| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4ToroidalSurface.cc,v 1.10 2006/06/29 18:42:59 gunter Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-02-ref-02 $
|
|---|
| 29 | //
|
|---|
| 30 | // ----------------------------------------------------------------------
|
|---|
| 31 | // GEANT 4 class source file
|
|---|
| 32 | //
|
|---|
| 33 | // G4ToroidalSurface.cc
|
|---|
| 34 | //
|
|---|
| 35 | // ----------------------------------------------------------------------
|
|---|
| 36 |
|
|---|
| 37 | #include "G4ToroidalSurface.hh"
|
|---|
| 38 |
|
|---|
| 39 |
|
|---|
| 40 | G4ToroidalSurface::G4ToroidalSurface()
|
|---|
| 41 | : EQN_EPS(1e-9)
|
|---|
| 42 | {
|
|---|
| 43 | }
|
|---|
| 44 |
|
|---|
| 45 | G4ToroidalSurface::G4ToroidalSurface(const G4Vector3D& Location,
|
|---|
| 46 | const G4Vector3D& Ax,
|
|---|
| 47 | const G4Vector3D& Dir,
|
|---|
| 48 | G4double MinRad,
|
|---|
| 49 | G4double MaxRad)
|
|---|
| 50 | : EQN_EPS(1e-9)
|
|---|
| 51 | {
|
|---|
| 52 | Placement.Init(Dir, Ax, Location);
|
|---|
| 53 |
|
|---|
| 54 | MinRadius = MinRad;
|
|---|
| 55 | MaxRadius = MaxRad;
|
|---|
| 56 | TransMatrix= new G4PointMatrix(4,4);
|
|---|
| 57 | }
|
|---|
| 58 |
|
|---|
| 59 |
|
|---|
| 60 | G4ToroidalSurface::~G4ToroidalSurface()
|
|---|
| 61 | {
|
|---|
| 62 | }
|
|---|
| 63 |
|
|---|
| 64 |
|
|---|
| 65 | void G4ToroidalSurface::CalcBBox()
|
|---|
| 66 | {
|
|---|
| 67 | // L. Broglia
|
|---|
| 68 | // G4Point3D Origin = Placement.GetSrfPoint();
|
|---|
| 69 | G4Point3D Origin = Placement.GetLocation();
|
|---|
| 70 |
|
|---|
| 71 | G4Point3D Min(Origin.x()-MaxRadius,
|
|---|
| 72 | Origin.y()-MaxRadius,
|
|---|
| 73 | Origin.z()-MaxRadius);
|
|---|
| 74 | G4Point3D Max(Origin.x()+MaxRadius,
|
|---|
| 75 | Origin.y()+MaxRadius,
|
|---|
| 76 | Origin.z()+MaxRadius);
|
|---|
| 77 |
|
|---|
| 78 | bbox = new G4BoundingBox3D(Min,Max);
|
|---|
| 79 | }
|
|---|
| 80 |
|
|---|
| 81 |
|
|---|
| 82 | G4Vector3D G4ToroidalSurface::SurfaceNormal(const G4Point3D&) const
|
|---|
| 83 | {
|
|---|
| 84 | return G4Vector3D(0,0,0);
|
|---|
| 85 | }
|
|---|
| 86 |
|
|---|
| 87 |
|
|---|
| 88 | G4double G4ToroidalSurface::ClosestDistanceToPoint(const G4Point3D &Pt)
|
|---|
| 89 | {
|
|---|
| 90 | // L. Broglia
|
|---|
| 91 | // G4Point3D Origin = Placement.GetSrfPoint();
|
|---|
| 92 | G4Point3D Origin = Placement.GetLocation();
|
|---|
| 93 |
|
|---|
| 94 | G4double Dist = Pt.distance(Origin);
|
|---|
| 95 |
|
|---|
| 96 | return ((Dist - MaxRadius)*(Dist - MaxRadius));
|
|---|
| 97 | }
|
|---|
| 98 |
|
|---|
| 99 |
|
|---|
| 100 | G4int G4ToroidalSurface::Intersect(const G4Ray& Ray)
|
|---|
| 101 | {
|
|---|
| 102 | // ---- inttor - Intersect a ray with a torus. ------------------------
|
|---|
| 103 | // from GraphicsGems II by
|
|---|
| 104 |
|
|---|
| 105 | // Description:
|
|---|
| 106 | // Inttor determines the intersection of a ray with a torus.
|
|---|
| 107 | //
|
|---|
| 108 | // On entry:
|
|---|
| 109 | // raybase = The coordinate defining the base of the
|
|---|
| 110 | // intersecting ray.
|
|---|
| 111 | // raycos = The G4Vector3D cosines of the above ray.
|
|---|
| 112 | // center = The center location of the torus.
|
|---|
| 113 | // radius = The major radius of the torus.
|
|---|
| 114 | // rplane = The minor radius in the G4Plane of the torus.
|
|---|
| 115 | // rnorm = The minor radius Normal to the G4Plane of the torus.
|
|---|
| 116 | // tran = A 4x4 transformation matrix that will position
|
|---|
| 117 | // the torus at the origin and orient it such that
|
|---|
| 118 | // the G4Plane of the torus lyes in the x-z G4Plane.
|
|---|
| 119 | //
|
|---|
| 120 | // On return:
|
|---|
| 121 | // nhits = The number of intersections the ray makes with
|
|---|
| 122 | // the torus.
|
|---|
| 123 | // rhits = The entering/leaving distances of the
|
|---|
| 124 | // intersections.
|
|---|
| 125 | //
|
|---|
| 126 | // Returns: True if the ray intersects the torus.
|
|---|
| 127 | //
|
|---|
| 128 | // --------------------------------------------------------------------
|
|---|
| 129 |
|
|---|
| 130 | // Variables. Should be optimized later...
|
|---|
| 131 | G4Point3D Base = Ray.GetStart(); // Base of the intersection ray
|
|---|
| 132 | G4Vector3D DCos = Ray.GetDir(); // Direction cosines of the ray
|
|---|
| 133 | G4int nhits=0; // Number of intersections
|
|---|
| 134 | G4double rhits[4]; // Intersection distances
|
|---|
| 135 | G4double hits[4]; // Ordered intersection distances
|
|---|
| 136 | G4double rho, a0, b0; // Related constants
|
|---|
| 137 | G4double f, l, t, g, q, m, u; // Ray dependent terms
|
|---|
| 138 | G4double C[5]; // Quartic coefficients
|
|---|
| 139 |
|
|---|
| 140 | // Transform the intersection ray
|
|---|
| 141 |
|
|---|
| 142 |
|
|---|
| 143 | // MultiplyPointByMatrix (Base); // Matriisi puuttuu viela!
|
|---|
| 144 | // MultiplyVectorByMatrix (DCos);
|
|---|
| 145 |
|
|---|
| 146 | // Compute constants related to the torus.
|
|---|
| 147 | G4double rnorm = MaxRadius - MinRadius; // ei tietoa onko oikein...
|
|---|
| 148 | rho = MinRadius*MinRadius / (rnorm*rnorm);
|
|---|
| 149 | a0 = 4. * MaxRadius*MaxRadius;
|
|---|
| 150 | b0 = MaxRadius*MaxRadius - MinRadius*MinRadius;
|
|---|
| 151 |
|
|---|
| 152 | // Compute ray dependent terms.
|
|---|
| 153 | f = 1. - DCos.y()*DCos.y();
|
|---|
| 154 | l = 2. * (Base.x()*DCos.x() + Base.z()*DCos.z());
|
|---|
| 155 | t = Base.x()*Base.x() + Base.z()*Base.z();
|
|---|
| 156 | g = f + rho * DCos.y()*DCos.y();
|
|---|
| 157 | q = a0 / (g*g);
|
|---|
| 158 | m = (l + 2.*rho*DCos.y()*Base.y()) / g;
|
|---|
| 159 | u = (t + rho*Base.y()*Base.y() + b0) / g;
|
|---|
| 160 |
|
|---|
| 161 | // Compute the coefficients of the quartic.
|
|---|
| 162 |
|
|---|
| 163 | C[4] = 1.0;
|
|---|
| 164 | C[3] = 2. * m;
|
|---|
| 165 | C[2] = m*m + 2.*u - q*f;
|
|---|
| 166 | C[1] = 2.*m*u - q*l;
|
|---|
| 167 | C[0] = u*u - q*t;
|
|---|
| 168 |
|
|---|
| 169 | // Use quartic root solver found in "Graphics Gems" by Jochen Schwarze.
|
|---|
| 170 | nhits = SolveQuartic (C,rhits);
|
|---|
| 171 |
|
|---|
| 172 | // SolveQuartic returns root pairs in reversed order.
|
|---|
| 173 | m = rhits[0]; u = rhits[1]; rhits[0] = u; rhits[1] = m;
|
|---|
| 174 | m = rhits[2]; u = rhits[3]; rhits[2] = u; rhits[3] = m;
|
|---|
| 175 |
|
|---|
| 176 | // return (*nhits != 0);
|
|---|
| 177 |
|
|---|
| 178 | if(nhits != 0)
|
|---|
| 179 | {
|
|---|
| 180 | // Convert Hit distances to intersection points
|
|---|
| 181 | /*
|
|---|
| 182 | G4Point3D** IntersectionPoints = new G4Point3D*[nhits];
|
|---|
| 183 | for(G4int a=0;a<nhits;a++)
|
|---|
| 184 | {
|
|---|
| 185 | G4double Dist = rhits[a];
|
|---|
| 186 | IntersectionPoints[a] = new G4Point3D((Base - Dist * DCos));
|
|---|
| 187 | }
|
|---|
| 188 | // Check wether any of the hits are on the actual surface
|
|---|
| 189 | // Start with checking for the intersections that are Inside the bbox
|
|---|
| 190 |
|
|---|
| 191 | G4Point3D* Hit;
|
|---|
| 192 | G4int InsideBox[2]; // Max 2 intersections on the surface
|
|---|
| 193 | G4int Counter=0;
|
|---|
| 194 | */
|
|---|
| 195 |
|
|---|
| 196 | G4Point3D BoxMin = bbox->GetBoxMin();
|
|---|
| 197 | G4Point3D BoxMax = bbox->GetBoxMax();
|
|---|
| 198 | G4Point3D Hit;
|
|---|
| 199 | G4int c1 = 0;
|
|---|
| 200 | G4int c2;
|
|---|
| 201 | G4double tempVec[4];
|
|---|
| 202 |
|
|---|
| 203 | for(G4int a=0;a<nhits;a++)
|
|---|
| 204 | {
|
|---|
| 205 | while ( (c1 < 4) && (hits[c1] <= rhits[a]) )
|
|---|
| 206 | {
|
|---|
| 207 | tempVec[c1]=hits[c1];
|
|---|
| 208 | c1++;
|
|---|
| 209 | }
|
|---|
| 210 |
|
|---|
| 211 | for(c2=c1+1;c2<4;c2++)
|
|---|
| 212 | tempVec[c2]=hits[c2-1];
|
|---|
| 213 |
|
|---|
| 214 | if(c1<4)
|
|---|
| 215 | {
|
|---|
| 216 | tempVec[c1]=rhits[a];
|
|---|
| 217 |
|
|---|
| 218 | for(c2=0;c2<4;c2++)
|
|---|
| 219 | hits[c2]=tempVec[c2];
|
|---|
| 220 | }
|
|---|
| 221 | }
|
|---|
| 222 |
|
|---|
| 223 | for(G4int b=0;b<nhits;b++)
|
|---|
| 224 | {
|
|---|
| 225 | // Hit = IntersectionPoints[b];
|
|---|
| 226 | if(hits[b] >=kCarTolerance*0.5)
|
|---|
| 227 | {
|
|---|
| 228 | Hit = Base + (hits[b]*DCos);
|
|---|
| 229 | // InsideBox[Counter]=b;
|
|---|
| 230 | if( (Hit.x() > BoxMin.x()) &&
|
|---|
| 231 | (Hit.x() < BoxMax.x()) &&
|
|---|
| 232 | (Hit.y() > BoxMin.y()) &&
|
|---|
| 233 | (Hit.y() < BoxMax.y()) &&
|
|---|
| 234 | (Hit.z() > BoxMin.z()) &&
|
|---|
| 235 | (Hit.z() < BoxMax.z()) )
|
|---|
| 236 | {
|
|---|
| 237 | closest_hit = Hit;
|
|---|
| 238 | distance = hits[b]*hits[b];
|
|---|
| 239 | return 1;
|
|---|
| 240 | }
|
|---|
| 241 |
|
|---|
| 242 | // Counter++;
|
|---|
| 243 | }
|
|---|
| 244 | }
|
|---|
| 245 |
|
|---|
| 246 | // If two Inside bbox, find closest
|
|---|
| 247 | // G4int Closest=0;
|
|---|
| 248 |
|
|---|
| 249 | // if(Counter>1)
|
|---|
| 250 | // if(rhits[InsideBox[0]] > rhits[InsideBox[1]])
|
|---|
| 251 | // Closest=1;
|
|---|
| 252 |
|
|---|
| 253 | // Project polygon and do point in polygon
|
|---|
| 254 | // Projection also for curves etc.
|
|---|
| 255 | // Should probably be implemented in the curve class.
|
|---|
| 256 | // G4Plane Plane1 = Ray.GetPlane(1);
|
|---|
| 257 | // G4Plane Plane2 = Ray.GetPlane(2);
|
|---|
| 258 |
|
|---|
| 259 | // Point in polygon
|
|---|
| 260 | return 1;
|
|---|
| 261 | }
|
|---|
| 262 | return 0;
|
|---|
| 263 | }
|
|---|
| 264 |
|
|---|
| 265 |
|
|---|
| 266 | G4int G4ToroidalSurface::SolveQuartic(G4double c[], G4double s[] )
|
|---|
| 267 | {
|
|---|
| 268 | // From Graphics Gems I by Jochen Schwartz
|
|---|
| 269 |
|
|---|
| 270 | G4double coeffs[ 4 ];
|
|---|
| 271 | G4double z, u, v, sub;
|
|---|
| 272 | G4double A, B, C, D;
|
|---|
| 273 | G4double sq_A, p, q, r;
|
|---|
| 274 | G4int i, num;
|
|---|
| 275 |
|
|---|
| 276 | // Normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0
|
|---|
| 277 |
|
|---|
| 278 | A = c[ 3 ] / c[ 4 ];
|
|---|
| 279 | B = c[ 2 ] / c[ 4 ];
|
|---|
| 280 | C = c[ 1 ] / c[ 4 ];
|
|---|
| 281 | D = c[ 0 ] / c[ 4 ];
|
|---|
| 282 |
|
|---|
| 283 | // substitute x = y - A/4 to eliminate cubic term:
|
|---|
| 284 | // x^4 + px^2 + qx + r = 0
|
|---|
| 285 |
|
|---|
| 286 | sq_A = A * A;
|
|---|
| 287 | p = - 3.0/8 * sq_A + B;
|
|---|
| 288 | q = 1.0/8 * sq_A * A - 1.0/2 * A * B + C;
|
|---|
| 289 | r = - 3.0/256*sq_A*sq_A + 1.0/16*sq_A*B - 1.0/4*A*C + D;
|
|---|
| 290 |
|
|---|
| 291 | if (IsZero(r))
|
|---|
| 292 | {
|
|---|
| 293 | // no absolute term: y(y^3 + py + q) = 0
|
|---|
| 294 |
|
|---|
| 295 | coeffs[ 0 ] = q;
|
|---|
| 296 | coeffs[ 1 ] = p;
|
|---|
| 297 | coeffs[ 2 ] = 0;
|
|---|
| 298 | coeffs[ 3 ] = 1;
|
|---|
| 299 |
|
|---|
| 300 | num = SolveCubic(coeffs, s);
|
|---|
| 301 |
|
|---|
| 302 | s[ num++ ] = 0;
|
|---|
| 303 | }
|
|---|
| 304 | else
|
|---|
| 305 | {
|
|---|
| 306 | // solve the resolvent cubic ...
|
|---|
| 307 | coeffs[ 0 ] = 1.0/2 * r * p - 1.0/8 * q * q;
|
|---|
| 308 | coeffs[ 1 ] = - r;
|
|---|
| 309 | coeffs[ 2 ] = - 1.0/2 * p;
|
|---|
| 310 | coeffs[ 3 ] = 1;
|
|---|
| 311 |
|
|---|
| 312 | (void) SolveCubic(coeffs, s);
|
|---|
| 313 |
|
|---|
| 314 | // ... and take the one real solution ...
|
|---|
| 315 | z = s[ 0 ];
|
|---|
| 316 |
|
|---|
| 317 | // ... to Build two quadric equations
|
|---|
| 318 | u = z * z - r;
|
|---|
| 319 | v = 2 * z - p;
|
|---|
| 320 |
|
|---|
| 321 | if (IsZero(u))
|
|---|
| 322 | u = 0;
|
|---|
| 323 | else if (u > 0)
|
|---|
| 324 | u = std::sqrt(u);
|
|---|
| 325 | else
|
|---|
| 326 | return 0;
|
|---|
| 327 |
|
|---|
| 328 | if (IsZero(v))
|
|---|
| 329 | v = 0;
|
|---|
| 330 | else if (v > 0)
|
|---|
| 331 | v = std::sqrt(v);
|
|---|
| 332 | else
|
|---|
| 333 | return 0;
|
|---|
| 334 |
|
|---|
| 335 | coeffs[ 0 ] = z - u;
|
|---|
| 336 | coeffs[ 1 ] = q < 0 ? -v : v;
|
|---|
| 337 | coeffs[ 2 ] = 1;
|
|---|
| 338 |
|
|---|
| 339 | num = SolveQuadric(coeffs, s);
|
|---|
| 340 |
|
|---|
| 341 | coeffs[ 0 ]= z + u;
|
|---|
| 342 | coeffs[ 1 ] = q < 0 ? v : -v;
|
|---|
| 343 | coeffs[ 2 ] = 1;
|
|---|
| 344 |
|
|---|
| 345 | num += SolveQuadric(coeffs, s + num);
|
|---|
| 346 | }
|
|---|
| 347 |
|
|---|
| 348 | // resubstitute
|
|---|
| 349 |
|
|---|
| 350 | sub = 1.0/4 * A;
|
|---|
| 351 |
|
|---|
| 352 | for (i = 0; i < num; ++i)
|
|---|
| 353 | s[ i ] -= sub;
|
|---|
| 354 |
|
|---|
| 355 | return num;
|
|---|
| 356 | }
|
|---|
| 357 |
|
|---|
| 358 |
|
|---|
| 359 | G4int G4ToroidalSurface::SolveCubic(G4double c[], G4double s[] )
|
|---|
| 360 | {
|
|---|
| 361 | // From Graphics Gems I bu Jochen Schwartz
|
|---|
| 362 | G4int i, num;
|
|---|
| 363 | G4double sub;
|
|---|
| 364 | G4double A, B, C;
|
|---|
| 365 | G4double sq_A, p, q;
|
|---|
| 366 | G4double cb_p, D;
|
|---|
| 367 |
|
|---|
| 368 | // Normal form: x^3 + Ax^2 + Bx + C = 0
|
|---|
| 369 | A = c[ 2 ] / c[ 3 ];
|
|---|
| 370 | B = c[ 1 ] / c[ 3 ];
|
|---|
| 371 | C = c[ 0 ] / c[ 3 ];
|
|---|
| 372 |
|
|---|
| 373 | // substitute x = y - A/3 to eliminate quadric term:
|
|---|
| 374 | // x^3 +px + q = 0
|
|---|
| 375 | sq_A = A * A;
|
|---|
| 376 | p = 1.0/3 * (- 1.0/3 * sq_A + B);
|
|---|
| 377 | q = 1.0/2 * (2.0/27 * A * sq_A - 1.0/3 * A * B + C);
|
|---|
| 378 |
|
|---|
| 379 | // use Cardano's formula
|
|---|
| 380 | cb_p = p * p * p;
|
|---|
| 381 | D = q * q + cb_p;
|
|---|
| 382 |
|
|---|
| 383 | if (IsZero(D))
|
|---|
| 384 | {
|
|---|
| 385 | if (IsZero(q)) // one triple solution
|
|---|
| 386 | {
|
|---|
| 387 | s[ 0 ] = 0;
|
|---|
| 388 | num = 1;
|
|---|
| 389 | }
|
|---|
| 390 | else // one single and one G4double solution
|
|---|
| 391 | {
|
|---|
| 392 | G4double u = std::pow(-q,1./3.);
|
|---|
| 393 | s[ 0 ] = 2 * u;
|
|---|
| 394 | s[ 1 ] = - u;
|
|---|
| 395 | num = 2;
|
|---|
| 396 | }
|
|---|
| 397 | }
|
|---|
| 398 | else if (D < 0) // Casus irreducibilis: three real solutions
|
|---|
| 399 | {
|
|---|
| 400 | G4double phi = 1.0/3 * std::acos(-q / std::sqrt(-cb_p));
|
|---|
| 401 | G4double t = 2 * std::sqrt(-p);
|
|---|
| 402 |
|
|---|
| 403 | s[ 0 ] = t * std::cos(phi);
|
|---|
| 404 | s[ 1 ] = - t * std::cos(phi + pi / 3);
|
|---|
| 405 | s[ 2 ] = - t * std::cos(phi - pi / 3);
|
|---|
| 406 | num = 3;
|
|---|
| 407 | }
|
|---|
| 408 | else // one real solution
|
|---|
| 409 | {
|
|---|
| 410 | G4double sqrt_D = std::sqrt(D);
|
|---|
| 411 | G4double u = std::pow(sqrt_D - q,1./3.);
|
|---|
| 412 | G4double v = - std::pow(sqrt_D + q,1./3.);
|
|---|
| 413 |
|
|---|
| 414 | s[ 0 ] = u + v;
|
|---|
| 415 | num = 1;
|
|---|
| 416 | }
|
|---|
| 417 |
|
|---|
| 418 | // resubstitute
|
|---|
| 419 | sub = 1.0/3 * A;
|
|---|
| 420 |
|
|---|
| 421 | for (i = 0; i < num; ++i)
|
|---|
| 422 | s[ i ] -= sub;
|
|---|
| 423 |
|
|---|
| 424 | return num;
|
|---|
| 425 | }
|
|---|
| 426 |
|
|---|
| 427 |
|
|---|
| 428 | G4int G4ToroidalSurface::SolveQuadric(G4double c[], G4double s[] )
|
|---|
| 429 | {
|
|---|
| 430 | // From Graphics Gems I by Jochen Schwartz
|
|---|
| 431 | G4double p, q, D;
|
|---|
| 432 |
|
|---|
| 433 | // Normal form: x^2 + px + q = 0
|
|---|
| 434 | p = c[ 1 ] / (2 * c[ 2 ]);
|
|---|
| 435 | q = c[ 0 ] / c[ 2 ];
|
|---|
| 436 |
|
|---|
| 437 | D = p * p - q;
|
|---|
| 438 |
|
|---|
| 439 | if (IsZero(D))
|
|---|
| 440 | {
|
|---|
| 441 | s[ 0 ] = - p;
|
|---|
| 442 | return 1;
|
|---|
| 443 | }
|
|---|
| 444 | else if (D < 0)
|
|---|
| 445 | {
|
|---|
| 446 | return 0;
|
|---|
| 447 | }
|
|---|
| 448 | else if (D > 0)
|
|---|
| 449 | {
|
|---|
| 450 | G4double sqrt_D = std::sqrt(D);
|
|---|
| 451 |
|
|---|
| 452 | s[ 0 ] = sqrt_D - p;
|
|---|
| 453 | s[ 1 ] = - sqrt_D - p;
|
|---|
| 454 | return 2;
|
|---|
| 455 | }
|
|---|
| 456 |
|
|---|
| 457 | return 0;
|
|---|
| 458 | }
|
|---|