | // either the Helix doesn't Intersect the G4SphericalSurface or the approximate
|
|---|
| 548 | // solution is too far from the real solution. Try groping for a solution.
|
|---|
| 549 | // If not found, Reset distance to large number, indicating no intersection
|
|---|
| 550 | // with the G4SphericalSurface.
|
|---|
| 551 | if ( ( std::fabs( delta ) > std::fabs( delta0 ) ) ) {
|
|---|
| 552 | Dist = std::fabs( rhp ) *
|
|---|
| 553 | gropeAlongHelix( hx );
|
|---|
| 554 | if ( Dist < 0.0 ) {
|
|---|
| 555 | Dist = FLT_MAXX;
|
|---|
| 556 | p = lv;
|
|---|
| 557 | }
|
|---|
| 558 | else
|
|---|
| 559 | p = hx->position( Dist );
|
|---|
| 560 | break;
|
|---|
| 561 | }
|
|---|
| 562 | // Set old delta to new one.
|
|---|
| 563 | delta0 = delta;
|
|---|
| 564 | // Add distance to G4SphericalSurface to distance along Helix.
|
|---|
| 565 | Dist += delta;
|
|---|
| 566 | // Negative distance along Helix means Helix doesn't Intersect G4SphericalSurface.
|
|---|
| 567 | // Reset distance to large number, indicating no intersection with G4SphericalSurface.
|
|---|
| 568 | if ( Dist < 0.0 ) {
|
|---|
| 569 | Dist = FLT_MAXX;
|
|---|
| 570 | p = lv;
|
|---|
| 571 | break;
|
|---|
| 572 | }
|
|---|
| 573 | // Recalculate point along Helix and the G4Vector3D.
|
|---|
| 574 | p = hx->position( Dist );
|
|---|
| 575 | d = hx->direction( Dist );
|
|---|
| 576 | } // end of while loop
|
|---|
| 577 | // Now have best value of distance along Helix and position for this
|
|---|
| 578 | // solution, so test if it is within the boundary of the sub-shape
|
|---|
| 579 | // and require that it point in the correct G4Vector3D with respect to
|
|---|
| 580 | // the Normal to the G4SphericalSurface.
|
|---|
| 581 | if ( ( Dist < FLT_MAXX ) &&
|
|---|
| 582 | ( ( hx->direction( Dist ) * Normal( p ) *
|
|---|
| 583 | which_way ) >= 0.0 ) &&
|
|---|
| 584 | ( WithinBoundary( p ) == 1 ) )
|
|---|
| 585 | return Dist;
|
|---|
| 586 | } // end of if s[isoln] >= 0.0 condition
|
|---|
| 587 | } // end of for loop over solutions
|
|---|
| 588 | // If one gets here, there is no solution, so set distance along Helix
|
|---|
| 589 | // and position to large numbers.
|
|---|
| 590 | Dist = FLT_MAXX;
|
|---|
| 591 | p = lv;
|
|---|
| 592 | return Dist;
|
|---|
| 593 | }
|
|---|
| 594 | */
|
|---|
| 595 |
|
|---|
| 596 |
|
|---|
| 597 | /*
|
|---|
| 598 | G4Vector3D G4SphericalSurface::Normal( const G4Vector3D& p ) const
|
|---|
| 599 | { // Return the Normal unit vector to the G4SphericalSurface at a point p on
|
|---|
| 600 | // (or nearly on) the G4SphericalSurface.
|
|---|
| 601 | G4Vector3D n = p - origin;
|
|---|
| 602 | G4double nmag = n.mag();
|
|---|
| 603 | if ( nmag != 0.0 )
|
|---|
| 604 | n = n / nmag;
|
|---|
| 605 | // If the point p happens to coincide with the origin (which is possible
|
|---|
| 606 | // if the radius is zero), set the Normal to the z-axis unit vector.
|
|---|
| 607 | else
|
|---|
| 608 | n = G4Vector3D( 0.0, 0.0, 1.0 );
|
|---|
| 609 | return n;
|
|---|
| 610 | }
|
|---|
| 611 | */
|
|---|
| 612 |
|
|---|
| 613 |
|
|---|
| 614 | G4Vector3D G4SphericalSurface::Normal( const G4Vector3D& p ) const
|
|---|
| 615 | {
|
|---|
| 616 | // Return the Normal unit vector to the G4SphericalSurface at a point p on
|
|---|
| 617 | // (or nearly on) the G4SphericalSurface.
|
|---|
| 618 | G4Vector3D n = G4Vector3D( p - origin );
|
|---|
| 619 | G4double nmag = n.mag();
|
|---|
| 620 |
|
|---|
| 621 | if ( nmag != 0.0 )
|
|---|
| 622 | n = n * (1/ nmag);
|
|---|
| 623 |
|
|---|
| 624 | // If the point p happens to coincide with the origin (which is possible
|
|---|
| 625 | // if the radius is zero), set the Normal to the z-axis unit vector.
|
|---|
| 626 | else
|
|---|
| 627 | n = G4Vector3D( 0.0, 0.0, 1.0 );
|
|---|
| 628 |
|
|---|
| 629 | return n;
|
|---|
| 630 | }
|
|---|
| 631 |
|
|---|
| 632 |
|
|---|
| 633 | G4Vector3D G4SphericalSurface::SurfaceNormal( const G4Point3D& p ) const
|
|---|
| 634 | {
|
|---|
| 635 | // Return the Normal unit vector to the G4SphericalSurface at a point p on
|
|---|
| 636 | // (or nearly on) the G4SphericalSurface.
|
|---|
| 637 | G4Vector3D n = G4Vector3D( p - origin );
|
|---|
| 638 | G4double nmag = n.mag();
|
|---|
| 639 |
|
|---|
| 640 | if ( nmag != 0.0 )
|
|---|
| 641 | n = n * (1/ nmag);
|
|---|
| 642 |
|
|---|
| 643 | // If the point p happens to coincide with the origin (which is possible
|
|---|
| 644 | // if the radius is zero), set the Normal to the z-axis unit vector.
|
|---|
| 645 | else
|
|---|
| 646 | n = G4Vector3D( 0.0, 0.0, 1.0 );
|
|---|
| 647 |
|
|---|
| 648 | return n;
|
|---|
| 649 | }
|
|---|
| 650 |
|
|---|
| 651 |
|
|---|
| 652 | G4int G4SphericalSurface::Inside ( const G4Vector3D& x ) const
|
|---|
| 653 | {
|
|---|
| 654 | // Return 0 if point x is outside G4SphericalSurface, 1 if Inside.
|
|---|
| 655 | // Outside means that the distance to the G4SphericalSurface would
|
|---|
| 656 | // be negative.
|
|---|
| 657 | // Use the HowNear function to calculate this distance.
|
|---|
| 658 | if ( HowNear( x ) >= 0.0 )
|
|---|
| 659 | return 1;
|
|---|
| 660 | else
|
|---|
| 661 | return 0;
|
|---|
| 662 | }
|
|---|
| 663 |
|
|---|
| 664 |
|
|---|
| 665 | G4int G4SphericalSurface::WithinBoundary( const G4Vector3D& x ) const
|
|---|
| 666 | {
|
|---|
| 667 | // return 1 if point x is on the G4SphericalSurface, otherwise return zero
|
|---|
| 668 | // (x is assumed to lie on the surface of the G4SphericalSurface, so one
|
|---|
| 669 | // only checks the angular limits)
|
|---|
| 670 | G4Vector3D y_axis = G4Vector3D( z_axis.cross( x_axis ) );
|
|---|
| 671 |
|
|---|
| 672 | // components of x in the local coordinate system of the G4SphericalSurface
|
|---|
| 673 | G4double px = x * x_axis;
|
|---|
| 674 | G4double py = x * y_axis;
|
|---|
| 675 | G4double pz = x * z_axis;
|
|---|
| 676 |
|
|---|
| 677 | // check if within polar angle limits
|
|---|
| 678 | G4double theta = std::acos( pz / x.mag() ); // acos in range 0 to PI
|
|---|
| 679 |
|
|---|
| 680 | // Normal case
|
|---|
| 681 | if ( theta_2 <= pi )
|
|---|
| 682 | {
|
|---|
| 683 | if ( ( theta < theta_1 ) || ( theta > theta_2 ) )
|
|---|
| 684 | return 0;
|
|---|
| 685 | }
|
|---|
| 686 |
|
|---|
| 687 | // this is for the case that theta_2 is greater than PI
|
|---|
| 688 | else
|
|---|
| 689 | {
|
|---|
| 690 | theta += pi;
|
|---|
| 691 | if ( ( theta < theta_1 ) || ( theta > theta_2 ) )
|
|---|
| 692 | return 0;
|
|---|
| 693 | }
|
|---|
| 694 |
|
|---|
| 695 | // now check if within azimuthal angle limits
|
|---|
| 696 | G4double phi = std::atan2( py, px ); // atan2 in range -PI to PI
|
|---|
| 697 |
|
|---|
| 698 | if ( phi < 0.0 )
|
|---|
| 699 | phi += twopi;
|
|---|
| 700 |
|
|---|
| 701 | // Normal case
|
|---|
| 702 | if ( ( phi >= phi_1 ) && ( phi <= phi_2 ) )
|
|---|
| 703 | return 1;
|
|---|
| 704 |
|
|---|
| 705 | // this is for the case that phi_2 is greater than 2*PI
|
|---|
| 706 | phi += twopi;
|
|---|
| 707 |
|
|---|
| 708 | if ( ( phi >= phi_1 ) && ( phi <= phi_2 ) )
|
|---|
| 709 | return 1;
|
|---|
| 710 | // get here if not within azimuthal limits
|
|---|
| 711 |
|
|---|
| 712 | return 0;
|
|---|
| 713 | }
|
|---|
| 714 |
|
|---|
| 715 |
|
|---|
| 716 | G4double G4SphericalSurface::Scale() const
|
|---|
| 717 | {
|
|---|
| 718 | // Returns the radius of a G4SphericalSurface unless it is zero, in which
|
|---|
| 719 | // case returns the arbitrary number 1.0.
|
|---|
| 720 | // Used for Scale-invariant tests of surface thickness.
|
|---|
| 721 | if ( radius == 0.0 )
|
|---|
| 722 | return 1.0;
|
|---|
| 723 | else
|
|---|
| 724 | return radius;
|
|---|
| 725 | }
|
|---|
| 726 |
|
|---|
| 727 |
|
|---|
| 728 | G4double G4SphericalSurface::Area() const
|
|---|
| 729 | {
|
|---|
| 730 | // Returns the Area of a G4SphericalSurface
|
|---|
| 731 | return ( 2.0*( theta_2 - theta_1 )*( phi_2 - phi_1)*radius*radius/pi );
|
|---|
| 732 | }
|
|---|
| 733 |
|
|---|
| 734 |
|
|---|
| 735 | void G4SphericalSurface::resize( G4double r,
|
|---|
| 736 | G4double ph1, G4double ph2,
|
|---|
| 737 | G4double th1, G4double th2 )
|
|---|
| 738 | {
|
|---|
| 739 | // Resize the G4SphericalSurface to new radius r, new lower and upper
|
|---|
| 740 | // azimuthal angle limits ph1 and ph2, and new lower and upper polar
|
|---|
| 741 | // angle limits th1 and th2.
|
|---|
| 742 |
|
|---|
| 743 | // Require radius to be non-negative
|
|---|
| 744 | if ( r >= 0.0 )
|
|---|
| 745 | radius = r;
|
|---|
| 746 | else
|
|---|
| 747 | {
|
|---|
| 748 | G4cerr << "Error in G4SphericalSurface::resize"
|
|---|
| 749 | << "--radius cannot be less than zero.\n"
|
|---|
| 750 | << "\tOriginal value of " << radius << " is retained.\n";
|
|---|
| 751 | }
|
|---|
| 752 |
|
|---|
| 753 | // Require azimuthal angles to be within bounds
|
|---|
| 754 |
|
|---|
| 755 | if ( ( ph1 >= 0.0 ) && ( ph1 < twopi ) )
|
|---|
| 756 | phi_1 = ph1;
|
|---|
| 757 | else
|
|---|
| 758 | {
|
|---|
| 759 | G4cerr << "Error in G4SphericalSurface::resize"
|
|---|
| 760 | << "--lower azimuthal limit out of range\n"
|
|---|
| 761 | << "\tOriginal value of " << phi_1 << " is retained.\n";
|
|---|
| 762 | }
|
|---|
| 763 |
|
|---|
| 764 | if ( ( ph2 > phi_1 ) && ( ph2 <= ( phi_1 + twopi ) ) )
|
|---|
| 765 | phi_2 = ph2;
|
|---|
| 766 | else
|
|---|
| 767 | {
|
|---|
| 768 | ph2 = ( phi_2 <= phi_1 ) ? ( phi_1 + FLT_EPSILO ) : phi_2;
|
|---|
| 769 | phi_2 = ph2;
|
|---|
| 770 | G4cerr << "Error in G4SphericalSurface::resize"
|
|---|
| 771 | << "--upper azimuthal limit out of range\n"
|
|---|
| 772 | << "\tValue of " << phi_2 << " is used.\n";
|
|---|
| 773 | }
|
|---|
| 774 |
|
|---|
| 775 | // Require polar angles to be within bounds
|
|---|
| 776 | if ( ( th1 >= 0.0 ) && ( th1 < pi ) )
|
|---|
| 777 | theta_1 = th1;
|
|---|
| 778 | else
|
|---|
| 779 | {
|
|---|
| 780 | G4cerr << "Error in G4SphericalSurface::resize"
|
|---|
| 781 | << "--lower polar limit out of range\n"
|
|---|
| 782 | << "\tOriginal value of " << theta_1 << " is retained.\n";
|
|---|
| 783 | }
|
|---|
| 784 |
|
|---|
| 785 | if ( ( th2 > theta_1 ) && ( th2 <= ( theta_1 + pi ) ) )
|
|---|
| 786 | theta_2 = th2;
|
|---|
| 787 | else
|
|---|
| 788 | {
|
|---|
| 789 | th2 = ( theta_2 <= theta_1 ) ? ( theta_1 + FLT_EPSILO ) : theta_2;
|
|---|
| 790 | theta_2 = th2;
|
|---|
| 791 | G4cerr << "Error in G4SphericalSurface::resize"
|
|---|
| 792 | << "--upper polar limit out of range\n"
|
|---|
| 793 | << "\tValue of " << theta_2 << " is used.\n";
|
|---|
| 794 | }
|
|---|
| 795 | }
|
|---|
| 796 |
|
|---|
| 797 |
|
|---|
| 798 | /*
|
|---|
| 799 | void G4SphericalSurface::rotate( G4double alpha, G4double beta,
|
|---|
| 800 | G4double gamma, G4ThreeMat& m, G4int inverse )
|
|---|
| 801 | { // rotate G4SphericalSurface first about global x_axis by angle alpha,
|
|---|
| 802 | // second about global y-axis by angle beta,
|
|---|
| 803 | // and third about global z_axis by angle gamma
|
|---|
| 804 | // by creating and using G4ThreeMat objects in Surface::rotate
|
|---|
| 805 | // angles are assumed to be given in radians
|
|---|
| 806 | // if inverse is non-zero, the order of rotations is reversed
|
|---|
| 807 | // the axis is rotated here, the origin is rotated by calling
|
|---|
| 808 | // Surface::rotate
|
|---|
| 809 | G4Surface::rotate( alpha, beta, gamma, m, inverse );
|
|---|
| 810 | x_axis = m * x_axis;
|
|---|
| 811 | z_axis = m * z_axis;
|
|---|
| 812 | }
|
|---|
| 813 | */
|
|---|
| 814 |
|
|---|
| 815 |
|
|---|
| 816 | /*
|
|---|
| 817 | void G4SphericalSurface::rotate( G4double alpha, G4double beta,
|
|---|
| 818 | G4double gamma, G4int inverse )
|
|---|
| 819 | { // rotate G4SphericalSurface first about global x_axis by angle alpha,
|
|---|
| 820 | // second about global y-axis by angle beta,
|
|---|
| 821 | // and third about global z_axis by angle gamma
|
|---|
| 822 | // by creating and using G4ThreeMat objects in Surface::rotate
|
|---|
| 823 | // angles are assumed to be given in radians
|
|---|
| 824 | // if inverse is non-zero, the order of rotations is reversed
|
|---|
| 825 | // the axis is rotated here, the origin is rotated by calling
|
|---|
| 826 | // Surface::rotate
|
|---|
| 827 | G4ThreeMat m;
|
|---|
| 828 | G4Surface::rotate( alpha, beta, gamma, m, inverse );
|
|---|
| 829 | x_axis = m * x_axis;
|
|---|
| 830 | z_axis = m * z_axis;
|
|---|
| 831 | }
|
|---|
| 832 | */
|
|---|
| 833 |
|
|---|
| 834 |
|
|---|
| 835 | /*
|
|---|
| 836 | G4double G4SphericalSurface::gropeAlongHelix( const Helix* hx ) const
|
|---|
| 837 | { // Grope for a solution of a Helix intersecting a G4SphericalSurface.
|
|---|
| 838 | // This function returns the turning angle (in radians) where the
|
|---|
| 839 | // intersection occurs with only positive values allowed, or -1.0 if
|
|---|
| 840 | // no intersection is found.
|
|---|
| 841 | // The idea is to start at the beginning of the Helix, then take steps
|
|---|
| 842 | // of some fraction of a turn. If at the end of a Step, the current position
|
|---|
| 843 | // along the Helix and the previous position are on opposite sides of the
|
|---|
| 844 | // G4SphericalSurface, then the solution must lie somewhere in between.
|
|---|
| 845 | G4int one_over_f = 8; // one over fraction of a turn to go in each Step
|
|---|
| 846 | G4double turn_angle = 0.0;
|
|---|
| 847 | G4double dist_along = 0.0;
|
|---|
| 848 | G4double d_new;
|
|---|
| 849 | G4double fk = 1.0 / G4double( one_over_f );
|
|---|
| 850 | G4double scal = Scale();
|
|---|
| 851 | G4double d_old = HowNear( hx->position( dist_along ) );
|
|---|
| 852 | G4double rh = hx->GetRadius(); // radius of Helix
|
|---|
| 853 | G4Vector3D prp = hx->getPerp(); // perpendicular vector
|
|---|
| 854 | G4double prpmag = prp.mag();
|
|---|
| 855 | G4double rhp = rh / prpmag;
|
|---|
| 856 | G4int max_iter = one_over_f * HELIX_MAX_TURNS;
|
|---|
| 857 | // Take up to a user-settable number of turns along the Helix,
|
|---|
| 858 | // groping for an intersection point.
|
|---|
| 859 | for ( G4int k = 1; k < max_iter; k++ ) {
|
|---|
| 860 | turn_angle = twopi * k / one_over_f;
|
|---|
| 861 | dist_along = turn_angle * std::fabs( rhp );
|
|---|
| 862 | d_new = HowNear( hx->position( dist_along ) );
|
|---|
| 863 | if ( ( d_old < 0.0 && d_new > 0.0 ) ||
|
|---|
| 864 | ( d_old > 0.0 && d_new < 0.0 ) ) {
|
|---|
| 865 | d_old = d_new;
|
|---|
| 866 | // Old and new points are on opposite sides of the G4SphericalSurface, therefore
|
|---|
| 867 | // a solution lies in between, use a binary search to pin the point down
|
|---|
| 868 | // to the surface precision, but don't do more than 50 iterations.
|
|---|
| 869 | G4int itr = 0;
|
|---|
| 870 | while ( std::fabs( d_new / scal ) > SURFACE_PRECISION ) {
|
|---|
| 871 | itr++;
|
|---|
| 872 | if ( itr > 50 )
|
|---|
| 873 | return turn_angle;
|
|---|
| 874 | turn_angle -= fk * pi;
|
|---|
| 875 | dist_along = turn_angle * std::fabs( rhp );
|
|---|
| 876 | d_new = HowNear( hx->position( dist_along ) );
|
|---|
| 877 | if ( ( d_old < 0.0 && d_new > 0.0 ) ||
|
|---|
| 878 | ( d_old > 0.0 && d_new < 0.0 ) )
|
|---|
| 879 | fk *= -0.5;
|
|---|
| 880 | else
|
|---|
| 881 | fk *= 0.5;
|
|---|
| 882 | d_old = d_new;
|
|---|
| 883 | } // end of while loop
|
|---|
| 884 | return turn_angle; // this is the best solution
|
|---|
| 885 | } // end of if condition
|
|---|
| 886 | } // end of for loop
|
|---|
| 887 | // Get here only if no solution is found, so return -1.0 to indicate that.
|
|---|
| 888 | return -1.0;
|
|---|
| 889 | }
|
|---|
| 890 | */
|
|---|