// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4DisplacedSolid.cc,v 1.27 2006/06/29 18:43:41 gunter Exp $ // GEANT4 tag $Name: geant4-09-02-ref-02 $ // // Implementation for G4DisplacedSolid class for boolean // operations between other solids // // History: // // 28.10.98 V.Grichine: created // 14.11.99 V.Grichine: modifications in CalculateExtent(...) method // 22.11.00 V.Grichine: new set methods for matrix/vectors // // -------------------------------------------------------------------- #include "G4DisplacedSolid.hh" #include "G4VoxelLimits.hh" #include "G4VPVParameterisation.hh" #include "G4VGraphicsScene.hh" #include "G4Polyhedron.hh" #include "G4NURBS.hh" // #include "G4NURBSbox.hh" //////////////////////////////////////////////////////////////// // // Constructor for transformation like rotation of frame then translation // in new frame. It is similar to 1st constractor in G4PVPlacement G4DisplacedSolid::G4DisplacedSolid( const G4String& pName, G4VSolid* pSolid , G4RotationMatrix* rotMatrix, const G4ThreeVector& transVector ) : G4VSolid(pName), fpPolyhedron(0) { fPtrSolid = pSolid ; fPtrTransform = new G4AffineTransform(rotMatrix,transVector) ; fPtrTransform->Invert() ; fDirectTransform = new G4AffineTransform(rotMatrix,transVector) ; } ///////////////////////////////////////////////////////////////////////////////// // // Constructor G4DisplacedSolid::G4DisplacedSolid( const G4String& pName, G4VSolid* pSolid , const G4Transform3D& transform ) : G4VSolid(pName), fpPolyhedron(0) { fPtrSolid = pSolid ; fDirectTransform = new G4AffineTransform(transform.getRotation().inverse(), transform.getTranslation()) ; fPtrTransform = new G4AffineTransform(transform.getRotation().inverse(), transform.getTranslation()) ; fPtrTransform->Invert() ; } /////////////////////////////////////////////////////////////////// // // Constructor for use with creation of Transient object // from Persistent object G4DisplacedSolid::G4DisplacedSolid( const G4String& pName, G4VSolid* pSolid , const G4AffineTransform directTransform ) : G4VSolid(pName), fpPolyhedron(0) { fPtrSolid = pSolid ; fDirectTransform = new G4AffineTransform( directTransform ); fPtrTransform = new G4AffineTransform( directTransform.Inverse() ) ; } /////////////////////////////////////////////////////////////////// // // Fake default constructor - sets only member data and allocates memory // for usage restricted to object persistency. G4DisplacedSolid::G4DisplacedSolid( __void__& a ) : G4VSolid(a), fPtrSolid(0), fPtrTransform(0), fDirectTransform(0), fpPolyhedron(0) { } /////////////////////////////////////////////////////////////////// // // Destructor G4DisplacedSolid::~G4DisplacedSolid() { CleanTransformations(); delete fpPolyhedron; } G4GeometryType G4DisplacedSolid::GetEntityType() const { return G4String("G4DisplacedSolid"); } void G4DisplacedSolid::CleanTransformations() { if(fPtrTransform) { delete fPtrTransform; fPtrTransform=0; delete fDirectTransform; fDirectTransform=0; } } const G4DisplacedSolid* G4DisplacedSolid::GetDisplacedSolidPtr() const { return this; } G4DisplacedSolid* G4DisplacedSolid::GetDisplacedSolidPtr() { return this; } G4VSolid* G4DisplacedSolid::GetConstituentMovedSolid() const { return fPtrSolid; } ///////////////////////////////////////////////////////////////////////////// G4AffineTransform G4DisplacedSolid::GetTransform() const { G4AffineTransform aTransform = *fPtrTransform; return aTransform; } void G4DisplacedSolid::SetTransform(G4AffineTransform& transform) { fPtrTransform = &transform ; fpPolyhedron = 0; } ////////////////////////////////////////////////////////////////////////////// G4AffineTransform G4DisplacedSolid::GetDirectTransform() const { G4AffineTransform aTransform= *fDirectTransform; return aTransform; } void G4DisplacedSolid::SetDirectTransform(G4AffineTransform& transform) { fDirectTransform = &transform ; fpPolyhedron = 0; } ///////////////////////////////////////////////////////////////////////////// G4RotationMatrix G4DisplacedSolid::GetFrameRotation() const { G4RotationMatrix InvRotation= fDirectTransform->NetRotation(); return InvRotation; } void G4DisplacedSolid::SetFrameRotation(const G4RotationMatrix& matrix) { fDirectTransform->SetNetRotation(matrix); fpPolyhedron = 0; } ///////////////////////////////////////////////////////////////////////////// G4ThreeVector G4DisplacedSolid::GetFrameTranslation() const { return fPtrTransform->NetTranslation(); } void G4DisplacedSolid::SetFrameTranslation(const G4ThreeVector& vector) { fPtrTransform->SetNetTranslation(vector); fpPolyhedron = 0; } /////////////////////////////////////////////////////////////// G4RotationMatrix G4DisplacedSolid::GetObjectRotation() const { G4RotationMatrix Rotation= fPtrTransform->NetRotation(); return Rotation; } void G4DisplacedSolid::SetObjectRotation(const G4RotationMatrix& matrix) { fPtrTransform->SetNetRotation(matrix); fpPolyhedron = 0; } /////////////////////////////////////////////////////////////////////// G4ThreeVector G4DisplacedSolid::GetObjectTranslation() const { return fDirectTransform->NetTranslation(); } void G4DisplacedSolid::SetObjectTranslation(const G4ThreeVector& vector) { fDirectTransform->SetNetTranslation(vector); fpPolyhedron = 0; } /////////////////////////////////////////////////////////////// // // G4bool G4DisplacedSolid::CalculateExtent( const EAxis pAxis, const G4VoxelLimits& pVoxelLimit, const G4AffineTransform& pTransform, G4double& pMin, G4double& pMax ) const { G4AffineTransform sumTransform ; sumTransform.Product(*fDirectTransform,pTransform) ; return fPtrSolid->CalculateExtent(pAxis,pVoxelLimit,sumTransform,pMin,pMax) ; } ///////////////////////////////////////////////////// // // EInside G4DisplacedSolid::Inside(const G4ThreeVector& p) const { G4ThreeVector newPoint = fPtrTransform->TransformPoint(p) ; return fPtrSolid->Inside(newPoint) ; } ////////////////////////////////////////////////////////////// // // G4ThreeVector G4DisplacedSolid::SurfaceNormal( const G4ThreeVector& p ) const { G4ThreeVector newPoint = fPtrTransform->TransformPoint(p) ; G4ThreeVector normal = fPtrSolid->SurfaceNormal(newPoint) ; return fDirectTransform->TransformAxis(normal) ; } ///////////////////////////////////////////////////////////// // // The same algorithm as in DistanceToIn(p) G4double G4DisplacedSolid::DistanceToIn( const G4ThreeVector& p, const G4ThreeVector& v ) const { G4ThreeVector newPoint = fPtrTransform->TransformPoint(p) ; G4ThreeVector newDirection = fPtrTransform->TransformAxis(v) ; return fPtrSolid->DistanceToIn(newPoint,newDirection) ; } //////////////////////////////////////////////////////// // // Approximate nearest distance from the point p to the intersection of // two solids G4double G4DisplacedSolid::DistanceToIn( const G4ThreeVector& p ) const { G4ThreeVector newPoint = fPtrTransform->TransformPoint(p) ; return fPtrSolid->DistanceToIn(newPoint) ; } ////////////////////////////////////////////////////////// // // The same algorithm as DistanceToOut(p) G4double G4DisplacedSolid::DistanceToOut( const G4ThreeVector& p, const G4ThreeVector& v, const G4bool calcNorm, G4bool *validNorm, G4ThreeVector *n ) const { G4ThreeVector solNorm ; G4ThreeVector newPoint = fPtrTransform->TransformPoint(p) ; G4ThreeVector newDirection = fPtrTransform->TransformAxis(v) ; G4double dist = fPtrSolid->DistanceToOut(newPoint,newDirection, calcNorm,validNorm,&solNorm) ; if(calcNorm) { *n = fDirectTransform->TransformAxis(solNorm) ; } return dist ; } ////////////////////////////////////////////////////////////// // // Inverted algorithm of DistanceToIn(p) G4double G4DisplacedSolid::DistanceToOut( const G4ThreeVector& p ) const { G4ThreeVector newPoint = fPtrTransform->TransformPoint(p) ; return fPtrSolid->DistanceToOut(newPoint) ; } ////////////////////////////////////////////////////////////// // // void G4DisplacedSolid::ComputeDimensions( G4VPVParameterisation*, const G4int, const G4VPhysicalVolume* ) { DumpInfo(); G4Exception("G4DisplacedSolid::ComputeDimensions()", "NotApplicable", FatalException, "Method not applicable in this context!"); } ////////////////////////////////////////////////////////////////////////// // // Returns a point (G4ThreeVector) randomly and uniformly selected // on the solid surface // G4ThreeVector G4DisplacedSolid::GetPointOnSurface() const { G4ThreeVector p = fPtrSolid->GetPointOnSurface(); return fDirectTransform->TransformPoint(p); } ////////////////////////////////////////////////////////////////////////// // // Stream object contents to an output stream std::ostream& G4DisplacedSolid::StreamInfo(std::ostream& os) const { os << "-----------------------------------------------------------\n" << " *** Dump for Displaced solid - " << GetName() << " ***\n" << " ===================================================\n" << " Solid type: " << GetEntityType() << "\n" << " Parameters of constituent solid: \n" << "===========================================================\n"; fPtrSolid->StreamInfo(os); os << "===========================================================\n" << " Transformations: \n" << " Direct transformation - translation : \n" << " " << fDirectTransform->NetTranslation() << "\n" << " - rotation : \n" << " "; fDirectTransform->NetRotation().print(os); os << "\n" << "===========================================================\n"; return os; } ////////////////////////////////////////////////////////////////////////// // // void G4DisplacedSolid::DescribeYourselfTo ( G4VGraphicsScene& scene ) const { scene.AddSolid (*this); } ////////////////////////////////////////////////////////////////////////// // // G4Polyhedron* G4DisplacedSolid::CreatePolyhedron () const { G4Polyhedron* polyhedron = fPtrSolid->CreatePolyhedron(); polyhedron ->Transform(G4Transform3D(GetObjectRotation(),GetObjectTranslation())); return polyhedron; } ////////////////////////////////////////////////////////////////////////// // // G4NURBS* G4DisplacedSolid::CreateNURBS () const { // Take into account local transformation - see CreatePolyhedron. // return fPtrSolid->CreateNURBS() ; return 0; } ////////////////////////////////////////////////////////////////////////// // // G4Polyhedron* G4DisplacedSolid::GetPolyhedron () const { if (!fpPolyhedron || fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() != fpPolyhedron->GetNumberOfRotationSteps()) { delete fpPolyhedron; fpPolyhedron = CreatePolyhedron(); } return fpPolyhedron; }