| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4Sphere.cc,v 1.84 2009/08/07 15:56:23 gcosmo Exp $
|
|---|
| 28 | // GEANT4 tag $Name: geant4-09-04-beta-01 $
|
|---|
| 29 | //
|
|---|
| 30 | // class G4Sphere
|
|---|
| 31 | //
|
|---|
| 32 | // Implementation for G4Sphere class
|
|---|
| 33 | //
|
|---|
| 34 | // History:
|
|---|
| 35 | //
|
|---|
| 36 | // 14.09.09 T.Nikitina: fix for phi section in DistanceToOut(p,v,..),as for G4Tubs,G4Cons
|
|---|
| 37 | // 26.03.09 G.Cosmo : optimisations and uniform use of local radial tolerance
|
|---|
| 38 | // 12.06.08 V.Grichine: fix for theta intersections in DistanceToOut(p,v,...)
|
|---|
| 39 | // 22.07.05 O.Link : Added check for intersection with double cone
|
|---|
| 40 | // 03.05.05 V.Grichine: SurfaceNormal(p) according to J. Apostolakis proposal
|
|---|
| 41 | // 16.09.04 V.Grichine: bug fixed in SurfaceNormal(p), theta normals
|
|---|
| 42 | // 16.07.04 V.Grichine: bug fixed in DistanceToOut(p,v), Rmin go outside
|
|---|
| 43 | // 02.06.04 V.Grichine: bug fixed in DistanceToIn(p,v), on Rmax,Rmin go inside
|
|---|
| 44 | // 30.10.03 J.Apostolakis: new algorithm in Inside for SPhi-sections
|
|---|
| 45 | // 29.10.03 J.Apostolakis: fix in Inside for SPhi-0.5*kAngTol < phi<SPhi, SPhi<0
|
|---|
| 46 | // 19.06.02 V.Grichine: bug fixed in Inside(p), && -> && fDTheta - kAngTolerance
|
|---|
| 47 | // 30.01.02 V.Grichine: bug fixed in Inside(p), && -> || at l.451
|
|---|
| 48 | // 06.03.00 V.Grichine: modifications in Distance ToOut(p,v,...)
|
|---|
| 49 | // 18.11.99 V.Grichine: side = kNull in Distance ToOut(p,v,...)
|
|---|
| 50 | // 25.11.98 V.Grichine: bug fixed in DistanceToIn(p,v), phi intersections
|
|---|
| 51 | // 12.11.98 V.Grichine: bug fixed in DistanceToIn(p,v), theta intersections
|
|---|
| 52 | // 09.10.98 V.Grichine: modifications in DistanceToOut(p,v,...)
|
|---|
| 53 | // 17.09.96 V.Grichine: final modifications to commit
|
|---|
| 54 | // 28.03.94 P.Kent: old C++ code converted to tolerant geometry
|
|---|
| 55 | // --------------------------------------------------------------------
|
|---|
| 56 |
|
|---|
| 57 | #include "G4Sphere.hh"
|
|---|
| 58 |
|
|---|
| 59 | #include "G4VoxelLimits.hh"
|
|---|
| 60 | #include "G4AffineTransform.hh"
|
|---|
| 61 | #include "G4GeometryTolerance.hh"
|
|---|
| 62 |
|
|---|
| 63 | #include "G4VPVParameterisation.hh"
|
|---|
| 64 |
|
|---|
| 65 | #include "Randomize.hh"
|
|---|
| 66 |
|
|---|
| 67 | #include "meshdefs.hh"
|
|---|
| 68 |
|
|---|
| 69 | #include "G4VGraphicsScene.hh"
|
|---|
| 70 | #include "G4VisExtent.hh"
|
|---|
| 71 | #include "G4Polyhedron.hh"
|
|---|
| 72 | #include "G4NURBS.hh"
|
|---|
| 73 | #include "G4NURBSbox.hh"
|
|---|
| 74 |
|
|---|
| 75 | using namespace CLHEP;
|
|---|
| 76 |
|
|---|
| 77 | // Private enum: Not for external use - used by distanceToOut
|
|---|
| 78 |
|
|---|
| 79 | enum ESide {kNull,kRMin,kRMax,kSPhi,kEPhi,kSTheta,kETheta};
|
|---|
| 80 |
|
|---|
| 81 | // used by normal
|
|---|
| 82 |
|
|---|
| 83 | enum ENorm {kNRMin,kNRMax,kNSPhi,kNEPhi,kNSTheta,kNETheta};
|
|---|
| 84 |
|
|---|
| 85 | ////////////////////////////////////////////////////////////////////////
|
|---|
| 86 | //
|
|---|
| 87 | // constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI
|
|---|
| 88 | // - note if pDPhi>2PI then reset to 2PI
|
|---|
| 89 |
|
|---|
| 90 | G4Sphere::G4Sphere( const G4String& pName,
|
|---|
| 91 | G4double pRmin, G4double pRmax,
|
|---|
| 92 | G4double pSPhi, G4double pDPhi,
|
|---|
| 93 | G4double pSTheta, G4double pDTheta )
|
|---|
| 94 | : G4CSGSolid(pName), fFullPhiSphere(true), fFullThetaSphere(true)
|
|---|
| 95 | {
|
|---|
| 96 | fEpsilon = 2.0e-11; // relative radial tolerance constant
|
|---|
| 97 |
|
|---|
| 98 | kAngTolerance = G4GeometryTolerance::GetInstance()->GetAngularTolerance();
|
|---|
| 99 |
|
|---|
| 100 | // Check radii and set radial tolerances
|
|---|
| 101 |
|
|---|
| 102 | G4double kRadTolerance = G4GeometryTolerance::GetInstance()
|
|---|
| 103 | ->GetRadialTolerance();
|
|---|
| 104 | if ( (pRmin < pRmax) && (pRmax >= 10*kRadTolerance) && (pRmin >= 0) )
|
|---|
| 105 | {
|
|---|
| 106 | fRmin=pRmin; fRmax=pRmax;
|
|---|
| 107 | fRminTolerance = (pRmin) ? std::max( kRadTolerance, fEpsilon*fRmin ) : 0;
|
|---|
| 108 | fRmaxTolerance = std::max( kRadTolerance, fEpsilon*fRmax );
|
|---|
| 109 | }
|
|---|
| 110 | else
|
|---|
| 111 | {
|
|---|
| 112 | G4cerr << "ERROR - G4Sphere()::G4Sphere(): " << GetName() << G4endl
|
|---|
| 113 | << " Invalide values for radii ! - "
|
|---|
| 114 | << " pRmin = " << pRmin << ", pRmax = " << pRmax << G4endl;
|
|---|
| 115 | G4Exception("G4Sphere::G4Sphere()", "InvalidSetup", FatalException,
|
|---|
| 116 | "Invalid radii");
|
|---|
| 117 | }
|
|---|
| 118 |
|
|---|
| 119 | // Check angles
|
|---|
| 120 |
|
|---|
| 121 | CheckPhiAngles(pSPhi, pDPhi);
|
|---|
| 122 | CheckThetaAngles(pSTheta, pDTheta);
|
|---|
| 123 | }
|
|---|
| 124 |
|
|---|
| 125 | ///////////////////////////////////////////////////////////////////////
|
|---|
| 126 | //
|
|---|
| 127 | // Fake default constructor - sets only member data and allocates memory
|
|---|
| 128 | // for usage restricted to object persistency.
|
|---|
| 129 | //
|
|---|
| 130 | G4Sphere::G4Sphere( __void__& a )
|
|---|
| 131 | : G4CSGSolid(a)
|
|---|
| 132 | {
|
|---|
| 133 | }
|
|---|
| 134 |
|
|---|
| 135 | /////////////////////////////////////////////////////////////////////
|
|---|
| 136 | //
|
|---|
| 137 | // Destructor
|
|---|
| 138 |
|
|---|
| 139 | G4Sphere::~G4Sphere()
|
|---|
| 140 | {
|
|---|
| 141 | }
|
|---|
| 142 |
|
|---|
| 143 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 144 | //
|
|---|
| 145 | // Dispatch to parameterisation for replication mechanism dimension
|
|---|
| 146 | // computation & modification.
|
|---|
| 147 |
|
|---|
| 148 | void G4Sphere::ComputeDimensions( G4VPVParameterisation* p,
|
|---|
| 149 | const G4int n,
|
|---|
| 150 | const G4VPhysicalVolume* pRep)
|
|---|
| 151 | {
|
|---|
| 152 | p->ComputeDimensions(*this,n,pRep);
|
|---|
| 153 | }
|
|---|
| 154 |
|
|---|
| 155 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 156 | //
|
|---|
| 157 | // Calculate extent under transform and specified limit
|
|---|
| 158 |
|
|---|
| 159 | G4bool G4Sphere::CalculateExtent( const EAxis pAxis,
|
|---|
| 160 | const G4VoxelLimits& pVoxelLimit,
|
|---|
| 161 | const G4AffineTransform& pTransform,
|
|---|
| 162 | G4double& pMin, G4double& pMax ) const
|
|---|
| 163 | {
|
|---|
| 164 | if ( fFullSphere )
|
|---|
| 165 | {
|
|---|
| 166 | // Special case handling for solid spheres-shells
|
|---|
| 167 | // (rotation doesn't influence).
|
|---|
| 168 | // Compute x/y/z mins and maxs for bounding box respecting limits,
|
|---|
| 169 | // with early returns if outside limits. Then switch() on pAxis,
|
|---|
| 170 | // and compute exact x and y limit for x/y case
|
|---|
| 171 |
|
|---|
| 172 | G4double xoffset,xMin,xMax;
|
|---|
| 173 | G4double yoffset,yMin,yMax;
|
|---|
| 174 | G4double zoffset,zMin,zMax;
|
|---|
| 175 |
|
|---|
| 176 | G4double diff1,diff2,maxDiff,newMin,newMax;
|
|---|
| 177 | G4double xoff1,xoff2,yoff1,yoff2;
|
|---|
| 178 |
|
|---|
| 179 | xoffset=pTransform.NetTranslation().x();
|
|---|
| 180 | xMin=xoffset-fRmax;
|
|---|
| 181 | xMax=xoffset+fRmax;
|
|---|
| 182 | if (pVoxelLimit.IsXLimited())
|
|---|
| 183 | {
|
|---|
| 184 | if ( (xMin>pVoxelLimit.GetMaxXExtent()+kCarTolerance)
|
|---|
| 185 | || (xMax<pVoxelLimit.GetMinXExtent()-kCarTolerance) )
|
|---|
| 186 | {
|
|---|
| 187 | return false;
|
|---|
| 188 | }
|
|---|
| 189 | else
|
|---|
| 190 | {
|
|---|
| 191 | if (xMin<pVoxelLimit.GetMinXExtent())
|
|---|
| 192 | {
|
|---|
| 193 | xMin=pVoxelLimit.GetMinXExtent();
|
|---|
| 194 | }
|
|---|
| 195 | if (xMax>pVoxelLimit.GetMaxXExtent())
|
|---|
| 196 | {
|
|---|
| 197 | xMax=pVoxelLimit.GetMaxXExtent();
|
|---|
| 198 | }
|
|---|
| 199 | }
|
|---|
| 200 | }
|
|---|
| 201 |
|
|---|
| 202 | yoffset=pTransform.NetTranslation().y();
|
|---|
| 203 | yMin=yoffset-fRmax;
|
|---|
| 204 | yMax=yoffset+fRmax;
|
|---|
| 205 | if (pVoxelLimit.IsYLimited())
|
|---|
| 206 | {
|
|---|
| 207 | if ( (yMin>pVoxelLimit.GetMaxYExtent()+kCarTolerance)
|
|---|
| 208 | || (yMax<pVoxelLimit.GetMinYExtent()-kCarTolerance) )
|
|---|
| 209 | {
|
|---|
| 210 | return false;
|
|---|
| 211 | }
|
|---|
| 212 | else
|
|---|
| 213 | {
|
|---|
| 214 | if (yMin<pVoxelLimit.GetMinYExtent())
|
|---|
| 215 | {
|
|---|
| 216 | yMin=pVoxelLimit.GetMinYExtent();
|
|---|
| 217 | }
|
|---|
| 218 | if (yMax>pVoxelLimit.GetMaxYExtent())
|
|---|
| 219 | {
|
|---|
| 220 | yMax=pVoxelLimit.GetMaxYExtent();
|
|---|
| 221 | }
|
|---|
| 222 | }
|
|---|
| 223 | }
|
|---|
| 224 |
|
|---|
| 225 | zoffset=pTransform.NetTranslation().z();
|
|---|
| 226 | zMin=zoffset-fRmax;
|
|---|
| 227 | zMax=zoffset+fRmax;
|
|---|
| 228 | if (pVoxelLimit.IsZLimited())
|
|---|
| 229 | {
|
|---|
| 230 | if ( (zMin>pVoxelLimit.GetMaxZExtent()+kCarTolerance)
|
|---|
| 231 | || (zMax<pVoxelLimit.GetMinZExtent()-kCarTolerance) )
|
|---|
| 232 | {
|
|---|
| 233 | return false;
|
|---|
| 234 | }
|
|---|
| 235 | else
|
|---|
| 236 | {
|
|---|
| 237 | if (zMin<pVoxelLimit.GetMinZExtent())
|
|---|
| 238 | {
|
|---|
| 239 | zMin=pVoxelLimit.GetMinZExtent();
|
|---|
| 240 | }
|
|---|
| 241 | if (zMax>pVoxelLimit.GetMaxZExtent())
|
|---|
| 242 | {
|
|---|
| 243 | zMax=pVoxelLimit.GetMaxZExtent();
|
|---|
| 244 | }
|
|---|
| 245 | }
|
|---|
| 246 | }
|
|---|
| 247 |
|
|---|
| 248 | // Known to cut sphere
|
|---|
| 249 |
|
|---|
| 250 | switch (pAxis)
|
|---|
| 251 | {
|
|---|
| 252 | case kXAxis:
|
|---|
| 253 | yoff1=yoffset-yMin;
|
|---|
| 254 | yoff2=yMax-yoffset;
|
|---|
| 255 | if ((yoff1>=0) && (yoff2>=0))
|
|---|
| 256 | {
|
|---|
| 257 | // Y limits cross max/min x => no change
|
|---|
| 258 | //
|
|---|
| 259 | pMin=xMin;
|
|---|
| 260 | pMax=xMax;
|
|---|
| 261 | }
|
|---|
| 262 | else
|
|---|
| 263 | {
|
|---|
| 264 | // Y limits don't cross max/min x => compute max delta x,
|
|---|
| 265 | // hence new mins/maxs
|
|---|
| 266 | //
|
|---|
| 267 | diff1=std::sqrt(fRmax*fRmax-yoff1*yoff1);
|
|---|
| 268 | diff2=std::sqrt(fRmax*fRmax-yoff2*yoff2);
|
|---|
| 269 | maxDiff=(diff1>diff2) ? diff1:diff2;
|
|---|
| 270 | newMin=xoffset-maxDiff;
|
|---|
| 271 | newMax=xoffset+maxDiff;
|
|---|
| 272 | pMin=(newMin<xMin) ? xMin : newMin;
|
|---|
| 273 | pMax=(newMax>xMax) ? xMax : newMax;
|
|---|
| 274 | }
|
|---|
| 275 | break;
|
|---|
| 276 | case kYAxis:
|
|---|
| 277 | xoff1=xoffset-xMin;
|
|---|
| 278 | xoff2=xMax-xoffset;
|
|---|
| 279 | if ((xoff1>=0) && (xoff2>=0))
|
|---|
| 280 | {
|
|---|
| 281 | // X limits cross max/min y => no change
|
|---|
| 282 | //
|
|---|
| 283 | pMin=yMin;
|
|---|
| 284 | pMax=yMax;
|
|---|
| 285 | }
|
|---|
| 286 | else
|
|---|
| 287 | {
|
|---|
| 288 | // X limits don't cross max/min y => compute max delta y,
|
|---|
| 289 | // hence new mins/maxs
|
|---|
| 290 | //
|
|---|
| 291 | diff1=std::sqrt(fRmax*fRmax-xoff1*xoff1);
|
|---|
| 292 | diff2=std::sqrt(fRmax*fRmax-xoff2*xoff2);
|
|---|
| 293 | maxDiff=(diff1>diff2) ? diff1:diff2;
|
|---|
| 294 | newMin=yoffset-maxDiff;
|
|---|
| 295 | newMax=yoffset+maxDiff;
|
|---|
| 296 | pMin=(newMin<yMin) ? yMin : newMin;
|
|---|
| 297 | pMax=(newMax>yMax) ? yMax : newMax;
|
|---|
| 298 | }
|
|---|
| 299 | break;
|
|---|
| 300 | case kZAxis:
|
|---|
| 301 | pMin=zMin;
|
|---|
| 302 | pMax=zMax;
|
|---|
| 303 | break;
|
|---|
| 304 | default:
|
|---|
| 305 | break;
|
|---|
| 306 | }
|
|---|
| 307 | pMin-=kCarTolerance;
|
|---|
| 308 | pMax+=kCarTolerance;
|
|---|
| 309 |
|
|---|
| 310 | return true;
|
|---|
| 311 | }
|
|---|
| 312 | else // Transformed cutted sphere
|
|---|
| 313 | {
|
|---|
| 314 | G4int i,j,noEntries,noBetweenSections;
|
|---|
| 315 | G4bool existsAfterClip=false;
|
|---|
| 316 |
|
|---|
| 317 | // Calculate rotated vertex coordinates
|
|---|
| 318 |
|
|---|
| 319 | G4ThreeVectorList* vertices;
|
|---|
| 320 | G4int noPolygonVertices ;
|
|---|
| 321 | vertices=CreateRotatedVertices(pTransform,noPolygonVertices);
|
|---|
| 322 |
|
|---|
| 323 | pMin=+kInfinity;
|
|---|
| 324 | pMax=-kInfinity;
|
|---|
| 325 |
|
|---|
| 326 | noEntries=vertices->size(); // noPolygonVertices*noPhiCrossSections
|
|---|
| 327 | noBetweenSections=noEntries-noPolygonVertices;
|
|---|
| 328 |
|
|---|
| 329 | G4ThreeVectorList ThetaPolygon ;
|
|---|
| 330 | for (i=0;i<noEntries;i+=noPolygonVertices)
|
|---|
| 331 | {
|
|---|
| 332 | for(j=0;j<(noPolygonVertices/2)-1;j++)
|
|---|
| 333 | {
|
|---|
| 334 | ThetaPolygon.push_back((*vertices)[i+j]) ;
|
|---|
| 335 | ThetaPolygon.push_back((*vertices)[i+j+1]) ;
|
|---|
| 336 | ThetaPolygon.push_back((*vertices)[i+noPolygonVertices-2-j]) ;
|
|---|
| 337 | ThetaPolygon.push_back((*vertices)[i+noPolygonVertices-1-j]) ;
|
|---|
| 338 | CalculateClippedPolygonExtent(ThetaPolygon,pVoxelLimit,pAxis,pMin,pMax);
|
|---|
| 339 | ThetaPolygon.clear() ;
|
|---|
| 340 | }
|
|---|
| 341 | }
|
|---|
| 342 | for (i=0;i<noBetweenSections;i+=noPolygonVertices)
|
|---|
| 343 | {
|
|---|
| 344 | for(j=0;j<noPolygonVertices-1;j++)
|
|---|
| 345 | {
|
|---|
| 346 | ThetaPolygon.push_back((*vertices)[i+j]) ;
|
|---|
| 347 | ThetaPolygon.push_back((*vertices)[i+j+1]) ;
|
|---|
| 348 | ThetaPolygon.push_back((*vertices)[i+noPolygonVertices+j+1]) ;
|
|---|
| 349 | ThetaPolygon.push_back((*vertices)[i+noPolygonVertices+j]) ;
|
|---|
| 350 | CalculateClippedPolygonExtent(ThetaPolygon,pVoxelLimit,pAxis,pMin,pMax);
|
|---|
| 351 | ThetaPolygon.clear() ;
|
|---|
| 352 | }
|
|---|
| 353 | ThetaPolygon.push_back((*vertices)[i+noPolygonVertices-1]) ;
|
|---|
| 354 | ThetaPolygon.push_back((*vertices)[i]) ;
|
|---|
| 355 | ThetaPolygon.push_back((*vertices)[i+noPolygonVertices]) ;
|
|---|
| 356 | ThetaPolygon.push_back((*vertices)[i+2*noPolygonVertices-1]) ;
|
|---|
| 357 | CalculateClippedPolygonExtent(ThetaPolygon,pVoxelLimit,pAxis,pMin,pMax);
|
|---|
| 358 | ThetaPolygon.clear() ;
|
|---|
| 359 | }
|
|---|
| 360 |
|
|---|
| 361 | if ((pMin!=kInfinity) || (pMax!=-kInfinity))
|
|---|
| 362 | {
|
|---|
| 363 | existsAfterClip=true;
|
|---|
| 364 |
|
|---|
| 365 | // Add 2*tolerance to avoid precision troubles
|
|---|
| 366 | //
|
|---|
| 367 | pMin-=kCarTolerance;
|
|---|
| 368 | pMax+=kCarTolerance;
|
|---|
| 369 | }
|
|---|
| 370 | else
|
|---|
| 371 | {
|
|---|
| 372 | // Check for case where completely enveloping clipping volume
|
|---|
| 373 | // If point inside then we are confident that the solid completely
|
|---|
| 374 | // envelopes the clipping volume. Hence set min/max extents according
|
|---|
| 375 | // to clipping volume extents along the specified axis.
|
|---|
| 376 |
|
|---|
| 377 | G4ThreeVector clipCentre(
|
|---|
| 378 | (pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5,
|
|---|
| 379 | (pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5,
|
|---|
| 380 | (pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5);
|
|---|
| 381 |
|
|---|
| 382 | if (Inside(pTransform.Inverse().TransformPoint(clipCentre))!=kOutside)
|
|---|
| 383 | {
|
|---|
| 384 | existsAfterClip=true;
|
|---|
| 385 | pMin=pVoxelLimit.GetMinExtent(pAxis);
|
|---|
| 386 | pMax=pVoxelLimit.GetMaxExtent(pAxis);
|
|---|
| 387 | }
|
|---|
| 388 | }
|
|---|
| 389 | delete vertices;
|
|---|
| 390 | return existsAfterClip;
|
|---|
| 391 | }
|
|---|
| 392 | }
|
|---|
| 393 |
|
|---|
| 394 | ///////////////////////////////////////////////////////////////////////////
|
|---|
| 395 | //
|
|---|
| 396 | // Return whether point inside/outside/on surface
|
|---|
| 397 | // Split into radius, phi, theta checks
|
|---|
| 398 | // Each check modifies 'in', or returns as approprate
|
|---|
| 399 |
|
|---|
| 400 | EInside G4Sphere::Inside( const G4ThreeVector& p ) const
|
|---|
| 401 | {
|
|---|
| 402 | G4double rho,rho2,rad2,tolRMin,tolRMax;
|
|---|
| 403 | G4double pPhi,pTheta;
|
|---|
| 404 | EInside in = kOutside;
|
|---|
| 405 | static const G4double halfAngTolerance = kAngTolerance*0.5;
|
|---|
| 406 | const G4double halfRmaxTolerance = fRmaxTolerance*0.5;
|
|---|
| 407 | const G4double halfRminTolerance = fRminTolerance*0.5;
|
|---|
| 408 | const G4double Rmax_minus = fRmax - halfRmaxTolerance;
|
|---|
| 409 | const G4double Rmin_plus = (fRmin > 0) ? fRmin+halfRminTolerance : 0;
|
|---|
| 410 |
|
|---|
| 411 | rho2 = p.x()*p.x() + p.y()*p.y() ;
|
|---|
| 412 | rad2 = rho2 + p.z()*p.z() ;
|
|---|
| 413 |
|
|---|
| 414 | // Check radial surfaces. Sets 'in'
|
|---|
| 415 |
|
|---|
| 416 | tolRMin = Rmin_plus;
|
|---|
| 417 | tolRMax = Rmax_minus;
|
|---|
| 418 |
|
|---|
| 419 | if ( (rad2 <= Rmax_minus*Rmax_minus) && (rad2 >= Rmin_plus*Rmin_plus) )
|
|---|
| 420 | {
|
|---|
| 421 | in = kInside;
|
|---|
| 422 | }
|
|---|
| 423 | else
|
|---|
| 424 | {
|
|---|
| 425 | tolRMax = fRmax + halfRmaxTolerance; // outside case
|
|---|
| 426 | tolRMin = std::max(fRmin-halfRminTolerance, 0.); // outside case
|
|---|
| 427 | if ( (rad2 <= tolRMax*tolRMax) && (rad2 >= tolRMin*tolRMin) )
|
|---|
| 428 | {
|
|---|
| 429 | in = kSurface;
|
|---|
| 430 | }
|
|---|
| 431 | else
|
|---|
| 432 | {
|
|---|
| 433 | return in = kOutside;
|
|---|
| 434 | }
|
|---|
| 435 | }
|
|---|
| 436 |
|
|---|
| 437 | // Phi boundaries : Do not check if it has no phi boundary!
|
|---|
| 438 |
|
|---|
| 439 | if ( !fFullPhiSphere && rho2 ) // [fDPhi < twopi] and [p.x or p.y]
|
|---|
| 440 | {
|
|---|
| 441 | pPhi = std::atan2(p.y(),p.x()) ;
|
|---|
| 442 |
|
|---|
| 443 | if ( pPhi < fSPhi - halfAngTolerance ) { pPhi += twopi; }
|
|---|
| 444 | else if ( pPhi > ePhi + halfAngTolerance ) { pPhi -= twopi; }
|
|---|
| 445 |
|
|---|
| 446 | if ( (pPhi < fSPhi - halfAngTolerance)
|
|---|
| 447 | || (pPhi > ePhi + halfAngTolerance) ) { return in = kOutside; }
|
|---|
| 448 |
|
|---|
| 449 | else if (in == kInside) // else it's kSurface anyway already
|
|---|
| 450 | {
|
|---|
| 451 | if ( (pPhi < fSPhi + halfAngTolerance)
|
|---|
| 452 | || (pPhi > ePhi - halfAngTolerance) ) { in = kSurface; }
|
|---|
| 453 | }
|
|---|
| 454 | }
|
|---|
| 455 |
|
|---|
| 456 | // Theta bondaries
|
|---|
| 457 |
|
|---|
| 458 | if ( (rho2 || p.z()) && (!fFullThetaSphere) )
|
|---|
| 459 | {
|
|---|
| 460 | rho = std::sqrt(rho2);
|
|---|
| 461 | pTheta = std::atan2(rho,p.z());
|
|---|
| 462 |
|
|---|
| 463 | if ( in == kInside )
|
|---|
| 464 | {
|
|---|
| 465 | if ( (pTheta < fSTheta + halfAngTolerance)
|
|---|
| 466 | || (pTheta > eTheta - halfAngTolerance) )
|
|---|
| 467 | {
|
|---|
| 468 | if ( (pTheta >= fSTheta - halfAngTolerance)
|
|---|
| 469 | && (pTheta <= eTheta + halfAngTolerance) )
|
|---|
| 470 | {
|
|---|
| 471 | in = kSurface;
|
|---|
| 472 | }
|
|---|
| 473 | else
|
|---|
| 474 | {
|
|---|
| 475 | in = kOutside;
|
|---|
| 476 | }
|
|---|
| 477 | }
|
|---|
| 478 | }
|
|---|
| 479 | else
|
|---|
| 480 | {
|
|---|
| 481 | if ( (pTheta < fSTheta - halfAngTolerance)
|
|---|
| 482 | || (pTheta > eTheta + halfAngTolerance) )
|
|---|
| 483 | {
|
|---|
| 484 | in = kOutside;
|
|---|
| 485 | }
|
|---|
| 486 | }
|
|---|
| 487 | }
|
|---|
| 488 | return in;
|
|---|
| 489 | }
|
|---|
| 490 |
|
|---|
| 491 | /////////////////////////////////////////////////////////////////////
|
|---|
| 492 | //
|
|---|
| 493 | // Return unit normal of surface closest to p
|
|---|
| 494 | // - note if point on z axis, ignore phi divided sides
|
|---|
| 495 | // - unsafe if point close to z axis a rmin=0 - no explicit checks
|
|---|
| 496 |
|
|---|
| 497 | G4ThreeVector G4Sphere::SurfaceNormal( const G4ThreeVector& p ) const
|
|---|
| 498 | {
|
|---|
| 499 | G4int noSurfaces = 0;
|
|---|
| 500 | G4double rho, rho2, rad, pTheta, pPhi=0.;
|
|---|
| 501 | G4double distRMin = kInfinity;
|
|---|
| 502 | G4double distSPhi = kInfinity, distEPhi = kInfinity;
|
|---|
| 503 | G4double distSTheta = kInfinity, distETheta = kInfinity;
|
|---|
| 504 | G4ThreeVector nR, nPs, nPe, nTs, nTe, nZ(0.,0.,1.);
|
|---|
| 505 | G4ThreeVector norm, sumnorm(0.,0.,0.);
|
|---|
| 506 |
|
|---|
| 507 | static const G4double halfCarTolerance = 0.5*kCarTolerance;
|
|---|
| 508 | static const G4double halfAngTolerance = 0.5*kAngTolerance;
|
|---|
| 509 |
|
|---|
| 510 | rho2 = p.x()*p.x()+p.y()*p.y();
|
|---|
| 511 | rad = std::sqrt(rho2+p.z()*p.z());
|
|---|
| 512 | rho = std::sqrt(rho2);
|
|---|
| 513 |
|
|---|
| 514 | G4double distRMax = std::fabs(rad-fRmax);
|
|---|
| 515 | if (fRmin) distRMin = std::fabs(rad-fRmin);
|
|---|
| 516 |
|
|---|
| 517 | if ( rho && !fFullSphere )
|
|---|
| 518 | {
|
|---|
| 519 | pPhi = std::atan2(p.y(),p.x());
|
|---|
| 520 |
|
|---|
| 521 | if (pPhi < fSPhi-halfAngTolerance) { pPhi += twopi; }
|
|---|
| 522 | else if (pPhi > ePhi+halfAngTolerance) { pPhi -= twopi; }
|
|---|
| 523 | }
|
|---|
| 524 | if ( !fFullPhiSphere )
|
|---|
| 525 | {
|
|---|
| 526 | if ( rho )
|
|---|
| 527 | {
|
|---|
| 528 | distSPhi = std::fabs( pPhi-fSPhi );
|
|---|
| 529 | distEPhi = std::fabs( pPhi-ePhi );
|
|---|
| 530 | }
|
|---|
| 531 | else if( !fRmin )
|
|---|
| 532 | {
|
|---|
| 533 | distSPhi = 0.;
|
|---|
| 534 | distEPhi = 0.;
|
|---|
| 535 | }
|
|---|
| 536 | nPs = G4ThreeVector(sinSPhi,-cosSPhi,0);
|
|---|
| 537 | nPe = G4ThreeVector(-sinEPhi,cosEPhi,0);
|
|---|
| 538 | }
|
|---|
| 539 | if ( !fFullThetaSphere )
|
|---|
| 540 | {
|
|---|
| 541 | if ( rho )
|
|---|
| 542 | {
|
|---|
| 543 | pTheta = std::atan2(rho,p.z());
|
|---|
| 544 | distSTheta = std::fabs(pTheta-fSTheta);
|
|---|
| 545 | distETheta = std::fabs(pTheta-eTheta);
|
|---|
| 546 |
|
|---|
| 547 | nTs = G4ThreeVector(-cosSTheta*p.x()/rho,
|
|---|
| 548 | -cosSTheta*p.y()/rho,
|
|---|
| 549 | sinSTheta );
|
|---|
| 550 |
|
|---|
| 551 | nTe = G4ThreeVector( cosETheta*p.x()/rho,
|
|---|
| 552 | cosETheta*p.y()/rho,
|
|---|
| 553 | -sinETheta );
|
|---|
| 554 | }
|
|---|
| 555 | else if( !fRmin )
|
|---|
| 556 | {
|
|---|
| 557 | if ( fSTheta )
|
|---|
| 558 | {
|
|---|
| 559 | distSTheta = 0.;
|
|---|
| 560 | nTs = G4ThreeVector(0.,0.,-1.);
|
|---|
| 561 | }
|
|---|
| 562 | if ( eTheta < pi )
|
|---|
| 563 | {
|
|---|
| 564 | distETheta = 0.;
|
|---|
| 565 | nTe = G4ThreeVector(0.,0.,1.);
|
|---|
| 566 | }
|
|---|
| 567 | }
|
|---|
| 568 | }
|
|---|
| 569 | if( rad ) { nR = G4ThreeVector(p.x()/rad,p.y()/rad,p.z()/rad); }
|
|---|
| 570 |
|
|---|
| 571 | if( distRMax <= halfCarTolerance )
|
|---|
| 572 | {
|
|---|
| 573 | noSurfaces ++;
|
|---|
| 574 | sumnorm += nR;
|
|---|
| 575 | }
|
|---|
| 576 | if( fRmin && (distRMin <= halfCarTolerance) )
|
|---|
| 577 | {
|
|---|
| 578 | noSurfaces ++;
|
|---|
| 579 | sumnorm -= nR;
|
|---|
| 580 | }
|
|---|
| 581 | if( !fFullPhiSphere )
|
|---|
| 582 | {
|
|---|
| 583 | if (distSPhi <= halfAngTolerance)
|
|---|
| 584 | {
|
|---|
| 585 | noSurfaces ++;
|
|---|
| 586 | sumnorm += nPs;
|
|---|
| 587 | }
|
|---|
| 588 | if (distEPhi <= halfAngTolerance)
|
|---|
| 589 | {
|
|---|
| 590 | noSurfaces ++;
|
|---|
| 591 | sumnorm += nPe;
|
|---|
| 592 | }
|
|---|
| 593 | }
|
|---|
| 594 | if ( !fFullThetaSphere )
|
|---|
| 595 | {
|
|---|
| 596 | if ((distSTheta <= halfAngTolerance) && (fSTheta > 0.))
|
|---|
| 597 | {
|
|---|
| 598 | noSurfaces ++;
|
|---|
| 599 | if ((rad <= halfCarTolerance) && fFullPhiSphere) { sumnorm += nZ; }
|
|---|
| 600 | else { sumnorm += nTs; }
|
|---|
| 601 | }
|
|---|
| 602 | if ((distETheta <= halfAngTolerance) && (eTheta < pi))
|
|---|
| 603 | {
|
|---|
| 604 | noSurfaces ++;
|
|---|
| 605 | if ((rad <= halfCarTolerance) && fFullPhiSphere) { sumnorm -= nZ; }
|
|---|
| 606 | else { sumnorm += nTe; }
|
|---|
| 607 | if(sumnorm.z() == 0.) { sumnorm += nZ; }
|
|---|
| 608 | }
|
|---|
| 609 | }
|
|---|
| 610 | if ( noSurfaces == 0 )
|
|---|
| 611 | {
|
|---|
| 612 | #ifdef G4CSGDEBUG
|
|---|
| 613 | G4Exception("G4Sphere::SurfaceNormal(p)", "Notification", JustWarning,
|
|---|
| 614 | "Point p is not on surface !?" );
|
|---|
| 615 | #endif
|
|---|
| 616 | norm = ApproxSurfaceNormal(p);
|
|---|
| 617 | }
|
|---|
| 618 | else if ( noSurfaces == 1 ) { norm = sumnorm; }
|
|---|
| 619 | else { norm = sumnorm.unit(); }
|
|---|
| 620 | return norm;
|
|---|
| 621 | }
|
|---|
| 622 |
|
|---|
| 623 |
|
|---|
| 624 | /////////////////////////////////////////////////////////////////////////////////////////////
|
|---|
| 625 | //
|
|---|
| 626 | // Algorithm for SurfaceNormal() following the original specification
|
|---|
| 627 | // for points not on the surface
|
|---|
| 628 |
|
|---|
| 629 | G4ThreeVector G4Sphere::ApproxSurfaceNormal( const G4ThreeVector& p ) const
|
|---|
| 630 | {
|
|---|
| 631 | ENorm side;
|
|---|
| 632 | G4ThreeVector norm;
|
|---|
| 633 | G4double rho,rho2,rad,pPhi,pTheta;
|
|---|
| 634 | G4double distRMin,distRMax,distSPhi,distEPhi,
|
|---|
| 635 | distSTheta,distETheta,distMin;
|
|---|
| 636 |
|
|---|
| 637 | rho2=p.x()*p.x()+p.y()*p.y();
|
|---|
| 638 | rad=std::sqrt(rho2+p.z()*p.z());
|
|---|
| 639 | rho=std::sqrt(rho2);
|
|---|
| 640 |
|
|---|
| 641 | //
|
|---|
| 642 | // Distance to r shells
|
|---|
| 643 | //
|
|---|
| 644 |
|
|---|
| 645 | distRMax=std::fabs(rad-fRmax);
|
|---|
| 646 | if (fRmin)
|
|---|
| 647 | {
|
|---|
| 648 | distRMin=std::fabs(rad-fRmin);
|
|---|
| 649 |
|
|---|
| 650 | if (distRMin<distRMax)
|
|---|
| 651 | {
|
|---|
| 652 | distMin=distRMin;
|
|---|
| 653 | side=kNRMin;
|
|---|
| 654 | }
|
|---|
| 655 | else
|
|---|
| 656 | {
|
|---|
| 657 | distMin=distRMax;
|
|---|
| 658 | side=kNRMax;
|
|---|
| 659 | }
|
|---|
| 660 | }
|
|---|
| 661 | else
|
|---|
| 662 | {
|
|---|
| 663 | distMin=distRMax;
|
|---|
| 664 | side=kNRMax;
|
|---|
| 665 | }
|
|---|
| 666 |
|
|---|
| 667 | //
|
|---|
| 668 | // Distance to phi planes
|
|---|
| 669 | //
|
|---|
| 670 | // Protected against (0,0,z)
|
|---|
| 671 |
|
|---|
| 672 | pPhi = std::atan2(p.y(),p.x());
|
|---|
| 673 | if (pPhi<0) { pPhi += twopi; }
|
|---|
| 674 |
|
|---|
| 675 | if (!fFullPhiSphere && rho)
|
|---|
| 676 | {
|
|---|
| 677 | if (fSPhi<0)
|
|---|
| 678 | {
|
|---|
| 679 | distSPhi=std::fabs(pPhi-(fSPhi+twopi))*rho;
|
|---|
| 680 | }
|
|---|
| 681 | else
|
|---|
| 682 | {
|
|---|
| 683 | distSPhi=std::fabs(pPhi-fSPhi)*rho;
|
|---|
| 684 | }
|
|---|
| 685 |
|
|---|
| 686 | distEPhi=std::fabs(pPhi-fSPhi-fDPhi)*rho;
|
|---|
| 687 |
|
|---|
| 688 | // Find new minimum
|
|---|
| 689 | //
|
|---|
| 690 | if (distSPhi<distEPhi)
|
|---|
| 691 | {
|
|---|
| 692 | if (distSPhi<distMin)
|
|---|
| 693 | {
|
|---|
| 694 | distMin=distSPhi;
|
|---|
| 695 | side=kNSPhi;
|
|---|
| 696 | }
|
|---|
| 697 | }
|
|---|
| 698 | else
|
|---|
| 699 | {
|
|---|
| 700 | if (distEPhi<distMin)
|
|---|
| 701 | {
|
|---|
| 702 | distMin=distEPhi;
|
|---|
| 703 | side=kNEPhi;
|
|---|
| 704 | }
|
|---|
| 705 | }
|
|---|
| 706 | }
|
|---|
| 707 |
|
|---|
| 708 | //
|
|---|
| 709 | // Distance to theta planes
|
|---|
| 710 | //
|
|---|
| 711 |
|
|---|
| 712 | if (!fFullThetaSphere && rad)
|
|---|
| 713 | {
|
|---|
| 714 | pTheta=std::atan2(rho,p.z());
|
|---|
| 715 | distSTheta=std::fabs(pTheta-fSTheta)*rad;
|
|---|
| 716 | distETheta=std::fabs(pTheta-fSTheta-fDTheta)*rad;
|
|---|
| 717 |
|
|---|
| 718 | // Find new minimum
|
|---|
| 719 | //
|
|---|
| 720 | if (distSTheta<distETheta)
|
|---|
| 721 | {
|
|---|
| 722 | if (distSTheta<distMin)
|
|---|
| 723 | {
|
|---|
| 724 | distMin = distSTheta ;
|
|---|
| 725 | side = kNSTheta ;
|
|---|
| 726 | }
|
|---|
| 727 | }
|
|---|
| 728 | else
|
|---|
| 729 | {
|
|---|
| 730 | if (distETheta<distMin)
|
|---|
| 731 | {
|
|---|
| 732 | distMin = distETheta ;
|
|---|
| 733 | side = kNETheta ;
|
|---|
| 734 | }
|
|---|
| 735 | }
|
|---|
| 736 | }
|
|---|
| 737 |
|
|---|
| 738 | switch (side)
|
|---|
| 739 | {
|
|---|
| 740 | case kNRMin: // Inner radius
|
|---|
| 741 | norm=G4ThreeVector(-p.x()/rad,-p.y()/rad,-p.z()/rad);
|
|---|
| 742 | break;
|
|---|
| 743 | case kNRMax: // Outer radius
|
|---|
| 744 | norm=G4ThreeVector(p.x()/rad,p.y()/rad,p.z()/rad);
|
|---|
| 745 | break;
|
|---|
| 746 | case kNSPhi:
|
|---|
| 747 | norm=G4ThreeVector(sinSPhi,-cosSPhi,0);
|
|---|
| 748 | break;
|
|---|
| 749 | case kNEPhi:
|
|---|
| 750 | norm=G4ThreeVector(-sinEPhi,cosEPhi,0);
|
|---|
| 751 | break;
|
|---|
| 752 | case kNSTheta:
|
|---|
| 753 | norm=G4ThreeVector(-cosSTheta*std::cos(pPhi),
|
|---|
| 754 | -cosSTheta*std::sin(pPhi),
|
|---|
| 755 | sinSTheta );
|
|---|
| 756 | break;
|
|---|
| 757 | case kNETheta:
|
|---|
| 758 | norm=G4ThreeVector( cosETheta*std::cos(pPhi),
|
|---|
| 759 | cosETheta*std::sin(pPhi),
|
|---|
| 760 | -sinETheta );
|
|---|
| 761 | break;
|
|---|
| 762 | default:
|
|---|
| 763 | DumpInfo();
|
|---|
| 764 | G4Exception("G4Sphere::ApproxSurfaceNormal()","Notification",JustWarning,
|
|---|
| 765 | "Undefined side for valid surface normal to solid.");
|
|---|
| 766 | break;
|
|---|
| 767 | }
|
|---|
| 768 |
|
|---|
| 769 | return norm;
|
|---|
| 770 | }
|
|---|
| 771 |
|
|---|
| 772 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 773 | //
|
|---|
| 774 | // Calculate distance to shape from outside, along normalised vector
|
|---|
| 775 | // - return kInfinity if no intersection, or intersection distance <= tolerance
|
|---|
| 776 | //
|
|---|
| 777 | // -> If point is outside outer radius, compute intersection with rmax
|
|---|
| 778 | // - if no intersection return
|
|---|
| 779 | // - if valid phi,theta return intersection Dist
|
|---|
| 780 | //
|
|---|
| 781 | // -> If shell, compute intersection with inner radius, taking largest +ve root
|
|---|
| 782 | // - if valid phi,theta, save intersection
|
|---|
| 783 | //
|
|---|
| 784 | // -> If phi segmented, compute intersection with phi half planes
|
|---|
| 785 | // - if valid intersection(r,theta), return smallest intersection of
|
|---|
| 786 | // inner shell & phi intersection
|
|---|
| 787 | //
|
|---|
| 788 | // -> If theta segmented, compute intersection with theta cones
|
|---|
| 789 | // - if valid intersection(r,phi), return smallest intersection of
|
|---|
| 790 | // inner shell & theta intersection
|
|---|
| 791 | //
|
|---|
| 792 | //
|
|---|
| 793 | // NOTE:
|
|---|
| 794 | // - `if valid' (above) implies tolerant checking of intersection points
|
|---|
| 795 | //
|
|---|
| 796 | // OPT:
|
|---|
| 797 | // Move tolIO/ORmin/RMax2 precalcs to where they are needed -
|
|---|
| 798 | // not required for most cases.
|
|---|
| 799 | // Avoid atan2 for non theta cut G4Sphere.
|
|---|
| 800 |
|
|---|
| 801 | G4double G4Sphere::DistanceToIn( const G4ThreeVector& p,
|
|---|
| 802 | const G4ThreeVector& v ) const
|
|---|
| 803 | {
|
|---|
| 804 | G4double snxt = kInfinity ; // snxt = default return value
|
|---|
| 805 | G4double rho2, rad2, pDotV2d, pDotV3d, pTheta ;
|
|---|
| 806 | G4double tolSTheta=0., tolETheta=0. ;
|
|---|
| 807 | const G4double dRmax = 100.*fRmax;
|
|---|
| 808 |
|
|---|
| 809 | static const G4double halfCarTolerance = kCarTolerance*0.5;
|
|---|
| 810 | static const G4double halfAngTolerance = kAngTolerance*0.5;
|
|---|
| 811 | const G4double halfRmaxTolerance = fRmaxTolerance*0.5;
|
|---|
| 812 | const G4double halfRminTolerance = fRminTolerance*0.5;
|
|---|
| 813 | const G4double tolORMin2 = (fRmin>halfRminTolerance)
|
|---|
| 814 | ? (fRmin-halfRminTolerance)*(fRmin-halfRminTolerance) : 0;
|
|---|
| 815 | const G4double tolIRMin2 =
|
|---|
| 816 | (fRmin+halfRminTolerance)*(fRmin+halfRminTolerance);
|
|---|
| 817 | const G4double tolORMax2 =
|
|---|
| 818 | (fRmax+halfRmaxTolerance)*(fRmax+halfRmaxTolerance);
|
|---|
| 819 | const G4double tolIRMax2 =
|
|---|
| 820 | (fRmax-halfRmaxTolerance)*(fRmax-halfRmaxTolerance);
|
|---|
| 821 |
|
|---|
| 822 | // Intersection point
|
|---|
| 823 | //
|
|---|
| 824 | G4double xi, yi, zi, rhoi, rhoi2, radi2, iTheta ;
|
|---|
| 825 |
|
|---|
| 826 | // Phi intersection
|
|---|
| 827 | //
|
|---|
| 828 | G4double Comp ;
|
|---|
| 829 |
|
|---|
| 830 | // Phi precalcs
|
|---|
| 831 | //
|
|---|
| 832 | G4double Dist, cosPsi ;
|
|---|
| 833 |
|
|---|
| 834 | // Theta precalcs
|
|---|
| 835 | //
|
|---|
| 836 | G4double dist2STheta, dist2ETheta ;
|
|---|
| 837 | G4double t1, t2, b, c, d2, d, s = kInfinity ;
|
|---|
| 838 |
|
|---|
| 839 | // General Precalcs
|
|---|
| 840 | //
|
|---|
| 841 | rho2 = p.x()*p.x() + p.y()*p.y() ;
|
|---|
| 842 | rad2 = rho2 + p.z()*p.z() ;
|
|---|
| 843 | pTheta = std::atan2(std::sqrt(rho2),p.z()) ;
|
|---|
| 844 |
|
|---|
| 845 | pDotV2d = p.x()*v.x() + p.y()*v.y() ;
|
|---|
| 846 | pDotV3d = pDotV2d + p.z()*v.z() ;
|
|---|
| 847 |
|
|---|
| 848 | // Theta precalcs
|
|---|
| 849 | //
|
|---|
| 850 | if (!fFullThetaSphere)
|
|---|
| 851 | {
|
|---|
| 852 | tolSTheta = fSTheta - halfAngTolerance ;
|
|---|
| 853 | tolETheta = eTheta + halfAngTolerance ;
|
|---|
| 854 | }
|
|---|
| 855 |
|
|---|
| 856 | // Outer spherical shell intersection
|
|---|
| 857 | // - Only if outside tolerant fRmax
|
|---|
| 858 | // - Check for if inside and outer G4Sphere heading through solid (-> 0)
|
|---|
| 859 | // - No intersect -> no intersection with G4Sphere
|
|---|
| 860 | //
|
|---|
| 861 | // Shell eqn: x^2+y^2+z^2=RSPH^2
|
|---|
| 862 | //
|
|---|
| 863 | // => (px+svx)^2+(py+svy)^2+(pz+svz)^2=R^2
|
|---|
| 864 | //
|
|---|
| 865 | // => (px^2+py^2+pz^2) +2s(pxvx+pyvy+pzvz)+s^2(vx^2+vy^2+vz^2)=R^2
|
|---|
| 866 | // => rad2 +2s(pDotV3d) +s^2 =R^2
|
|---|
| 867 | //
|
|---|
| 868 | // => s=-pDotV3d+-std::sqrt(pDotV3d^2-(rad2-R^2))
|
|---|
| 869 |
|
|---|
| 870 | c = rad2 - fRmax*fRmax ;
|
|---|
| 871 |
|
|---|
| 872 | if (c > fRmaxTolerance*fRmax)
|
|---|
| 873 | {
|
|---|
| 874 | // If outside tolerant boundary of outer G4Sphere
|
|---|
| 875 | // [should be std::sqrt(rad2)-fRmax > halfRmaxTolerance]
|
|---|
| 876 |
|
|---|
| 877 | d2 = pDotV3d*pDotV3d - c ;
|
|---|
| 878 |
|
|---|
| 879 | if ( d2 >= 0 )
|
|---|
| 880 | {
|
|---|
| 881 | s = -pDotV3d - std::sqrt(d2) ;
|
|---|
| 882 |
|
|---|
| 883 | if (s >= 0 )
|
|---|
| 884 | {
|
|---|
| 885 | if ( s>dRmax ) // Avoid rounding errors due to precision issues seen on
|
|---|
| 886 | { // 64 bits systems. Split long distances and recompute
|
|---|
| 887 | G4double fTerm = s-std::fmod(s,dRmax);
|
|---|
| 888 | s = fTerm + DistanceToIn(p+fTerm*v,v);
|
|---|
| 889 | }
|
|---|
| 890 | xi = p.x() + s*v.x() ;
|
|---|
| 891 | yi = p.y() + s*v.y() ;
|
|---|
| 892 | rhoi = std::sqrt(xi*xi + yi*yi) ;
|
|---|
| 893 |
|
|---|
| 894 | if (!fFullPhiSphere && rhoi) // Check phi intersection
|
|---|
| 895 | {
|
|---|
| 896 | cosPsi = (xi*cosCPhi + yi*sinCPhi)/rhoi ;
|
|---|
| 897 |
|
|---|
| 898 | if (cosPsi >= cosHDPhiOT)
|
|---|
| 899 | {
|
|---|
| 900 | if (!fFullThetaSphere) // Check theta intersection
|
|---|
| 901 | {
|
|---|
| 902 | zi = p.z() + s*v.z() ;
|
|---|
| 903 |
|
|---|
| 904 | // rhoi & zi can never both be 0
|
|---|
| 905 | // (=>intersect at origin =>fRmax=0)
|
|---|
| 906 | //
|
|---|
| 907 | iTheta = std::atan2(rhoi,zi) ;
|
|---|
| 908 | if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) )
|
|---|
| 909 | {
|
|---|
| 910 | return snxt = s ;
|
|---|
| 911 | }
|
|---|
| 912 | }
|
|---|
| 913 | else
|
|---|
| 914 | {
|
|---|
| 915 | return snxt=s;
|
|---|
| 916 | }
|
|---|
| 917 | }
|
|---|
| 918 | }
|
|---|
| 919 | else
|
|---|
| 920 | {
|
|---|
| 921 | if (!fFullThetaSphere) // Check theta intersection
|
|---|
| 922 | {
|
|---|
| 923 | zi = p.z() + s*v.z() ;
|
|---|
| 924 |
|
|---|
| 925 | // rhoi & zi can never both be 0
|
|---|
| 926 | // (=>intersect at origin => fRmax=0 !)
|
|---|
| 927 | //
|
|---|
| 928 | iTheta = std::atan2(rhoi,zi) ;
|
|---|
| 929 | if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) )
|
|---|
| 930 | {
|
|---|
| 931 | return snxt=s;
|
|---|
| 932 | }
|
|---|
| 933 | }
|
|---|
| 934 | else
|
|---|
| 935 | {
|
|---|
| 936 | return snxt = s ;
|
|---|
| 937 | }
|
|---|
| 938 | }
|
|---|
| 939 | }
|
|---|
| 940 | }
|
|---|
| 941 | else // No intersection with G4Sphere
|
|---|
| 942 | {
|
|---|
| 943 | return snxt=kInfinity;
|
|---|
| 944 | }
|
|---|
| 945 | }
|
|---|
| 946 | else
|
|---|
| 947 | {
|
|---|
| 948 | // Inside outer radius
|
|---|
| 949 | // check not inside, and heading through G4Sphere (-> 0 to in)
|
|---|
| 950 |
|
|---|
| 951 | d2 = pDotV3d*pDotV3d - c ;
|
|---|
| 952 |
|
|---|
| 953 | if ( (rad2 > tolIRMax2)
|
|---|
| 954 | && ( (d2 >= fRmaxTolerance*fRmax) && (pDotV3d < 0) ) )
|
|---|
| 955 | {
|
|---|
| 956 | if (!fFullPhiSphere)
|
|---|
| 957 | {
|
|---|
| 958 | // Use inner phi tolerant boundary -> if on tolerant
|
|---|
| 959 | // phi boundaries, phi intersect code handles leaving/entering checks
|
|---|
| 960 |
|
|---|
| 961 | cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/std::sqrt(rho2) ;
|
|---|
| 962 |
|
|---|
| 963 | if (cosPsi>=cosHDPhiIT)
|
|---|
| 964 | {
|
|---|
| 965 | // inside radii, delta r -ve, inside phi
|
|---|
| 966 |
|
|---|
| 967 | if ( !fFullThetaSphere )
|
|---|
| 968 | {
|
|---|
| 969 | if ( (pTheta >= tolSTheta + kAngTolerance)
|
|---|
| 970 | && (pTheta <= tolETheta - kAngTolerance) )
|
|---|
| 971 | {
|
|---|
| 972 | return snxt=0;
|
|---|
| 973 | }
|
|---|
| 974 | }
|
|---|
| 975 | else // strictly inside Theta in both cases
|
|---|
| 976 | {
|
|---|
| 977 | return snxt=0;
|
|---|
| 978 | }
|
|---|
| 979 | }
|
|---|
| 980 | }
|
|---|
| 981 | else
|
|---|
| 982 | {
|
|---|
| 983 | if ( !fFullThetaSphere )
|
|---|
| 984 | {
|
|---|
| 985 | if ( (pTheta >= tolSTheta + kAngTolerance)
|
|---|
| 986 | && (pTheta <= tolETheta - kAngTolerance) )
|
|---|
| 987 | {
|
|---|
| 988 | return snxt=0;
|
|---|
| 989 | }
|
|---|
| 990 | }
|
|---|
| 991 | else // strictly inside Theta in both cases
|
|---|
| 992 | {
|
|---|
| 993 | return snxt=0;
|
|---|
| 994 | }
|
|---|
| 995 | }
|
|---|
| 996 | }
|
|---|
| 997 | }
|
|---|
| 998 |
|
|---|
| 999 | // Inner spherical shell intersection
|
|---|
| 1000 | // - Always farthest root, because would have passed through outer
|
|---|
| 1001 | // surface first.
|
|---|
| 1002 | // - Tolerant check if travelling through solid
|
|---|
| 1003 |
|
|---|
| 1004 | if (fRmin)
|
|---|
| 1005 | {
|
|---|
| 1006 | c = rad2 - fRmin*fRmin ;
|
|---|
| 1007 | d2 = pDotV3d*pDotV3d - c ;
|
|---|
| 1008 |
|
|---|
| 1009 | // Within tolerance inner radius of inner G4Sphere
|
|---|
| 1010 | // Check for immediate entry/already inside and travelling outwards
|
|---|
| 1011 |
|
|---|
| 1012 | if ( (c > -halfRminTolerance) && (rad2 < tolIRMin2)
|
|---|
| 1013 | && ( (d2 < fRmin*kCarTolerance) || (pDotV3d >= 0) ) )
|
|---|
| 1014 | {
|
|---|
| 1015 | if ( !fFullPhiSphere )
|
|---|
| 1016 | {
|
|---|
| 1017 | // Use inner phi tolerant boundary -> if on tolerant
|
|---|
| 1018 | // phi boundaries, phi intersect code handles leaving/entering checks
|
|---|
| 1019 |
|
|---|
| 1020 | cosPsi = (p.x()*cosCPhi+p.y()*sinCPhi)/std::sqrt(rho2) ;
|
|---|
| 1021 | if (cosPsi >= cosHDPhiIT)
|
|---|
| 1022 | {
|
|---|
| 1023 | // inside radii, delta r -ve, inside phi
|
|---|
| 1024 | //
|
|---|
| 1025 | if ( !fFullThetaSphere )
|
|---|
| 1026 | {
|
|---|
| 1027 | if ( (pTheta >= tolSTheta + kAngTolerance)
|
|---|
| 1028 | && (pTheta <= tolETheta - kAngTolerance) )
|
|---|
| 1029 | {
|
|---|
| 1030 | return snxt=0;
|
|---|
| 1031 | }
|
|---|
| 1032 | }
|
|---|
| 1033 | else
|
|---|
| 1034 | {
|
|---|
| 1035 | return snxt = 0 ;
|
|---|
| 1036 | }
|
|---|
| 1037 | }
|
|---|
| 1038 | }
|
|---|
| 1039 | else
|
|---|
| 1040 | {
|
|---|
| 1041 | if ( !fFullThetaSphere )
|
|---|
| 1042 | {
|
|---|
| 1043 | if ( (pTheta >= tolSTheta + kAngTolerance)
|
|---|
| 1044 | && (pTheta <= tolETheta - kAngTolerance) )
|
|---|
| 1045 | {
|
|---|
| 1046 | return snxt = 0 ;
|
|---|
| 1047 | }
|
|---|
| 1048 | }
|
|---|
| 1049 | else
|
|---|
| 1050 | {
|
|---|
| 1051 | return snxt=0;
|
|---|
| 1052 | }
|
|---|
| 1053 | }
|
|---|
| 1054 | }
|
|---|
| 1055 | else // Not special tolerant case
|
|---|
| 1056 | {
|
|---|
| 1057 | if (d2 >= 0)
|
|---|
| 1058 | {
|
|---|
| 1059 | s = -pDotV3d + std::sqrt(d2) ;
|
|---|
| 1060 | if ( s >= halfRminTolerance ) // It was >= 0 ??
|
|---|
| 1061 | {
|
|---|
| 1062 | xi = p.x() + s*v.x() ;
|
|---|
| 1063 | yi = p.y() + s*v.y() ;
|
|---|
| 1064 | rhoi = std::sqrt(xi*xi+yi*yi) ;
|
|---|
| 1065 |
|
|---|
| 1066 | if ( !fFullPhiSphere && rhoi ) // Check phi intersection
|
|---|
| 1067 | {
|
|---|
| 1068 | cosPsi = (xi*cosCPhi + yi*sinCPhi)/rhoi ;
|
|---|
| 1069 |
|
|---|
| 1070 | if (cosPsi >= cosHDPhiOT)
|
|---|
| 1071 | {
|
|---|
| 1072 | if ( !fFullThetaSphere ) // Check theta intersection
|
|---|
| 1073 | {
|
|---|
| 1074 | zi = p.z() + s*v.z() ;
|
|---|
| 1075 |
|
|---|
| 1076 | // rhoi & zi can never both be 0
|
|---|
| 1077 | // (=>intersect at origin =>fRmax=0)
|
|---|
| 1078 | //
|
|---|
| 1079 | iTheta = std::atan2(rhoi,zi) ;
|
|---|
| 1080 | if ( (iTheta >= tolSTheta) && (iTheta<=tolETheta) )
|
|---|
| 1081 | {
|
|---|
| 1082 | snxt = s ;
|
|---|
| 1083 | }
|
|---|
| 1084 | }
|
|---|
| 1085 | else
|
|---|
| 1086 | {
|
|---|
| 1087 | snxt=s;
|
|---|
| 1088 | }
|
|---|
| 1089 | }
|
|---|
| 1090 | }
|
|---|
| 1091 | else
|
|---|
| 1092 | {
|
|---|
| 1093 | if ( !fFullThetaSphere ) // Check theta intersection
|
|---|
| 1094 | {
|
|---|
| 1095 | zi = p.z() + s*v.z() ;
|
|---|
| 1096 |
|
|---|
| 1097 | // rhoi & zi can never both be 0
|
|---|
| 1098 | // (=>intersect at origin => fRmax=0 !)
|
|---|
| 1099 | //
|
|---|
| 1100 | iTheta = std::atan2(rhoi,zi) ;
|
|---|
| 1101 | if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) )
|
|---|
| 1102 | {
|
|---|
| 1103 | snxt = s;
|
|---|
| 1104 | }
|
|---|
| 1105 | }
|
|---|
| 1106 | else
|
|---|
| 1107 | {
|
|---|
| 1108 | snxt = s;
|
|---|
| 1109 | }
|
|---|
| 1110 | }
|
|---|
| 1111 | }
|
|---|
| 1112 | }
|
|---|
| 1113 | }
|
|---|
| 1114 | }
|
|---|
| 1115 |
|
|---|
| 1116 | // Phi segment intersection
|
|---|
| 1117 | //
|
|---|
| 1118 | // o Tolerant of points inside phi planes by up to kCarTolerance*0.5
|
|---|
| 1119 | //
|
|---|
| 1120 | // o NOTE: Large duplication of code between sphi & ephi checks
|
|---|
| 1121 | // -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane
|
|---|
| 1122 | // intersection check <=0 -> >=0
|
|---|
| 1123 | // -> Should use some form of loop Construct
|
|---|
| 1124 | //
|
|---|
| 1125 | if ( !fFullPhiSphere )
|
|---|
| 1126 | {
|
|---|
| 1127 | // First phi surface ('S'tarting phi)
|
|---|
| 1128 | // Comp = Component in outwards normal dirn
|
|---|
| 1129 | //
|
|---|
| 1130 | Comp = v.x()*sinSPhi - v.y()*cosSPhi ;
|
|---|
| 1131 |
|
|---|
| 1132 | if ( Comp < 0 )
|
|---|
| 1133 | {
|
|---|
| 1134 | Dist = p.y()*cosSPhi - p.x()*sinSPhi ;
|
|---|
| 1135 |
|
|---|
| 1136 | if (Dist < halfCarTolerance)
|
|---|
| 1137 | {
|
|---|
| 1138 | s = Dist/Comp ;
|
|---|
| 1139 |
|
|---|
| 1140 | if (s < snxt)
|
|---|
| 1141 | {
|
|---|
| 1142 | if ( s > 0 )
|
|---|
| 1143 | {
|
|---|
| 1144 | xi = p.x() + s*v.x() ;
|
|---|
| 1145 | yi = p.y() + s*v.y() ;
|
|---|
| 1146 | zi = p.z() + s*v.z() ;
|
|---|
| 1147 | rhoi2 = xi*xi + yi*yi ;
|
|---|
| 1148 | radi2 = rhoi2 + zi*zi ;
|
|---|
| 1149 | }
|
|---|
| 1150 | else
|
|---|
| 1151 | {
|
|---|
| 1152 | s = 0 ;
|
|---|
| 1153 | xi = p.x() ;
|
|---|
| 1154 | yi = p.y() ;
|
|---|
| 1155 | zi = p.z() ;
|
|---|
| 1156 | rhoi2 = rho2 ;
|
|---|
| 1157 | radi2 = rad2 ;
|
|---|
| 1158 | }
|
|---|
| 1159 | if ( (radi2 <= tolORMax2)
|
|---|
| 1160 | && (radi2 >= tolORMin2)
|
|---|
| 1161 | && ((yi*cosCPhi-xi*sinCPhi) <= 0) )
|
|---|
| 1162 | {
|
|---|
| 1163 | // Check theta intersection
|
|---|
| 1164 | // rhoi & zi can never both be 0
|
|---|
| 1165 | // (=>intersect at origin =>fRmax=0)
|
|---|
| 1166 | //
|
|---|
| 1167 | if ( !fFullThetaSphere )
|
|---|
| 1168 | {
|
|---|
| 1169 | iTheta = std::atan2(std::sqrt(rhoi2),zi) ;
|
|---|
| 1170 | if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) )
|
|---|
| 1171 | {
|
|---|
| 1172 | // r and theta intersections good
|
|---|
| 1173 | // - check intersecting with correct half-plane
|
|---|
| 1174 |
|
|---|
| 1175 | if ((yi*cosCPhi-xi*sinCPhi) <= 0)
|
|---|
| 1176 | {
|
|---|
| 1177 | snxt = s ;
|
|---|
| 1178 | }
|
|---|
| 1179 | }
|
|---|
| 1180 | }
|
|---|
| 1181 | else
|
|---|
| 1182 | {
|
|---|
| 1183 | snxt = s ;
|
|---|
| 1184 | }
|
|---|
| 1185 | }
|
|---|
| 1186 | }
|
|---|
| 1187 | }
|
|---|
| 1188 | }
|
|---|
| 1189 |
|
|---|
| 1190 | // Second phi surface ('E'nding phi)
|
|---|
| 1191 | // Component in outwards normal dirn
|
|---|
| 1192 |
|
|---|
| 1193 | Comp = -( v.x()*sinEPhi-v.y()*cosEPhi ) ;
|
|---|
| 1194 |
|
|---|
| 1195 | if (Comp < 0)
|
|---|
| 1196 | {
|
|---|
| 1197 | Dist = -(p.y()*cosEPhi-p.x()*sinEPhi) ;
|
|---|
| 1198 | if ( Dist < halfCarTolerance )
|
|---|
| 1199 | {
|
|---|
| 1200 | s = Dist/Comp ;
|
|---|
| 1201 |
|
|---|
| 1202 | if ( s < snxt )
|
|---|
| 1203 | {
|
|---|
| 1204 | if (s > 0)
|
|---|
| 1205 | {
|
|---|
| 1206 | xi = p.x() + s*v.x() ;
|
|---|
| 1207 | yi = p.y() + s*v.y() ;
|
|---|
| 1208 | zi = p.z() + s*v.z() ;
|
|---|
| 1209 | rhoi2 = xi*xi + yi*yi ;
|
|---|
| 1210 | radi2 = rhoi2 + zi*zi ;
|
|---|
| 1211 | }
|
|---|
| 1212 | else
|
|---|
| 1213 | {
|
|---|
| 1214 | s = 0 ;
|
|---|
| 1215 | xi = p.x() ;
|
|---|
| 1216 | yi = p.y() ;
|
|---|
| 1217 | zi = p.z() ;
|
|---|
| 1218 | rhoi2 = rho2 ;
|
|---|
| 1219 | radi2 = rad2 ;
|
|---|
| 1220 | }
|
|---|
| 1221 | if ( (radi2 <= tolORMax2)
|
|---|
| 1222 | && (radi2 >= tolORMin2)
|
|---|
| 1223 | && ((yi*cosCPhi-xi*sinCPhi) >= 0) )
|
|---|
| 1224 | {
|
|---|
| 1225 | // Check theta intersection
|
|---|
| 1226 | // rhoi & zi can never both be 0
|
|---|
| 1227 | // (=>intersect at origin =>fRmax=0)
|
|---|
| 1228 | //
|
|---|
| 1229 | if ( !fFullThetaSphere )
|
|---|
| 1230 | {
|
|---|
| 1231 | iTheta = std::atan2(std::sqrt(rhoi2),zi) ;
|
|---|
| 1232 | if ( (iTheta >= tolSTheta) && (iTheta <= tolETheta) )
|
|---|
| 1233 | {
|
|---|
| 1234 | // r and theta intersections good
|
|---|
| 1235 | // - check intersecting with correct half-plane
|
|---|
| 1236 |
|
|---|
| 1237 | if ((yi*cosCPhi-xi*sinCPhi) >= 0)
|
|---|
| 1238 | {
|
|---|
| 1239 | snxt = s ;
|
|---|
| 1240 | }
|
|---|
| 1241 | }
|
|---|
| 1242 | }
|
|---|
| 1243 | else
|
|---|
| 1244 | {
|
|---|
| 1245 | snxt = s ;
|
|---|
| 1246 | }
|
|---|
| 1247 | }
|
|---|
| 1248 | }
|
|---|
| 1249 | }
|
|---|
| 1250 | }
|
|---|
| 1251 | }
|
|---|
| 1252 |
|
|---|
| 1253 | // Theta segment intersection
|
|---|
| 1254 |
|
|---|
| 1255 | if ( !fFullThetaSphere )
|
|---|
| 1256 | {
|
|---|
| 1257 |
|
|---|
| 1258 | // Intersection with theta surfaces
|
|---|
| 1259 | // Known failure cases:
|
|---|
| 1260 | // o Inside tolerance of stheta surface, skim
|
|---|
| 1261 | // ~parallel to cone and Hit & enter etheta surface [& visa versa]
|
|---|
| 1262 | //
|
|---|
| 1263 | // To solve: Check 2nd root of etheta surface in addition to stheta
|
|---|
| 1264 | //
|
|---|
| 1265 | // o start/end theta is exactly pi/2
|
|---|
| 1266 | // Intersections with cones
|
|---|
| 1267 | //
|
|---|
| 1268 | // Cone equation: x^2+y^2=z^2tan^2(t)
|
|---|
| 1269 | //
|
|---|
| 1270 | // => (px+svx)^2+(py+svy)^2=(pz+svz)^2tan^2(t)
|
|---|
| 1271 | //
|
|---|
| 1272 | // => (px^2+py^2-pz^2tan^2(t))+2s(pxvx+pyvy-pzvztan^2(t))
|
|---|
| 1273 | // + s^2(vx^2+vy^2-vz^2tan^2(t)) = 0
|
|---|
| 1274 | //
|
|---|
| 1275 | // => s^2(1-vz^2(1+tan^2(t))+2s(pdotv2d-pzvztan^2(t))+(rho2-pz^2tan^2(t))=0
|
|---|
| 1276 |
|
|---|
| 1277 | if (fSTheta)
|
|---|
| 1278 | {
|
|---|
| 1279 | dist2STheta = rho2 - p.z()*p.z()*tanSTheta2 ;
|
|---|
| 1280 | }
|
|---|
| 1281 | else
|
|---|
| 1282 | {
|
|---|
| 1283 | dist2STheta = kInfinity ;
|
|---|
| 1284 | }
|
|---|
| 1285 | if ( eTheta < pi )
|
|---|
| 1286 | {
|
|---|
| 1287 | dist2ETheta=rho2-p.z()*p.z()*tanETheta2;
|
|---|
| 1288 | }
|
|---|
| 1289 | else
|
|---|
| 1290 | {
|
|---|
| 1291 | dist2ETheta=kInfinity;
|
|---|
| 1292 | }
|
|---|
| 1293 | if ( pTheta < tolSTheta )
|
|---|
| 1294 | {
|
|---|
| 1295 | // Inside (theta<stheta-tol) s theta cone
|
|---|
| 1296 | // First root of stheta cone, second if first root -ve
|
|---|
| 1297 |
|
|---|
| 1298 | t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ;
|
|---|
| 1299 | t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ;
|
|---|
| 1300 | if (t1)
|
|---|
| 1301 | {
|
|---|
| 1302 | b = t2/t1 ;
|
|---|
| 1303 | c = dist2STheta/t1 ;
|
|---|
| 1304 | d2 = b*b - c ;
|
|---|
| 1305 |
|
|---|
| 1306 | if ( d2 >= 0 )
|
|---|
| 1307 | {
|
|---|
| 1308 | d = std::sqrt(d2) ;
|
|---|
| 1309 | s = -b - d ; // First root
|
|---|
| 1310 | zi = p.z() + s*v.z();
|
|---|
| 1311 |
|
|---|
| 1312 | if ( (s < 0) || (zi*(fSTheta - halfpi) > 0) )
|
|---|
| 1313 | {
|
|---|
| 1314 | s = -b+d; // Second root
|
|---|
| 1315 | }
|
|---|
| 1316 | if ((s >= 0) && (s < snxt))
|
|---|
| 1317 | {
|
|---|
| 1318 | xi = p.x() + s*v.x();
|
|---|
| 1319 | yi = p.y() + s*v.y();
|
|---|
| 1320 | zi = p.z() + s*v.z();
|
|---|
| 1321 | rhoi2 = xi*xi + yi*yi;
|
|---|
| 1322 | radi2 = rhoi2 + zi*zi;
|
|---|
| 1323 | if ( (radi2 <= tolORMax2)
|
|---|
| 1324 | && (radi2 >= tolORMin2)
|
|---|
| 1325 | && (zi*(fSTheta - halfpi) <= 0) )
|
|---|
| 1326 | {
|
|---|
| 1327 | if ( !fFullPhiSphere && rhoi2 ) // Check phi intersection
|
|---|
| 1328 | {
|
|---|
| 1329 | cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
|
|---|
| 1330 | if (cosPsi >= cosHDPhiOT)
|
|---|
| 1331 | {
|
|---|
| 1332 | snxt = s ;
|
|---|
| 1333 | }
|
|---|
| 1334 | }
|
|---|
| 1335 | else
|
|---|
| 1336 | {
|
|---|
| 1337 | snxt = s ;
|
|---|
| 1338 | }
|
|---|
| 1339 | }
|
|---|
| 1340 | }
|
|---|
| 1341 | }
|
|---|
| 1342 | }
|
|---|
| 1343 |
|
|---|
| 1344 | // Possible intersection with ETheta cone.
|
|---|
| 1345 | // Second >= 0 root should be considered
|
|---|
| 1346 |
|
|---|
| 1347 | if ( eTheta < pi )
|
|---|
| 1348 | {
|
|---|
| 1349 | t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ;
|
|---|
| 1350 | t2 = pDotV2d - p.z()*v.z()*tanETheta2 ;
|
|---|
| 1351 | if (t1)
|
|---|
| 1352 | {
|
|---|
| 1353 | b = t2/t1 ;
|
|---|
| 1354 | c = dist2ETheta/t1 ;
|
|---|
| 1355 | d2 = b*b - c ;
|
|---|
| 1356 |
|
|---|
| 1357 | if (d2 >= 0)
|
|---|
| 1358 | {
|
|---|
| 1359 | d = std::sqrt(d2) ;
|
|---|
| 1360 | s = -b + d ; // Second root
|
|---|
| 1361 |
|
|---|
| 1362 | if ( (s >= 0) && (s < snxt) )
|
|---|
| 1363 | {
|
|---|
| 1364 | xi = p.x() + s*v.x() ;
|
|---|
| 1365 | yi = p.y() + s*v.y() ;
|
|---|
| 1366 | zi = p.z() + s*v.z() ;
|
|---|
| 1367 | rhoi2 = xi*xi + yi*yi ;
|
|---|
| 1368 | radi2 = rhoi2 + zi*zi ;
|
|---|
| 1369 |
|
|---|
| 1370 | if ( (radi2 <= tolORMax2)
|
|---|
| 1371 | && (radi2 >= tolORMin2)
|
|---|
| 1372 | && (zi*(eTheta - halfpi) <= 0) )
|
|---|
| 1373 | {
|
|---|
| 1374 | if (!fFullPhiSphere && rhoi2) // Check phi intersection
|
|---|
| 1375 | {
|
|---|
| 1376 | cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
|
|---|
| 1377 | if (cosPsi >= cosHDPhiOT)
|
|---|
| 1378 | {
|
|---|
| 1379 | snxt = s ;
|
|---|
| 1380 | }
|
|---|
| 1381 | }
|
|---|
| 1382 | else
|
|---|
| 1383 | {
|
|---|
| 1384 | snxt = s ;
|
|---|
| 1385 | }
|
|---|
| 1386 | }
|
|---|
| 1387 | }
|
|---|
| 1388 | }
|
|---|
| 1389 | }
|
|---|
| 1390 | }
|
|---|
| 1391 | }
|
|---|
| 1392 | else if ( pTheta > tolETheta )
|
|---|
| 1393 | {
|
|---|
| 1394 | // dist2ETheta<-kRadTolerance*0.5 && dist2STheta>0)
|
|---|
| 1395 | // Inside (theta > etheta+tol) e-theta cone
|
|---|
| 1396 | // First root of etheta cone, second if first root 'imaginary'
|
|---|
| 1397 |
|
|---|
| 1398 | t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ;
|
|---|
| 1399 | t2 = pDotV2d - p.z()*v.z()*tanETheta2 ;
|
|---|
| 1400 | if (t1)
|
|---|
| 1401 | {
|
|---|
| 1402 | b = t2/t1 ;
|
|---|
| 1403 | c = dist2ETheta/t1 ;
|
|---|
| 1404 | d2 = b*b - c ;
|
|---|
| 1405 |
|
|---|
| 1406 | if (d2 >= 0)
|
|---|
| 1407 | {
|
|---|
| 1408 | d = std::sqrt(d2) ;
|
|---|
| 1409 | s = -b - d ; // First root
|
|---|
| 1410 | zi = p.z() + s*v.z();
|
|---|
| 1411 |
|
|---|
| 1412 | if ( (s < 0) || (zi*(eTheta - halfpi) > 0) )
|
|---|
| 1413 | {
|
|---|
| 1414 | s = -b + d ; // second root
|
|---|
| 1415 | }
|
|---|
| 1416 | if ( (s >= 0) && (s < snxt) )
|
|---|
| 1417 | {
|
|---|
| 1418 | xi = p.x() + s*v.x() ;
|
|---|
| 1419 | yi = p.y() + s*v.y() ;
|
|---|
| 1420 | zi = p.z() + s*v.z() ;
|
|---|
| 1421 | rhoi2 = xi*xi + yi*yi ;
|
|---|
| 1422 | radi2 = rhoi2 + zi*zi ;
|
|---|
| 1423 |
|
|---|
| 1424 | if ( (radi2 <= tolORMax2)
|
|---|
| 1425 | && (radi2 >= tolORMin2)
|
|---|
| 1426 | && (zi*(eTheta - halfpi) <= 0) )
|
|---|
| 1427 | {
|
|---|
| 1428 | if (!fFullPhiSphere && rhoi2) // Check phi intersection
|
|---|
| 1429 | {
|
|---|
| 1430 | cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
|
|---|
| 1431 | if (cosPsi >= cosHDPhiOT)
|
|---|
| 1432 | {
|
|---|
| 1433 | snxt = s ;
|
|---|
| 1434 | }
|
|---|
| 1435 | }
|
|---|
| 1436 | else
|
|---|
| 1437 | {
|
|---|
| 1438 | snxt = s ;
|
|---|
| 1439 | }
|
|---|
| 1440 | }
|
|---|
| 1441 | }
|
|---|
| 1442 | }
|
|---|
| 1443 | }
|
|---|
| 1444 |
|
|---|
| 1445 | // Possible intersection with STheta cone.
|
|---|
| 1446 | // Second >= 0 root should be considered
|
|---|
| 1447 |
|
|---|
| 1448 | if ( fSTheta )
|
|---|
| 1449 | {
|
|---|
| 1450 | t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ;
|
|---|
| 1451 | t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ;
|
|---|
| 1452 | if (t1)
|
|---|
| 1453 | {
|
|---|
| 1454 | b = t2/t1 ;
|
|---|
| 1455 | c = dist2STheta/t1 ;
|
|---|
| 1456 | d2 = b*b - c ;
|
|---|
| 1457 |
|
|---|
| 1458 | if (d2 >= 0)
|
|---|
| 1459 | {
|
|---|
| 1460 | d = std::sqrt(d2) ;
|
|---|
| 1461 | s = -b + d ; // Second root
|
|---|
| 1462 |
|
|---|
| 1463 | if ( (s >= 0) && (s < snxt) )
|
|---|
| 1464 | {
|
|---|
| 1465 | xi = p.x() + s*v.x() ;
|
|---|
| 1466 | yi = p.y() + s*v.y() ;
|
|---|
| 1467 | zi = p.z() + s*v.z() ;
|
|---|
| 1468 | rhoi2 = xi*xi + yi*yi ;
|
|---|
| 1469 | radi2 = rhoi2 + zi*zi ;
|
|---|
| 1470 |
|
|---|
| 1471 | if ( (radi2 <= tolORMax2)
|
|---|
| 1472 | && (radi2 >= tolORMin2)
|
|---|
| 1473 | && (zi*(fSTheta - halfpi) <= 0) )
|
|---|
| 1474 | {
|
|---|
| 1475 | if (!fFullPhiSphere && rhoi2) // Check phi intersection
|
|---|
| 1476 | {
|
|---|
| 1477 | cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
|
|---|
| 1478 | if (cosPsi >= cosHDPhiOT)
|
|---|
| 1479 | {
|
|---|
| 1480 | snxt = s ;
|
|---|
| 1481 | }
|
|---|
| 1482 | }
|
|---|
| 1483 | else
|
|---|
| 1484 | {
|
|---|
| 1485 | snxt = s ;
|
|---|
| 1486 | }
|
|---|
| 1487 | }
|
|---|
| 1488 | }
|
|---|
| 1489 | }
|
|---|
| 1490 | }
|
|---|
| 1491 | }
|
|---|
| 1492 | }
|
|---|
| 1493 | else if ( (pTheta < tolSTheta + kAngTolerance)
|
|---|
| 1494 | && (fSTheta > halfAngTolerance) )
|
|---|
| 1495 | {
|
|---|
| 1496 | // In tolerance of stheta
|
|---|
| 1497 | // If entering through solid [r,phi] => 0 to in
|
|---|
| 1498 | // else try 2nd root
|
|---|
| 1499 |
|
|---|
| 1500 | t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ;
|
|---|
| 1501 | if ( (t2>=0 && tolIRMin2<rad2 && rad2<tolIRMax2 && fSTheta<halfpi)
|
|---|
| 1502 | || (t2<0 && tolIRMin2<rad2 && rad2<tolIRMax2 && fSTheta>halfpi)
|
|---|
| 1503 | || (v.z()<0 && tolIRMin2<rad2 && rad2<tolIRMax2 && fSTheta==halfpi) )
|
|---|
| 1504 | {
|
|---|
| 1505 | if (!fFullPhiSphere && rho2) // Check phi intersection
|
|---|
| 1506 | {
|
|---|
| 1507 | cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/std::sqrt(rho2) ;
|
|---|
| 1508 | if (cosPsi >= cosHDPhiIT)
|
|---|
| 1509 | {
|
|---|
| 1510 | return 0 ;
|
|---|
| 1511 | }
|
|---|
| 1512 | }
|
|---|
| 1513 | else
|
|---|
| 1514 | {
|
|---|
| 1515 | return 0 ;
|
|---|
| 1516 | }
|
|---|
| 1517 | }
|
|---|
| 1518 |
|
|---|
| 1519 | // Not entering immediately/travelling through
|
|---|
| 1520 |
|
|---|
| 1521 | t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ;
|
|---|
| 1522 | if (t1)
|
|---|
| 1523 | {
|
|---|
| 1524 | b = t2/t1 ;
|
|---|
| 1525 | c = dist2STheta/t1 ;
|
|---|
| 1526 | d2 = b*b - c ;
|
|---|
| 1527 |
|
|---|
| 1528 | if (d2 >= 0)
|
|---|
| 1529 | {
|
|---|
| 1530 | d = std::sqrt(d2) ;
|
|---|
| 1531 | s = -b + d ;
|
|---|
| 1532 | if ( (s >= halfCarTolerance) && (s < snxt) && (fSTheta < halfpi) )
|
|---|
| 1533 | { // ^^^^^^^^^^^^^^^^^^^^^ shouldn't it be >=0 instead ?
|
|---|
| 1534 | xi = p.x() + s*v.x() ;
|
|---|
| 1535 | yi = p.y() + s*v.y() ;
|
|---|
| 1536 | zi = p.z() + s*v.z() ;
|
|---|
| 1537 | rhoi2 = xi*xi + yi*yi ;
|
|---|
| 1538 | radi2 = rhoi2 + zi*zi ;
|
|---|
| 1539 |
|
|---|
| 1540 | if ( (radi2 <= tolORMax2)
|
|---|
| 1541 | && (radi2 >= tolORMin2)
|
|---|
| 1542 | && (zi*(fSTheta - halfpi) <= 0) )
|
|---|
| 1543 | {
|
|---|
| 1544 | if ( !fFullPhiSphere && rhoi2 ) // Check phi intersection
|
|---|
| 1545 | {
|
|---|
| 1546 | cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
|
|---|
| 1547 | if ( cosPsi >= cosHDPhiOT )
|
|---|
| 1548 | {
|
|---|
| 1549 | snxt = s ;
|
|---|
| 1550 | }
|
|---|
| 1551 | }
|
|---|
| 1552 | else
|
|---|
| 1553 | {
|
|---|
| 1554 | snxt = s ;
|
|---|
| 1555 | }
|
|---|
| 1556 | }
|
|---|
| 1557 | }
|
|---|
| 1558 | }
|
|---|
| 1559 | }
|
|---|
| 1560 | }
|
|---|
| 1561 | else if ((pTheta > tolETheta-kAngTolerance) && (eTheta < pi-kAngTolerance))
|
|---|
| 1562 | {
|
|---|
| 1563 |
|
|---|
| 1564 | // In tolerance of etheta
|
|---|
| 1565 | // If entering through solid [r,phi] => 0 to in
|
|---|
| 1566 | // else try 2nd root
|
|---|
| 1567 |
|
|---|
| 1568 | t2 = pDotV2d - p.z()*v.z()*tanETheta2 ;
|
|---|
| 1569 |
|
|---|
| 1570 | if ( ((t2<0) && (eTheta < halfpi)
|
|---|
| 1571 | && (tolIRMin2 < rad2) && (rad2 < tolIRMax2))
|
|---|
| 1572 | || ((t2>=0) && (eTheta > halfpi)
|
|---|
| 1573 | && (tolIRMin2 < rad2) && (rad2 < tolIRMax2))
|
|---|
| 1574 | || ((v.z()>0) && (eTheta == halfpi)
|
|---|
| 1575 | && (tolIRMin2 < rad2) && (rad2 < tolIRMax2)) )
|
|---|
| 1576 | {
|
|---|
| 1577 | if (!fFullPhiSphere && rho2) // Check phi intersection
|
|---|
| 1578 | {
|
|---|
| 1579 | cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/std::sqrt(rho2) ;
|
|---|
| 1580 | if (cosPsi >= cosHDPhiIT)
|
|---|
| 1581 | {
|
|---|
| 1582 | return 0 ;
|
|---|
| 1583 | }
|
|---|
| 1584 | }
|
|---|
| 1585 | else
|
|---|
| 1586 | {
|
|---|
| 1587 | return 0 ;
|
|---|
| 1588 | }
|
|---|
| 1589 | }
|
|---|
| 1590 |
|
|---|
| 1591 | // Not entering immediately/travelling through
|
|---|
| 1592 |
|
|---|
| 1593 | t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ;
|
|---|
| 1594 | if (t1)
|
|---|
| 1595 | {
|
|---|
| 1596 | b = t2/t1 ;
|
|---|
| 1597 | c = dist2ETheta/t1 ;
|
|---|
| 1598 | d2 = b*b - c ;
|
|---|
| 1599 |
|
|---|
| 1600 | if (d2 >= 0)
|
|---|
| 1601 | {
|
|---|
| 1602 | d = std::sqrt(d2) ;
|
|---|
| 1603 | s = -b + d ;
|
|---|
| 1604 |
|
|---|
| 1605 | if ( (s >= halfCarTolerance)
|
|---|
| 1606 | && (s < snxt) && (eTheta > halfpi) )
|
|---|
| 1607 | {
|
|---|
| 1608 | xi = p.x() + s*v.x() ;
|
|---|
| 1609 | yi = p.y() + s*v.y() ;
|
|---|
| 1610 | zi = p.z() + s*v.z() ;
|
|---|
| 1611 | rhoi2 = xi*xi + yi*yi ;
|
|---|
| 1612 | radi2 = rhoi2 + zi*zi ;
|
|---|
| 1613 |
|
|---|
| 1614 | if ( (radi2 <= tolORMax2)
|
|---|
| 1615 | && (radi2 >= tolORMin2)
|
|---|
| 1616 | && (zi*(eTheta - halfpi) <= 0) )
|
|---|
| 1617 | {
|
|---|
| 1618 | if (!fFullPhiSphere && rhoi2) // Check phi intersection
|
|---|
| 1619 | {
|
|---|
| 1620 | cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
|
|---|
| 1621 | if (cosPsi >= cosHDPhiOT)
|
|---|
| 1622 | {
|
|---|
| 1623 | snxt = s ;
|
|---|
| 1624 | }
|
|---|
| 1625 | }
|
|---|
| 1626 | else
|
|---|
| 1627 | {
|
|---|
| 1628 | snxt = s ;
|
|---|
| 1629 | }
|
|---|
| 1630 | }
|
|---|
| 1631 | }
|
|---|
| 1632 | }
|
|---|
| 1633 | }
|
|---|
| 1634 | }
|
|---|
| 1635 | else
|
|---|
| 1636 | {
|
|---|
| 1637 | // stheta+tol<theta<etheta-tol
|
|---|
| 1638 | // For BOTH stheta & etheta check 2nd root for validity [r,phi]
|
|---|
| 1639 |
|
|---|
| 1640 | t1 = 1 - v.z()*v.z()*(1 + tanSTheta2) ;
|
|---|
| 1641 | t2 = pDotV2d - p.z()*v.z()*tanSTheta2 ;
|
|---|
| 1642 | if (t1)
|
|---|
| 1643 | {
|
|---|
| 1644 | b = t2/t1;
|
|---|
| 1645 | c = dist2STheta/t1 ;
|
|---|
| 1646 | d2 = b*b - c ;
|
|---|
| 1647 |
|
|---|
| 1648 | if (d2 >= 0)
|
|---|
| 1649 | {
|
|---|
| 1650 | d = std::sqrt(d2) ;
|
|---|
| 1651 | s = -b + d ; // second root
|
|---|
| 1652 |
|
|---|
| 1653 | if ((s >= 0) && (s < snxt))
|
|---|
| 1654 | {
|
|---|
| 1655 | xi = p.x() + s*v.x() ;
|
|---|
| 1656 | yi = p.y() + s*v.y() ;
|
|---|
| 1657 | zi = p.z() + s*v.z() ;
|
|---|
| 1658 | rhoi2 = xi*xi + yi*yi ;
|
|---|
| 1659 | radi2 = rhoi2 + zi*zi ;
|
|---|
| 1660 |
|
|---|
| 1661 | if ( (radi2 <= tolORMax2)
|
|---|
| 1662 | && (radi2 >= tolORMin2)
|
|---|
| 1663 | && (zi*(fSTheta - halfpi) <= 0) )
|
|---|
| 1664 | {
|
|---|
| 1665 | if (!fFullPhiSphere && rhoi2) // Check phi intersection
|
|---|
| 1666 | {
|
|---|
| 1667 | cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
|
|---|
| 1668 | if (cosPsi >= cosHDPhiOT)
|
|---|
| 1669 | {
|
|---|
| 1670 | snxt = s ;
|
|---|
| 1671 | }
|
|---|
| 1672 | }
|
|---|
| 1673 | else
|
|---|
| 1674 | {
|
|---|
| 1675 | snxt = s ;
|
|---|
| 1676 | }
|
|---|
| 1677 | }
|
|---|
| 1678 | }
|
|---|
| 1679 | }
|
|---|
| 1680 | }
|
|---|
| 1681 | t1 = 1 - v.z()*v.z()*(1 + tanETheta2) ;
|
|---|
| 1682 | t2 = pDotV2d - p.z()*v.z()*tanETheta2 ;
|
|---|
| 1683 | if (t1)
|
|---|
| 1684 | {
|
|---|
| 1685 | b = t2/t1 ;
|
|---|
| 1686 | c = dist2ETheta/t1 ;
|
|---|
| 1687 | d2 = b*b - c ;
|
|---|
| 1688 |
|
|---|
| 1689 | if (d2 >= 0)
|
|---|
| 1690 | {
|
|---|
| 1691 | d = std::sqrt(d2) ;
|
|---|
| 1692 | s = -b + d; // second root
|
|---|
| 1693 |
|
|---|
| 1694 | if ((s >= 0) && (s < snxt))
|
|---|
| 1695 | {
|
|---|
| 1696 | xi = p.x() + s*v.x() ;
|
|---|
| 1697 | yi = p.y() + s*v.y() ;
|
|---|
| 1698 | zi = p.z() + s*v.z() ;
|
|---|
| 1699 | rhoi2 = xi*xi + yi*yi ;
|
|---|
| 1700 | radi2 = rhoi2 + zi*zi ;
|
|---|
| 1701 |
|
|---|
| 1702 | if ( (radi2 <= tolORMax2)
|
|---|
| 1703 | && (radi2 >= tolORMin2)
|
|---|
| 1704 | && (zi*(eTheta - halfpi) <= 0) )
|
|---|
| 1705 | {
|
|---|
| 1706 | if (!fFullPhiSphere && rhoi2) // Check phi intersection
|
|---|
| 1707 | {
|
|---|
| 1708 | cosPsi = (xi*cosCPhi + yi*sinCPhi)/std::sqrt(rhoi2) ;
|
|---|
| 1709 | if ( cosPsi >= cosHDPhiOT )
|
|---|
| 1710 | {
|
|---|
| 1711 | snxt=s;
|
|---|
| 1712 | }
|
|---|
| 1713 | }
|
|---|
| 1714 | else
|
|---|
| 1715 | {
|
|---|
| 1716 | snxt = s ;
|
|---|
| 1717 | }
|
|---|
| 1718 | }
|
|---|
| 1719 | }
|
|---|
| 1720 | }
|
|---|
| 1721 | }
|
|---|
| 1722 | }
|
|---|
| 1723 | }
|
|---|
| 1724 | return snxt;
|
|---|
| 1725 | }
|
|---|
| 1726 |
|
|---|
| 1727 | //////////////////////////////////////////////////////////////////////
|
|---|
| 1728 | //
|
|---|
| 1729 | // Calculate distance (<= actual) to closest surface of shape from outside
|
|---|
| 1730 | // - Calculate distance to radial planes
|
|---|
| 1731 | // - Only to phi planes if outside phi extent
|
|---|
| 1732 | // - Only to theta planes if outside theta extent
|
|---|
| 1733 | // - Return 0 if point inside
|
|---|
| 1734 |
|
|---|
| 1735 | G4double G4Sphere::DistanceToIn( const G4ThreeVector& p ) const
|
|---|
| 1736 | {
|
|---|
| 1737 | G4double safe=0.0,safeRMin,safeRMax,safePhi,safeTheta;
|
|---|
| 1738 | G4double rho2,rds,rho;
|
|---|
| 1739 | G4double cosPsi;
|
|---|
| 1740 | G4double pTheta,dTheta1,dTheta2;
|
|---|
| 1741 | rho2=p.x()*p.x()+p.y()*p.y();
|
|---|
| 1742 | rds=std::sqrt(rho2+p.z()*p.z());
|
|---|
| 1743 | rho=std::sqrt(rho2);
|
|---|
| 1744 |
|
|---|
| 1745 | //
|
|---|
| 1746 | // Distance to r shells
|
|---|
| 1747 | //
|
|---|
| 1748 | if (fRmin)
|
|---|
| 1749 | {
|
|---|
| 1750 | safeRMin=fRmin-rds;
|
|---|
| 1751 | safeRMax=rds-fRmax;
|
|---|
| 1752 | if (safeRMin>safeRMax)
|
|---|
| 1753 | {
|
|---|
| 1754 | safe=safeRMin;
|
|---|
| 1755 | }
|
|---|
| 1756 | else
|
|---|
| 1757 | {
|
|---|
| 1758 | safe=safeRMax;
|
|---|
| 1759 | }
|
|---|
| 1760 | }
|
|---|
| 1761 | else
|
|---|
| 1762 | {
|
|---|
| 1763 | safe=rds-fRmax;
|
|---|
| 1764 | }
|
|---|
| 1765 |
|
|---|
| 1766 | //
|
|---|
| 1767 | // Distance to phi extent
|
|---|
| 1768 | //
|
|---|
| 1769 | if (!fFullPhiSphere && rho)
|
|---|
| 1770 | {
|
|---|
| 1771 | // Psi=angle from central phi to point
|
|---|
| 1772 | //
|
|---|
| 1773 | cosPsi=(p.x()*cosCPhi+p.y()*sinCPhi)/rho;
|
|---|
| 1774 | if (cosPsi<std::cos(hDPhi))
|
|---|
| 1775 | {
|
|---|
| 1776 | // Point lies outside phi range
|
|---|
| 1777 | //
|
|---|
| 1778 | if ((p.y()*cosCPhi-p.x()*sinCPhi)<=0)
|
|---|
| 1779 | {
|
|---|
| 1780 | safePhi=std::fabs(p.x()*sinSPhi-p.y()*cosSPhi);
|
|---|
| 1781 | }
|
|---|
| 1782 | else
|
|---|
| 1783 | {
|
|---|
| 1784 | safePhi=std::fabs(p.x()*sinEPhi-p.y()*cosEPhi);
|
|---|
| 1785 | }
|
|---|
| 1786 | if (safePhi>safe) { safe=safePhi; }
|
|---|
| 1787 | }
|
|---|
| 1788 | }
|
|---|
| 1789 | //
|
|---|
| 1790 | // Distance to Theta extent
|
|---|
| 1791 | //
|
|---|
| 1792 | if ((rds!=0.0) && (!fFullThetaSphere))
|
|---|
| 1793 | {
|
|---|
| 1794 | pTheta=std::acos(p.z()/rds);
|
|---|
| 1795 | if (pTheta<0) { pTheta+=pi; }
|
|---|
| 1796 | dTheta1=fSTheta-pTheta;
|
|---|
| 1797 | dTheta2=pTheta-eTheta;
|
|---|
| 1798 | if (dTheta1>dTheta2)
|
|---|
| 1799 | {
|
|---|
| 1800 | if (dTheta1>=0) // WHY ???????????
|
|---|
| 1801 | {
|
|---|
| 1802 | safeTheta=rds*std::sin(dTheta1);
|
|---|
| 1803 | if (safe<=safeTheta)
|
|---|
| 1804 | {
|
|---|
| 1805 | safe=safeTheta;
|
|---|
| 1806 | }
|
|---|
| 1807 | }
|
|---|
| 1808 | }
|
|---|
| 1809 | else
|
|---|
| 1810 | {
|
|---|
| 1811 | if (dTheta2>=0)
|
|---|
| 1812 | {
|
|---|
| 1813 | safeTheta=rds*std::sin(dTheta2);
|
|---|
| 1814 | if (safe<=safeTheta)
|
|---|
| 1815 | {
|
|---|
| 1816 | safe=safeTheta;
|
|---|
| 1817 | }
|
|---|
| 1818 | }
|
|---|
| 1819 | }
|
|---|
| 1820 | }
|
|---|
| 1821 |
|
|---|
| 1822 | if (safe<0) { safe=0; }
|
|---|
| 1823 | return safe;
|
|---|
| 1824 | }
|
|---|
| 1825 |
|
|---|
| 1826 | /////////////////////////////////////////////////////////////////////
|
|---|
| 1827 | //
|
|---|
| 1828 | // Calculate distance to surface of shape from 'inside', allowing for tolerance
|
|---|
| 1829 | // - Only Calc rmax intersection if no valid rmin intersection
|
|---|
| 1830 |
|
|---|
| 1831 | G4double G4Sphere::DistanceToOut( const G4ThreeVector& p,
|
|---|
| 1832 | const G4ThreeVector& v,
|
|---|
| 1833 | const G4bool calcNorm,
|
|---|
| 1834 | G4bool *validNorm,
|
|---|
| 1835 | G4ThreeVector *n ) const
|
|---|
| 1836 | {
|
|---|
| 1837 | G4double snxt = kInfinity; // snxt is default return value
|
|---|
| 1838 | G4double sphi= kInfinity,stheta= kInfinity;
|
|---|
| 1839 | ESide side=kNull,sidephi=kNull,sidetheta=kNull;
|
|---|
| 1840 |
|
|---|
| 1841 | static const G4double halfCarTolerance = kCarTolerance*0.5;
|
|---|
| 1842 | static const G4double halfAngTolerance = kAngTolerance*0.5;
|
|---|
| 1843 | const G4double halfRmaxTolerance = fRmaxTolerance*0.5;
|
|---|
| 1844 | const G4double halfRminTolerance = fRminTolerance*0.5;
|
|---|
| 1845 | const G4double Rmax_plus = fRmax + halfRmaxTolerance;
|
|---|
| 1846 | const G4double Rmin_minus = (fRmin) ? fRmin-halfRminTolerance : 0;
|
|---|
| 1847 | G4double t1,t2;
|
|---|
| 1848 | G4double b,c,d;
|
|---|
| 1849 |
|
|---|
| 1850 | // Variables for phi intersection:
|
|---|
| 1851 |
|
|---|
| 1852 | G4double pDistS,compS,pDistE,compE,sphi2,vphi;
|
|---|
| 1853 |
|
|---|
| 1854 | G4double rho2,rad2,pDotV2d,pDotV3d,pTheta;
|
|---|
| 1855 |
|
|---|
| 1856 | G4double tolSTheta=0.,tolETheta=0.;
|
|---|
| 1857 | G4double xi,yi,zi; // Intersection point
|
|---|
| 1858 |
|
|---|
| 1859 | // Theta precals
|
|---|
| 1860 | //
|
|---|
| 1861 | G4double rhoSecTheta;
|
|---|
| 1862 | G4double dist2STheta, dist2ETheta, distTheta;
|
|---|
| 1863 | G4double d2,s;
|
|---|
| 1864 |
|
|---|
| 1865 | // General Precalcs
|
|---|
| 1866 | //
|
|---|
| 1867 | rho2 = p.x()*p.x()+p.y()*p.y();
|
|---|
| 1868 | rad2 = rho2+p.z()*p.z();
|
|---|
| 1869 |
|
|---|
| 1870 | pTheta = std::atan2(std::sqrt(rho2),p.z());
|
|---|
| 1871 |
|
|---|
| 1872 | pDotV2d = p.x()*v.x()+p.y()*v.y();
|
|---|
| 1873 | pDotV3d = pDotV2d+p.z()*v.z();
|
|---|
| 1874 |
|
|---|
| 1875 | // Theta precalcs
|
|---|
| 1876 |
|
|---|
| 1877 | if ( !fFullThetaSphere )
|
|---|
| 1878 | {
|
|---|
| 1879 | tolSTheta = fSTheta - halfAngTolerance;
|
|---|
| 1880 | tolETheta = eTheta + halfAngTolerance;
|
|---|
| 1881 | }
|
|---|
| 1882 |
|
|---|
| 1883 | // Radial Intersections from G4Sphere::DistanceToIn
|
|---|
| 1884 | //
|
|---|
| 1885 | // Outer spherical shell intersection
|
|---|
| 1886 | // - Only if outside tolerant fRmax
|
|---|
| 1887 | // - Check for if inside and outer G4Sphere heading through solid (-> 0)
|
|---|
| 1888 | // - No intersect -> no intersection with G4Sphere
|
|---|
| 1889 | //
|
|---|
| 1890 | // Shell eqn: x^2+y^2+z^2=RSPH^2
|
|---|
| 1891 | //
|
|---|
| 1892 | // => (px+svx)^2+(py+svy)^2+(pz+svz)^2=R^2
|
|---|
| 1893 | //
|
|---|
| 1894 | // => (px^2+py^2+pz^2) +2s(pxvx+pyvy+pzvz)+s^2(vx^2+vy^2+vz^2)=R^2
|
|---|
| 1895 | // => rad2 +2s(pDotV3d) +s^2 =R^2
|
|---|
| 1896 | //
|
|---|
| 1897 | // => s=-pDotV3d+-std::sqrt(pDotV3d^2-(rad2-R^2))
|
|---|
| 1898 |
|
|---|
| 1899 | if( (rad2 <= Rmax_plus*Rmax_plus) && (rad2 >= Rmin_minus*Rmin_minus) )
|
|---|
| 1900 | {
|
|---|
| 1901 | c = rad2 - fRmax*fRmax;
|
|---|
| 1902 |
|
|---|
| 1903 | if (c < fRmaxTolerance*fRmax)
|
|---|
| 1904 | {
|
|---|
| 1905 | // Within tolerant Outer radius
|
|---|
| 1906 | //
|
|---|
| 1907 | // The test is
|
|---|
| 1908 | // rad - fRmax < 0.5*kRadTolerance
|
|---|
| 1909 | // => rad < fRmax + 0.5*kRadTol
|
|---|
| 1910 | // => rad2 < (fRmax + 0.5*kRadTol)^2
|
|---|
| 1911 | // => rad2 < fRmax^2 + 2.*0.5*fRmax*kRadTol + 0.25*kRadTol*kRadTol
|
|---|
| 1912 | // => rad2 - fRmax^2 <~ fRmax*kRadTol
|
|---|
| 1913 |
|
|---|
| 1914 | d2 = pDotV3d*pDotV3d - c;
|
|---|
| 1915 |
|
|---|
| 1916 | if( (c >- fRmaxTolerance*fRmax) // on tolerant surface
|
|---|
| 1917 | && ((pDotV3d >=0) || (d2 < 0)) ) // leaving outside from Rmax
|
|---|
| 1918 | // not re-entering
|
|---|
| 1919 | {
|
|---|
| 1920 | if(calcNorm)
|
|---|
| 1921 | {
|
|---|
| 1922 | *validNorm = true ;
|
|---|
| 1923 | *n = G4ThreeVector(p.x()/fRmax,p.y()/fRmax,p.z()/fRmax) ;
|
|---|
| 1924 | }
|
|---|
| 1925 | return snxt = 0;
|
|---|
| 1926 | }
|
|---|
| 1927 | else
|
|---|
| 1928 | {
|
|---|
| 1929 | snxt = -pDotV3d+std::sqrt(d2); // second root since inside Rmax
|
|---|
| 1930 | side = kRMax ;
|
|---|
| 1931 | }
|
|---|
| 1932 | }
|
|---|
| 1933 |
|
|---|
| 1934 | // Inner spherical shell intersection:
|
|---|
| 1935 | // Always first >=0 root, because would have passed
|
|---|
| 1936 | // from outside of Rmin surface .
|
|---|
| 1937 |
|
|---|
| 1938 | if (fRmin)
|
|---|
| 1939 | {
|
|---|
| 1940 | c = rad2 - fRmin*fRmin;
|
|---|
| 1941 | d2 = pDotV3d*pDotV3d - c;
|
|---|
| 1942 |
|
|---|
| 1943 | if (c >- fRminTolerance*fRmin) // 2.0 * (0.5*kRadTolerance) * fRmin
|
|---|
| 1944 | {
|
|---|
| 1945 | if ( (c < fRminTolerance*fRmin) // leaving from Rmin
|
|---|
| 1946 | && (d2 >= fRminTolerance*fRmin) && (pDotV3d < 0) )
|
|---|
| 1947 | {
|
|---|
| 1948 | if(calcNorm) { *validNorm = false; } // Rmin surface is concave
|
|---|
| 1949 | return snxt = 0 ;
|
|---|
| 1950 | }
|
|---|
| 1951 | else
|
|---|
| 1952 | {
|
|---|
| 1953 | if ( d2 >= 0. )
|
|---|
| 1954 | {
|
|---|
| 1955 | s = -pDotV3d-std::sqrt(d2);
|
|---|
| 1956 |
|
|---|
| 1957 | if ( s >= 0. ) // Always intersect Rmin first
|
|---|
| 1958 | {
|
|---|
| 1959 | snxt = s ;
|
|---|
| 1960 | side = kRMin ;
|
|---|
| 1961 | }
|
|---|
| 1962 | }
|
|---|
| 1963 | }
|
|---|
| 1964 | }
|
|---|
| 1965 | }
|
|---|
| 1966 | }
|
|---|
| 1967 |
|
|---|
| 1968 | // Theta segment intersection
|
|---|
| 1969 |
|
|---|
| 1970 | if ( !fFullThetaSphere )
|
|---|
| 1971 | {
|
|---|
| 1972 | // Intersection with theta surfaces
|
|---|
| 1973 | //
|
|---|
| 1974 | // Known failure cases:
|
|---|
| 1975 | // o Inside tolerance of stheta surface, skim
|
|---|
| 1976 | // ~parallel to cone and Hit & enter etheta surface [& visa versa]
|
|---|
| 1977 | //
|
|---|
| 1978 | // To solve: Check 2nd root of etheta surface in addition to stheta
|
|---|
| 1979 | //
|
|---|
| 1980 | // o start/end theta is exactly pi/2
|
|---|
| 1981 | //
|
|---|
| 1982 | // Intersections with cones
|
|---|
| 1983 | //
|
|---|
| 1984 | // Cone equation: x^2+y^2=z^2tan^2(t)
|
|---|
| 1985 | //
|
|---|
| 1986 | // => (px+svx)^2+(py+svy)^2=(pz+svz)^2tan^2(t)
|
|---|
| 1987 | //
|
|---|
| 1988 | // => (px^2+py^2-pz^2tan^2(t))+2s(pxvx+pyvy-pzvztan^2(t))
|
|---|
| 1989 | // + s^2(vx^2+vy^2-vz^2tan^2(t)) = 0
|
|---|
| 1990 | //
|
|---|
| 1991 | // => s^2(1-vz^2(1+tan^2(t))+2s(pdotv2d-pzvztan^2(t))+(rho2-pz^2tan^2(t))=0
|
|---|
| 1992 | //
|
|---|
| 1993 |
|
|---|
| 1994 | if(fSTheta) // intersection with first cons
|
|---|
| 1995 | {
|
|---|
| 1996 | if( std::fabs(tanSTheta) > 5./kAngTolerance ) // kons is plane z=0
|
|---|
| 1997 | {
|
|---|
| 1998 | if( v.z() > 0. )
|
|---|
| 1999 | {
|
|---|
| 2000 | if ( std::fabs( p.z() ) <= halfRmaxTolerance )
|
|---|
| 2001 | {
|
|---|
| 2002 | if(calcNorm)
|
|---|
| 2003 | {
|
|---|
| 2004 | *validNorm = true;
|
|---|
| 2005 | *n = G4ThreeVector(0.,0.,1.);
|
|---|
| 2006 | }
|
|---|
| 2007 | return snxt = 0 ;
|
|---|
| 2008 | }
|
|---|
| 2009 | stheta = -p.z()/v.z();
|
|---|
| 2010 | sidetheta = kSTheta;
|
|---|
| 2011 | }
|
|---|
| 2012 | }
|
|---|
| 2013 | else // kons is not plane
|
|---|
| 2014 | {
|
|---|
| 2015 | t1 = 1-v.z()*v.z()*(1+tanSTheta2);
|
|---|
| 2016 | t2 = pDotV2d-p.z()*v.z()*tanSTheta2; // ~vDotN if p on cons
|
|---|
| 2017 | dist2STheta = rho2-p.z()*p.z()*tanSTheta2; // t3
|
|---|
| 2018 |
|
|---|
| 2019 | distTheta = std::sqrt(rho2)-p.z()*tanSTheta;
|
|---|
| 2020 |
|
|---|
| 2021 | if( std::fabs(t1) < halfAngTolerance ) // 1st order equation,
|
|---|
| 2022 | { // v parallel to kons
|
|---|
| 2023 | if( v.z() > 0. )
|
|---|
| 2024 | {
|
|---|
| 2025 | if(std::fabs(distTheta) < halfRmaxTolerance) // p on surface
|
|---|
| 2026 | {
|
|---|
| 2027 | if( (fSTheta < halfpi) && (p.z() > 0.) )
|
|---|
| 2028 | {
|
|---|
| 2029 | if( calcNorm ) { *validNorm = false; }
|
|---|
| 2030 | return snxt = 0.;
|
|---|
| 2031 | }
|
|---|
| 2032 | else if( (fSTheta > halfpi) && (p.z() <= 0) )
|
|---|
| 2033 | {
|
|---|
| 2034 | if( calcNorm )
|
|---|
| 2035 | {
|
|---|
| 2036 | *validNorm = true;
|
|---|
| 2037 | if (rho2)
|
|---|
| 2038 | {
|
|---|
| 2039 | rhoSecTheta = std::sqrt(rho2*(1+tanSTheta2));
|
|---|
| 2040 |
|
|---|
| 2041 | *n = G4ThreeVector( p.x()/rhoSecTheta,
|
|---|
| 2042 | p.y()/rhoSecTheta,
|
|---|
| 2043 | std::sin(fSTheta) );
|
|---|
| 2044 | }
|
|---|
| 2045 | else *n = G4ThreeVector(0.,0.,1.);
|
|---|
| 2046 | }
|
|---|
| 2047 | return snxt = 0.;
|
|---|
| 2048 | }
|
|---|
| 2049 | }
|
|---|
| 2050 | stheta = -0.5*dist2STheta/t2;
|
|---|
| 2051 | sidetheta = kSTheta;
|
|---|
| 2052 | }
|
|---|
| 2053 | } // 2nd order equation, 1st root of fSTheta cone,
|
|---|
| 2054 | else // 2nd if 1st root -ve
|
|---|
| 2055 | {
|
|---|
| 2056 | if( std::fabs(distTheta) < halfRmaxTolerance )
|
|---|
| 2057 | {
|
|---|
| 2058 | if( (fSTheta > halfpi) && (t2 >= 0.) ) // leave
|
|---|
| 2059 | {
|
|---|
| 2060 | if( calcNorm )
|
|---|
| 2061 | {
|
|---|
| 2062 | *validNorm = true;
|
|---|
| 2063 | if (rho2)
|
|---|
| 2064 | {
|
|---|
| 2065 | rhoSecTheta = std::sqrt(rho2*(1+tanSTheta2));
|
|---|
| 2066 |
|
|---|
| 2067 | *n = G4ThreeVector( p.x()/rhoSecTheta,
|
|---|
| 2068 | p.y()/rhoSecTheta,
|
|---|
| 2069 | std::sin(fSTheta) );
|
|---|
| 2070 | }
|
|---|
| 2071 | else { *n = G4ThreeVector(0.,0.,1.); }
|
|---|
| 2072 | }
|
|---|
| 2073 | return snxt = 0.;
|
|---|
| 2074 | }
|
|---|
| 2075 | else if( (fSTheta < halfpi) && (t2 < 0.) && (p.z() >=0.) ) // leave
|
|---|
| 2076 | {
|
|---|
| 2077 | if( calcNorm ) { *validNorm = false; }
|
|---|
| 2078 | return snxt = 0.;
|
|---|
| 2079 | }
|
|---|
| 2080 | }
|
|---|
| 2081 | b = t2/t1;
|
|---|
| 2082 | c = dist2STheta/t1;
|
|---|
| 2083 | d2 = b*b - c ;
|
|---|
| 2084 |
|
|---|
| 2085 | if ( d2 >= 0. )
|
|---|
| 2086 | {
|
|---|
| 2087 | d = std::sqrt(d2);
|
|---|
| 2088 |
|
|---|
| 2089 | if( fSTheta > halfpi )
|
|---|
| 2090 | {
|
|---|
| 2091 | s = -b - d; // First root
|
|---|
| 2092 |
|
|---|
| 2093 | if ( ((std::fabs(s) < halfRmaxTolerance) && (t2 < 0.))
|
|---|
| 2094 | || (s < 0.) || ( (s > 0.) && (p.z() + s*v.z() > 0.) ) )
|
|---|
| 2095 | {
|
|---|
| 2096 | s = -b + d ; // 2nd root
|
|---|
| 2097 | }
|
|---|
| 2098 | if( (s > halfRmaxTolerance) && (p.z() + s*v.z() <= 0.) )
|
|---|
| 2099 | {
|
|---|
| 2100 | stheta = s;
|
|---|
| 2101 | sidetheta = kSTheta;
|
|---|
| 2102 | }
|
|---|
| 2103 | }
|
|---|
| 2104 | else // sTheta < pi/2, concave surface, no normal
|
|---|
| 2105 | {
|
|---|
| 2106 | s = -b - d; // First root
|
|---|
| 2107 |
|
|---|
| 2108 | if ( ( (std::fabs(s) < halfRmaxTolerance) && (t2 >= 0.) )
|
|---|
| 2109 | || (s < 0.) || ( (s > 0.) && (p.z() + s*v.z() < 0.) ) )
|
|---|
| 2110 | {
|
|---|
| 2111 | s = -b + d ; // 2nd root
|
|---|
| 2112 | }
|
|---|
| 2113 | if( (s > halfRmaxTolerance) && (p.z() + s*v.z() >= 0.) )
|
|---|
| 2114 | {
|
|---|
| 2115 | stheta = s;
|
|---|
| 2116 | sidetheta = kSTheta;
|
|---|
| 2117 | }
|
|---|
| 2118 | }
|
|---|
| 2119 | }
|
|---|
| 2120 | }
|
|---|
| 2121 | }
|
|---|
| 2122 | }
|
|---|
| 2123 | if (eTheta < pi) // intersection with second cons
|
|---|
| 2124 | {
|
|---|
| 2125 | if( std::fabs(tanETheta) > 5./kAngTolerance ) // kons is plane z=0
|
|---|
| 2126 | {
|
|---|
| 2127 | if( v.z() < 0. )
|
|---|
| 2128 | {
|
|---|
| 2129 | if ( std::fabs( p.z() ) <= halfRmaxTolerance )
|
|---|
| 2130 | {
|
|---|
| 2131 | if(calcNorm)
|
|---|
| 2132 | {
|
|---|
| 2133 | *validNorm = true;
|
|---|
| 2134 | *n = G4ThreeVector(0.,0.,-1.);
|
|---|
| 2135 | }
|
|---|
| 2136 | return snxt = 0 ;
|
|---|
| 2137 | }
|
|---|
| 2138 | s = -p.z()/v.z();
|
|---|
| 2139 |
|
|---|
| 2140 | if( s < stheta )
|
|---|
| 2141 | {
|
|---|
| 2142 | stheta = s;
|
|---|
| 2143 | sidetheta = kETheta;
|
|---|
| 2144 | }
|
|---|
| 2145 | }
|
|---|
| 2146 | }
|
|---|
| 2147 | else // kons is not plane
|
|---|
| 2148 | {
|
|---|
| 2149 | t1 = 1-v.z()*v.z()*(1+tanETheta2);
|
|---|
| 2150 | t2 = pDotV2d-p.z()*v.z()*tanETheta2; // ~vDotN if p on cons
|
|---|
| 2151 | dist2ETheta = rho2-p.z()*p.z()*tanETheta2; // t3
|
|---|
| 2152 |
|
|---|
| 2153 | distTheta = std::sqrt(rho2)-p.z()*tanETheta;
|
|---|
| 2154 |
|
|---|
| 2155 | if( std::fabs(t1) < halfAngTolerance ) // 1st order equation,
|
|---|
| 2156 | { // v parallel to kons
|
|---|
| 2157 | if( v.z() < 0. )
|
|---|
| 2158 | {
|
|---|
| 2159 | if(std::fabs(distTheta) < halfRmaxTolerance) // p on surface
|
|---|
| 2160 | {
|
|---|
| 2161 | if( (eTheta > halfpi) && (p.z() < 0.) )
|
|---|
| 2162 | {
|
|---|
| 2163 | if( calcNorm ) { *validNorm = false; }
|
|---|
| 2164 | return snxt = 0.;
|
|---|
| 2165 | }
|
|---|
| 2166 | else if ( (eTheta < halfpi) && (p.z() >= 0) )
|
|---|
| 2167 | {
|
|---|
| 2168 | if( calcNorm )
|
|---|
| 2169 | {
|
|---|
| 2170 | *validNorm = true;
|
|---|
| 2171 | if (rho2)
|
|---|
| 2172 | {
|
|---|
| 2173 | rhoSecTheta = std::sqrt(rho2*(1+tanETheta2));
|
|---|
| 2174 | *n = G4ThreeVector( p.x()/rhoSecTheta,
|
|---|
| 2175 | p.y()/rhoSecTheta,
|
|---|
| 2176 | -sinETheta );
|
|---|
| 2177 | }
|
|---|
| 2178 | else { *n = G4ThreeVector(0.,0.,-1.); }
|
|---|
| 2179 | }
|
|---|
| 2180 | return snxt = 0.;
|
|---|
| 2181 | }
|
|---|
| 2182 | }
|
|---|
| 2183 | s = -0.5*dist2ETheta/t2;
|
|---|
| 2184 |
|
|---|
| 2185 | if( s < stheta )
|
|---|
| 2186 | {
|
|---|
| 2187 | stheta = s;
|
|---|
| 2188 | sidetheta = kETheta;
|
|---|
| 2189 | }
|
|---|
| 2190 | }
|
|---|
| 2191 | } // 2nd order equation, 1st root of fSTheta cone
|
|---|
| 2192 | else // 2nd if 1st root -ve
|
|---|
| 2193 | {
|
|---|
| 2194 | if ( std::fabs(distTheta) < halfRmaxTolerance )
|
|---|
| 2195 | {
|
|---|
| 2196 | if( (eTheta < halfpi) && (t2 >= 0.) ) // leave
|
|---|
| 2197 | {
|
|---|
| 2198 | if( calcNorm )
|
|---|
| 2199 | {
|
|---|
| 2200 | *validNorm = true;
|
|---|
| 2201 | if (rho2)
|
|---|
| 2202 | {
|
|---|
| 2203 | rhoSecTheta = std::sqrt(rho2*(1+tanETheta2));
|
|---|
| 2204 | *n = G4ThreeVector( p.x()/rhoSecTheta,
|
|---|
| 2205 | p.y()/rhoSecTheta,
|
|---|
| 2206 | -sinETheta );
|
|---|
| 2207 | }
|
|---|
| 2208 | else *n = G4ThreeVector(0.,0.,-1.);
|
|---|
| 2209 | }
|
|---|
| 2210 | return snxt = 0.;
|
|---|
| 2211 | }
|
|---|
| 2212 | else if ( (eTheta > halfpi)
|
|---|
| 2213 | && (t2 < 0.) && (p.z() <=0.) ) // leave
|
|---|
| 2214 | {
|
|---|
| 2215 | if( calcNorm ) { *validNorm = false; }
|
|---|
| 2216 | return snxt = 0.;
|
|---|
| 2217 | }
|
|---|
| 2218 | }
|
|---|
| 2219 | b = t2/t1;
|
|---|
| 2220 | c = dist2ETheta/t1;
|
|---|
| 2221 | d2 = b*b - c ;
|
|---|
| 2222 |
|
|---|
| 2223 | if ( d2 >= 0. )
|
|---|
| 2224 | {
|
|---|
| 2225 | d = std::sqrt(d2);
|
|---|
| 2226 |
|
|---|
| 2227 | if( eTheta < halfpi )
|
|---|
| 2228 | {
|
|---|
| 2229 | s = -b - d; // First root
|
|---|
| 2230 |
|
|---|
| 2231 | if( ((std::fabs(s) < halfRmaxTolerance) && (t2 < 0.))
|
|---|
| 2232 | || (s < 0.) )
|
|---|
| 2233 | {
|
|---|
| 2234 | s = -b + d ; // 2nd root
|
|---|
| 2235 | }
|
|---|
| 2236 | if( s > halfRmaxTolerance )
|
|---|
| 2237 | {
|
|---|
| 2238 | if( s < stheta )
|
|---|
| 2239 | {
|
|---|
| 2240 | stheta = s;
|
|---|
| 2241 | sidetheta = kETheta;
|
|---|
| 2242 | }
|
|---|
| 2243 | }
|
|---|
| 2244 | }
|
|---|
| 2245 | else // sTheta+fDTheta > pi/2, concave surface, no normal
|
|---|
| 2246 | {
|
|---|
| 2247 | s = -b - d; // First root
|
|---|
| 2248 |
|
|---|
| 2249 | if ( ((std::fabs(s) < halfRmaxTolerance) && (t2 >= 0.))
|
|---|
| 2250 | || (s < 0.) || ( (s > 0.) && (p.z() + s*v.z() > 0.) ) )
|
|---|
| 2251 | {
|
|---|
| 2252 | s = -b + d ; // 2nd root
|
|---|
| 2253 | }
|
|---|
| 2254 | if( (s > halfRmaxTolerance) && (p.z() + s*v.z() <= 0.) )
|
|---|
| 2255 | {
|
|---|
| 2256 | if( s < stheta )
|
|---|
| 2257 | {
|
|---|
| 2258 | stheta = s;
|
|---|
| 2259 | sidetheta = kETheta;
|
|---|
| 2260 | }
|
|---|
| 2261 | }
|
|---|
| 2262 | }
|
|---|
| 2263 | }
|
|---|
| 2264 | }
|
|---|
| 2265 | }
|
|---|
| 2266 | }
|
|---|
| 2267 |
|
|---|
| 2268 | } // end theta intersections
|
|---|
| 2269 |
|
|---|
| 2270 | // Phi Intersection
|
|---|
| 2271 |
|
|---|
| 2272 | if ( !fFullPhiSphere )
|
|---|
| 2273 | {
|
|---|
| 2274 | if ( p.x() || p.y() ) // Check if on z axis (rho not needed later)
|
|---|
| 2275 | {
|
|---|
| 2276 | // pDist -ve when inside
|
|---|
| 2277 |
|
|---|
| 2278 | pDistS=p.x()*sinSPhi-p.y()*cosSPhi;
|
|---|
| 2279 | pDistE=-p.x()*sinEPhi+p.y()*cosEPhi;
|
|---|
| 2280 |
|
|---|
| 2281 | // Comp -ve when in direction of outwards normal
|
|---|
| 2282 |
|
|---|
| 2283 | compS = -sinSPhi*v.x()+cosSPhi*v.y() ;
|
|---|
| 2284 | compE = sinEPhi*v.x()-cosEPhi*v.y() ;
|
|---|
| 2285 | sidephi = kNull ;
|
|---|
| 2286 |
|
|---|
| 2287 | if ( (pDistS <= 0) && (pDistE <= 0) )
|
|---|
| 2288 | {
|
|---|
| 2289 | // Inside both phi *full* planes
|
|---|
| 2290 |
|
|---|
| 2291 | if ( compS < 0 )
|
|---|
| 2292 | {
|
|---|
| 2293 | sphi = pDistS/compS ;
|
|---|
| 2294 | xi = p.x()+sphi*v.x() ;
|
|---|
| 2295 | yi = p.y()+sphi*v.y() ;
|
|---|
| 2296 |
|
|---|
| 2297 | // Check intersection with correct half-plane (if not -> no intersect)
|
|---|
| 2298 | //
|
|---|
| 2299 | if( (std::abs(xi)<=kCarTolerance) && (std::abs(yi)<=kCarTolerance) )
|
|---|
| 2300 | {
|
|---|
| 2301 | vphi = std::atan2(v.y(),v.x());
|
|---|
| 2302 | sidephi = kSPhi;
|
|---|
| 2303 | if ( ( (fSPhi-halfAngTolerance) <= vphi)
|
|---|
| 2304 | && ( (ePhi+halfAngTolerance) >= vphi) )
|
|---|
| 2305 | {
|
|---|
| 2306 | sphi = kInfinity;
|
|---|
| 2307 | }
|
|---|
| 2308 | }
|
|---|
| 2309 | else if ( ( yi*cosCPhi - xi*sinCPhi ) >= 0 )
|
|---|
| 2310 | {
|
|---|
| 2311 | sphi=kInfinity;
|
|---|
| 2312 | }
|
|---|
| 2313 | else
|
|---|
| 2314 | {
|
|---|
| 2315 | sidephi = kSPhi ;
|
|---|
| 2316 | if ( pDistS > -halfCarTolerance) { sphi = 0; } // Leave by sphi
|
|---|
| 2317 | }
|
|---|
| 2318 | }
|
|---|
| 2319 | else { sphi = kInfinity; }
|
|---|
| 2320 |
|
|---|
| 2321 | if ( compE < 0 )
|
|---|
| 2322 | {
|
|---|
| 2323 | sphi2=pDistE/compE ;
|
|---|
| 2324 | if (sphi2 < sphi) // Only check further if < starting phi intersection
|
|---|
| 2325 | {
|
|---|
| 2326 | xi = p.x()+sphi2*v.x() ;
|
|---|
| 2327 | yi = p.y()+sphi2*v.y() ;
|
|---|
| 2328 |
|
|---|
| 2329 | // Check intersection with correct half-plane
|
|---|
| 2330 | //
|
|---|
| 2331 | if ((std::abs(xi)<=kCarTolerance) && (std::abs(yi)<=kCarTolerance))
|
|---|
| 2332 | {
|
|---|
| 2333 | // Leaving via ending phi
|
|---|
| 2334 | //
|
|---|
| 2335 | vphi = std::atan2(v.y(),v.x()) ;
|
|---|
| 2336 |
|
|---|
| 2337 | if( !((fSPhi-halfAngTolerance <= vphi)
|
|---|
| 2338 | &&(fSPhi+fDPhi+halfAngTolerance >= vphi)) )
|
|---|
| 2339 | {
|
|---|
| 2340 | sidephi = kEPhi;
|
|---|
| 2341 | if ( pDistE <= -halfCarTolerance ) { sphi = sphi2; }
|
|---|
| 2342 | else { sphi = 0.0; }
|
|---|
| 2343 | }
|
|---|
| 2344 | }
|
|---|
| 2345 | else if ((yi*cosCPhi-xi*sinCPhi)>=0) // Leaving via ending phi
|
|---|
| 2346 | {
|
|---|
| 2347 | sidephi = kEPhi ;
|
|---|
| 2348 | if ( pDistE <= -halfCarTolerance )
|
|---|
| 2349 | {
|
|---|
| 2350 | sphi=sphi2;
|
|---|
| 2351 | }
|
|---|
| 2352 | else
|
|---|
| 2353 | {
|
|---|
| 2354 | sphi = 0 ;
|
|---|
| 2355 | }
|
|---|
| 2356 | }
|
|---|
| 2357 | }
|
|---|
| 2358 | }
|
|---|
| 2359 | }
|
|---|
| 2360 | else if ((pDistS >= 0) && (pDistE >= 0)) // Outside both *full* phi planes
|
|---|
| 2361 | {
|
|---|
| 2362 | if ( pDistS <= pDistE )
|
|---|
| 2363 | {
|
|---|
| 2364 | sidephi = kSPhi ;
|
|---|
| 2365 | }
|
|---|
| 2366 | else
|
|---|
| 2367 | {
|
|---|
| 2368 | sidephi = kEPhi ;
|
|---|
| 2369 | }
|
|---|
| 2370 | if ( fDPhi > pi )
|
|---|
| 2371 | {
|
|---|
| 2372 | if ( (compS < 0) && (compE < 0) ) { sphi = 0; }
|
|---|
| 2373 | else { sphi = kInfinity; }
|
|---|
| 2374 | }
|
|---|
| 2375 | else
|
|---|
| 2376 | {
|
|---|
| 2377 | // if towards both >=0 then once inside (after error)
|
|---|
| 2378 | // will remain inside
|
|---|
| 2379 |
|
|---|
| 2380 | if ( (compS >= 0) && (compE >= 0) ) { sphi = kInfinity; }
|
|---|
| 2381 | else { sphi = 0; }
|
|---|
| 2382 | }
|
|---|
| 2383 | }
|
|---|
| 2384 | else if ( (pDistS > 0) && (pDistE < 0) )
|
|---|
| 2385 | {
|
|---|
| 2386 | // Outside full starting plane, inside full ending plane
|
|---|
| 2387 |
|
|---|
| 2388 | if ( fDPhi > pi )
|
|---|
| 2389 | {
|
|---|
| 2390 | if ( compE < 0 )
|
|---|
| 2391 | {
|
|---|
| 2392 | sphi = pDistE/compE ;
|
|---|
| 2393 | xi = p.x() + sphi*v.x() ;
|
|---|
| 2394 | yi = p.y() + sphi*v.y() ;
|
|---|
| 2395 |
|
|---|
| 2396 | // Check intersection in correct half-plane
|
|---|
| 2397 | // (if not -> not leaving phi extent)
|
|---|
| 2398 | //
|
|---|
| 2399 | if( (std::abs(xi)<=kCarTolerance)&&(std::abs(yi)<=kCarTolerance) )
|
|---|
| 2400 | {
|
|---|
| 2401 | vphi = std::atan2(v.y(),v.x());
|
|---|
| 2402 | sidephi = kSPhi;
|
|---|
| 2403 | if ( ( (fSPhi-halfAngTolerance) <= vphi)
|
|---|
| 2404 | && ( (ePhi+halfAngTolerance) >= vphi) )
|
|---|
| 2405 | {
|
|---|
| 2406 | sphi = kInfinity;
|
|---|
| 2407 | }
|
|---|
| 2408 | }
|
|---|
| 2409 | else if ( ( yi*cosCPhi - xi*sinCPhi ) <= 0 )
|
|---|
| 2410 | {
|
|---|
| 2411 | sphi = kInfinity ;
|
|---|
| 2412 | }
|
|---|
| 2413 | else // Leaving via Ending phi
|
|---|
| 2414 | {
|
|---|
| 2415 | sidephi = kEPhi ;
|
|---|
| 2416 | if ( pDistE > -halfCarTolerance ) { sphi = 0.; }
|
|---|
| 2417 | }
|
|---|
| 2418 | }
|
|---|
| 2419 | else
|
|---|
| 2420 | {
|
|---|
| 2421 | sphi = kInfinity ;
|
|---|
| 2422 | }
|
|---|
| 2423 | }
|
|---|
| 2424 | else
|
|---|
| 2425 | {
|
|---|
| 2426 | if ( compS >= 0 )
|
|---|
| 2427 | {
|
|---|
| 2428 | if ( compE < 0 )
|
|---|
| 2429 | {
|
|---|
| 2430 | sphi = pDistE/compE ;
|
|---|
| 2431 | xi = p.x() + sphi*v.x() ;
|
|---|
| 2432 | yi = p.y() + sphi*v.y() ;
|
|---|
| 2433 |
|
|---|
| 2434 | // Check intersection in correct half-plane
|
|---|
| 2435 | // (if not -> remain in extent)
|
|---|
| 2436 | //
|
|---|
| 2437 | if( (std::abs(xi)<=kCarTolerance)&&(std::abs(yi)<=kCarTolerance) )
|
|---|
| 2438 | {
|
|---|
| 2439 | vphi = std::atan2(v.y(),v.x());
|
|---|
| 2440 | sidephi = kSPhi;
|
|---|
| 2441 | if ( ( (fSPhi-halfAngTolerance) <= vphi)
|
|---|
| 2442 | && ( (ePhi+halfAngTolerance) >= vphi) )
|
|---|
| 2443 | {
|
|---|
| 2444 | sphi = kInfinity;
|
|---|
| 2445 | }
|
|---|
| 2446 | }
|
|---|
| 2447 | else if ( ( yi*cosCPhi - xi*sinCPhi) <= 0 )
|
|---|
| 2448 | {
|
|---|
| 2449 | sphi=kInfinity;
|
|---|
| 2450 | }
|
|---|
| 2451 | else // otherwise leaving via Ending phi
|
|---|
| 2452 | {
|
|---|
| 2453 | sidephi = kEPhi ;
|
|---|
| 2454 | }
|
|---|
| 2455 | }
|
|---|
| 2456 | else sphi=kInfinity;
|
|---|
| 2457 | }
|
|---|
| 2458 | else // leaving immediately by starting phi
|
|---|
| 2459 | {
|
|---|
| 2460 | sidephi = kSPhi ;
|
|---|
| 2461 | sphi = 0 ;
|
|---|
| 2462 | }
|
|---|
| 2463 | }
|
|---|
| 2464 | }
|
|---|
| 2465 | else
|
|---|
| 2466 | {
|
|---|
| 2467 | // Must be pDistS < 0 && pDistE > 0
|
|---|
| 2468 | // Inside full starting plane, outside full ending plane
|
|---|
| 2469 |
|
|---|
| 2470 | if ( fDPhi > pi )
|
|---|
| 2471 | {
|
|---|
| 2472 | if ( compS < 0 )
|
|---|
| 2473 | {
|
|---|
| 2474 | sphi=pDistS/compS;
|
|---|
| 2475 | xi=p.x()+sphi*v.x();
|
|---|
| 2476 | yi=p.y()+sphi*v.y();
|
|---|
| 2477 |
|
|---|
| 2478 | // Check intersection in correct half-plane
|
|---|
| 2479 | // (if not -> not leaving phi extent)
|
|---|
| 2480 | //
|
|---|
| 2481 | if( (std::abs(xi)<=kCarTolerance)&&(std::abs(yi)<=kCarTolerance) )
|
|---|
| 2482 | {
|
|---|
| 2483 | vphi = std::atan2(v.y(),v.x()) ;
|
|---|
| 2484 | sidephi = kSPhi;
|
|---|
| 2485 | if ( ( (fSPhi-halfAngTolerance) <= vphi)
|
|---|
| 2486 | && ( (ePhi+halfAngTolerance) >= vphi) )
|
|---|
| 2487 | {
|
|---|
| 2488 | sphi = kInfinity;
|
|---|
| 2489 | }
|
|---|
| 2490 | }
|
|---|
| 2491 | else if ( ( yi*cosCPhi - xi*sinCPhi ) >= 0 )
|
|---|
| 2492 | {
|
|---|
| 2493 | sphi = kInfinity ;
|
|---|
| 2494 | }
|
|---|
| 2495 | else // Leaving via Starting phi
|
|---|
| 2496 | {
|
|---|
| 2497 | sidephi = kSPhi ;
|
|---|
| 2498 | if ( pDistS > -halfCarTolerance ) { sphi = 0; }
|
|---|
| 2499 | }
|
|---|
| 2500 | }
|
|---|
| 2501 | else
|
|---|
| 2502 | {
|
|---|
| 2503 | sphi = kInfinity ;
|
|---|
| 2504 | }
|
|---|
| 2505 | }
|
|---|
| 2506 | else
|
|---|
| 2507 | {
|
|---|
| 2508 | if ( compE >= 0 )
|
|---|
| 2509 | {
|
|---|
| 2510 | if ( compS < 0 )
|
|---|
| 2511 | {
|
|---|
| 2512 | sphi = pDistS/compS ;
|
|---|
| 2513 | xi = p.x()+sphi*v.x() ;
|
|---|
| 2514 | yi = p.y()+sphi*v.y() ;
|
|---|
| 2515 |
|
|---|
| 2516 | // Check intersection in correct half-plane
|
|---|
| 2517 | // (if not -> remain in extent)
|
|---|
| 2518 | //
|
|---|
| 2519 | if((std::abs(xi)<=kCarTolerance) && (std::abs(yi)<=kCarTolerance))
|
|---|
| 2520 | {
|
|---|
| 2521 | vphi = std::atan2(v.y(),v.x()) ;
|
|---|
| 2522 | sidephi = kSPhi;
|
|---|
| 2523 | if ( ( (fSPhi-halfAngTolerance) <= vphi)
|
|---|
| 2524 | && ( (ePhi+halfAngTolerance) >= vphi) )
|
|---|
| 2525 | {
|
|---|
| 2526 | sphi = kInfinity;
|
|---|
| 2527 | }
|
|---|
| 2528 | }
|
|---|
| 2529 | else if ( ( yi*cosCPhi - xi*sinCPhi ) >= 0 )
|
|---|
| 2530 | {
|
|---|
| 2531 | sphi = kInfinity ;
|
|---|
| 2532 | }
|
|---|
| 2533 | else // otherwise leaving via Starting phi
|
|---|
| 2534 | {
|
|---|
| 2535 | sidephi = kSPhi ;
|
|---|
| 2536 | }
|
|---|
| 2537 | }
|
|---|
| 2538 | else
|
|---|
| 2539 | {
|
|---|
| 2540 | sphi = kInfinity ;
|
|---|
| 2541 | }
|
|---|
| 2542 | }
|
|---|
| 2543 | else // leaving immediately by ending
|
|---|
| 2544 | {
|
|---|
| 2545 | sidephi = kEPhi ;
|
|---|
| 2546 | sphi = 0 ;
|
|---|
| 2547 | }
|
|---|
| 2548 | }
|
|---|
| 2549 | }
|
|---|
| 2550 | }
|
|---|
| 2551 | else
|
|---|
| 2552 | {
|
|---|
| 2553 | // On z axis + travel not || to z axis -> if phi of vector direction
|
|---|
| 2554 | // within phi of shape, Step limited by rmax, else Step =0
|
|---|
| 2555 |
|
|---|
| 2556 | if ( v.x() || v.y() )
|
|---|
| 2557 | {
|
|---|
| 2558 | vphi = std::atan2(v.y(),v.x()) ;
|
|---|
| 2559 | if ((fSPhi-halfAngTolerance < vphi) && (vphi < ePhi+halfAngTolerance))
|
|---|
| 2560 | {
|
|---|
| 2561 | sphi = kInfinity;
|
|---|
| 2562 | }
|
|---|
| 2563 | else
|
|---|
| 2564 | {
|
|---|
| 2565 | sidephi = kSPhi ; // arbitrary
|
|---|
| 2566 | sphi = 0 ;
|
|---|
| 2567 | }
|
|---|
| 2568 | }
|
|---|
| 2569 | else // travel along z - no phi intersection
|
|---|
| 2570 | {
|
|---|
| 2571 | sphi = kInfinity ;
|
|---|
| 2572 | }
|
|---|
| 2573 | }
|
|---|
| 2574 | if ( sphi < snxt ) // Order intersecttions
|
|---|
| 2575 | {
|
|---|
| 2576 | snxt = sphi ;
|
|---|
| 2577 | side = sidephi ;
|
|---|
| 2578 | }
|
|---|
| 2579 | }
|
|---|
| 2580 | if (stheta < snxt ) // Order intersections
|
|---|
| 2581 | {
|
|---|
| 2582 | snxt = stheta ;
|
|---|
| 2583 | side = sidetheta ;
|
|---|
| 2584 | }
|
|---|
| 2585 |
|
|---|
| 2586 | if (calcNorm) // Output switch operator
|
|---|
| 2587 | {
|
|---|
| 2588 | switch( side )
|
|---|
| 2589 | {
|
|---|
| 2590 | case kRMax:
|
|---|
| 2591 | xi=p.x()+snxt*v.x();
|
|---|
| 2592 | yi=p.y()+snxt*v.y();
|
|---|
| 2593 | zi=p.z()+snxt*v.z();
|
|---|
| 2594 | *n=G4ThreeVector(xi/fRmax,yi/fRmax,zi/fRmax);
|
|---|
| 2595 | *validNorm=true;
|
|---|
| 2596 | break;
|
|---|
| 2597 |
|
|---|
| 2598 | case kRMin:
|
|---|
| 2599 | *validNorm=false; // Rmin is concave
|
|---|
| 2600 | break;
|
|---|
| 2601 |
|
|---|
| 2602 | case kSPhi:
|
|---|
| 2603 | if ( fDPhi <= pi ) // Normal to Phi-
|
|---|
| 2604 | {
|
|---|
| 2605 | *n=G4ThreeVector(sinSPhi,-cosSPhi,0);
|
|---|
| 2606 | *validNorm=true;
|
|---|
| 2607 | }
|
|---|
| 2608 | else { *validNorm=false; }
|
|---|
| 2609 | break ;
|
|---|
| 2610 |
|
|---|
| 2611 | case kEPhi:
|
|---|
| 2612 | if ( fDPhi <= pi ) // Normal to Phi+
|
|---|
| 2613 | {
|
|---|
| 2614 | *n=G4ThreeVector(-sinEPhi,cosEPhi,0);
|
|---|
| 2615 | *validNorm=true;
|
|---|
| 2616 | }
|
|---|
| 2617 | else { *validNorm=false; }
|
|---|
| 2618 | break;
|
|---|
| 2619 |
|
|---|
| 2620 | case kSTheta:
|
|---|
| 2621 | if( fSTheta == halfpi )
|
|---|
| 2622 | {
|
|---|
| 2623 | *n=G4ThreeVector(0.,0.,1.);
|
|---|
| 2624 | *validNorm=true;
|
|---|
| 2625 | }
|
|---|
| 2626 | else if ( fSTheta > halfpi )
|
|---|
| 2627 | {
|
|---|
| 2628 | xi = p.x() + snxt*v.x();
|
|---|
| 2629 | yi = p.y() + snxt*v.y();
|
|---|
| 2630 | rho2=xi*xi+yi*yi;
|
|---|
| 2631 | if (rho2)
|
|---|
| 2632 | {
|
|---|
| 2633 | rhoSecTheta = std::sqrt(rho2*(1+tanSTheta2));
|
|---|
| 2634 | *n = G4ThreeVector( xi/rhoSecTheta, yi/rhoSecTheta,
|
|---|
| 2635 | -tanSTheta/std::sqrt(1+tanSTheta2));
|
|---|
| 2636 | }
|
|---|
| 2637 | else
|
|---|
| 2638 | {
|
|---|
| 2639 | *n = G4ThreeVector(0.,0.,1.);
|
|---|
| 2640 | }
|
|---|
| 2641 | *validNorm=true;
|
|---|
| 2642 | }
|
|---|
| 2643 | else { *validNorm=false; } // Concave STheta cone
|
|---|
| 2644 | break;
|
|---|
| 2645 |
|
|---|
| 2646 | case kETheta:
|
|---|
| 2647 | if( eTheta == halfpi )
|
|---|
| 2648 | {
|
|---|
| 2649 | *n = G4ThreeVector(0.,0.,-1.);
|
|---|
| 2650 | *validNorm = true;
|
|---|
| 2651 | }
|
|---|
| 2652 | else if ( eTheta < halfpi )
|
|---|
| 2653 | {
|
|---|
| 2654 | xi=p.x()+snxt*v.x();
|
|---|
| 2655 | yi=p.y()+snxt*v.y();
|
|---|
| 2656 | rho2=xi*xi+yi*yi;
|
|---|
| 2657 | if (rho2)
|
|---|
| 2658 | {
|
|---|
| 2659 | rhoSecTheta = std::sqrt(rho2*(1+tanETheta2));
|
|---|
| 2660 | *n = G4ThreeVector( xi/rhoSecTheta, yi/rhoSecTheta,
|
|---|
| 2661 | -tanETheta/std::sqrt(1+tanETheta2) );
|
|---|
| 2662 | }
|
|---|
| 2663 | else
|
|---|
| 2664 | {
|
|---|
| 2665 | *n = G4ThreeVector(0.,0.,-1.);
|
|---|
| 2666 | }
|
|---|
| 2667 | *validNorm=true;
|
|---|
| 2668 | }
|
|---|
| 2669 | else { *validNorm=false; } // Concave ETheta cone
|
|---|
| 2670 | break;
|
|---|
| 2671 |
|
|---|
| 2672 | default:
|
|---|
| 2673 | G4cout.precision(16);
|
|---|
| 2674 | G4cout << G4endl;
|
|---|
| 2675 | DumpInfo();
|
|---|
| 2676 | G4cout << "Position:" << G4endl << G4endl;
|
|---|
| 2677 | G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl;
|
|---|
| 2678 | G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl;
|
|---|
| 2679 | G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl;
|
|---|
| 2680 | G4cout << "Direction:" << G4endl << G4endl;
|
|---|
| 2681 | G4cout << "v.x() = " << v.x() << G4endl;
|
|---|
| 2682 | G4cout << "v.y() = " << v.y() << G4endl;
|
|---|
| 2683 | G4cout << "v.z() = " << v.z() << G4endl << G4endl;
|
|---|
| 2684 | G4cout << "Proposed distance :" << G4endl << G4endl;
|
|---|
| 2685 | G4cout << "snxt = " << snxt/mm << " mm" << G4endl << G4endl;
|
|---|
| 2686 | G4Exception("G4Sphere::DistanceToOut(p,v,..)",
|
|---|
| 2687 | "Notification", JustWarning,
|
|---|
| 2688 | "Undefined side for valid surface normal to solid.");
|
|---|
| 2689 | break;
|
|---|
| 2690 | }
|
|---|
| 2691 | }
|
|---|
| 2692 | if (snxt == kInfinity)
|
|---|
| 2693 | {
|
|---|
| 2694 | G4cout.precision(24);
|
|---|
| 2695 | G4cout << G4endl;
|
|---|
| 2696 | DumpInfo();
|
|---|
| 2697 | G4cout << "Position:" << G4endl << G4endl;
|
|---|
| 2698 | G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl;
|
|---|
| 2699 | G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl;
|
|---|
| 2700 | G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl;
|
|---|
| 2701 | G4cout << "Rp = "<< std::sqrt( p.x()*p.x()+p.y()*p.y()+p.z()*p.z() )/mm << " mm"
|
|---|
| 2702 | << G4endl << G4endl;
|
|---|
| 2703 | G4cout << "Direction:" << G4endl << G4endl;
|
|---|
| 2704 | G4cout << "v.x() = " << v.x() << G4endl;
|
|---|
| 2705 | G4cout << "v.y() = " << v.y() << G4endl;
|
|---|
| 2706 | G4cout << "v.z() = " << v.z() << G4endl << G4endl;
|
|---|
| 2707 | G4cout << "Proposed distance :" << G4endl << G4endl;
|
|---|
| 2708 | G4cout << "snxt = " << snxt/mm << " mm" << G4endl << G4endl;
|
|---|
| 2709 | G4Exception("G4Sphere::DistanceToOut(p,v,..)",
|
|---|
| 2710 | "Notification", JustWarning,
|
|---|
| 2711 | "Logic error: snxt = kInfinity ???");
|
|---|
| 2712 | }
|
|---|
| 2713 |
|
|---|
| 2714 | return snxt;
|
|---|
| 2715 | }
|
|---|
| 2716 |
|
|---|
| 2717 | /////////////////////////////////////////////////////////////////////////
|
|---|
| 2718 | //
|
|---|
| 2719 | // Calculate distance (<=actual) to closest surface of shape from inside
|
|---|
| 2720 |
|
|---|
| 2721 | G4double G4Sphere::DistanceToOut( const G4ThreeVector& p ) const
|
|---|
| 2722 | {
|
|---|
| 2723 | G4double safe=0.0,safeRMin,safeRMax,safePhi,safeTheta;
|
|---|
| 2724 | G4double rho2,rds,rho;
|
|---|
| 2725 | G4double pTheta,dTheta1,dTheta2;
|
|---|
| 2726 | rho2=p.x()*p.x()+p.y()*p.y();
|
|---|
| 2727 | rds=std::sqrt(rho2+p.z()*p.z());
|
|---|
| 2728 | rho=std::sqrt(rho2);
|
|---|
| 2729 |
|
|---|
| 2730 | #ifdef G4CSGDEBUG
|
|---|
| 2731 | if( Inside(p) == kOutside )
|
|---|
| 2732 | {
|
|---|
| 2733 | G4cout.precision(16) ;
|
|---|
| 2734 | G4cout << G4endl ;
|
|---|
| 2735 | DumpInfo();
|
|---|
| 2736 | G4cout << "Position:" << G4endl << G4endl ;
|
|---|
| 2737 | G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ;
|
|---|
| 2738 | G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ;
|
|---|
| 2739 | G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ;
|
|---|
| 2740 | G4Exception("G4Sphere::DistanceToOut(p)",
|
|---|
| 2741 | "Notification", JustWarning, "Point p is outside !?" );
|
|---|
| 2742 | }
|
|---|
| 2743 | #endif
|
|---|
| 2744 |
|
|---|
| 2745 | //
|
|---|
| 2746 | // Distance to r shells
|
|---|
| 2747 | //
|
|---|
| 2748 | if (fRmin)
|
|---|
| 2749 | {
|
|---|
| 2750 | safeRMin=rds-fRmin;
|
|---|
| 2751 | safeRMax=fRmax-rds;
|
|---|
| 2752 | if (safeRMin<safeRMax)
|
|---|
| 2753 | {
|
|---|
| 2754 | safe=safeRMin;
|
|---|
| 2755 | }
|
|---|
| 2756 | else
|
|---|
| 2757 | {
|
|---|
| 2758 | safe=safeRMax;
|
|---|
| 2759 | }
|
|---|
| 2760 | }
|
|---|
| 2761 | else
|
|---|
| 2762 | {
|
|---|
| 2763 | safe=fRmax-rds;
|
|---|
| 2764 | }
|
|---|
| 2765 |
|
|---|
| 2766 | //
|
|---|
| 2767 | // Distance to phi extent
|
|---|
| 2768 | //
|
|---|
| 2769 | if (!fFullPhiSphere && rho)
|
|---|
| 2770 | {
|
|---|
| 2771 | if ((p.y()*cosCPhi-p.x()*sinCPhi)<=0)
|
|---|
| 2772 | {
|
|---|
| 2773 | safePhi=-(p.x()*sinSPhi-p.y()*cosSPhi);
|
|---|
| 2774 | }
|
|---|
| 2775 | else
|
|---|
| 2776 | {
|
|---|
| 2777 | safePhi=(p.x()*sinEPhi-p.y()*cosEPhi);
|
|---|
| 2778 | }
|
|---|
| 2779 | if (safePhi<safe) { safe=safePhi; }
|
|---|
| 2780 | }
|
|---|
| 2781 |
|
|---|
| 2782 | //
|
|---|
| 2783 | // Distance to Theta extent
|
|---|
| 2784 | //
|
|---|
| 2785 | if (rds)
|
|---|
| 2786 | {
|
|---|
| 2787 | pTheta=std::acos(p.z()/rds);
|
|---|
| 2788 | if (pTheta<0) { pTheta+=pi; }
|
|---|
| 2789 | dTheta1=pTheta-fSTheta;
|
|---|
| 2790 | dTheta2=eTheta-pTheta;
|
|---|
| 2791 | if (dTheta1<dTheta2) { safeTheta=rds*std::sin(dTheta1); }
|
|---|
| 2792 | else { safeTheta=rds*std::sin(dTheta2); }
|
|---|
| 2793 | if (safe>safeTheta) { safe=safeTheta; }
|
|---|
| 2794 | }
|
|---|
| 2795 |
|
|---|
| 2796 | if (safe<0) { safe=0; }
|
|---|
| 2797 | return safe;
|
|---|
| 2798 | }
|
|---|
| 2799 |
|
|---|
| 2800 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 2801 | //
|
|---|
| 2802 | // Create a List containing the transformed vertices
|
|---|
| 2803 | // Ordering [0-3] -fDz cross section
|
|---|
| 2804 | // [4-7] +fDz cross section such that [0] is below [4],
|
|---|
| 2805 | // [1] below [5] etc.
|
|---|
| 2806 | // Note:
|
|---|
| 2807 | // Caller has deletion resposibility
|
|---|
| 2808 | // Potential improvement: For last slice, use actual ending angle
|
|---|
| 2809 | // to avoid rounding error problems.
|
|---|
| 2810 |
|
|---|
| 2811 | G4ThreeVectorList*
|
|---|
| 2812 | G4Sphere::CreateRotatedVertices( const G4AffineTransform& pTransform,
|
|---|
| 2813 | G4int& noPolygonVertices ) const
|
|---|
| 2814 | {
|
|---|
| 2815 | G4ThreeVectorList *vertices;
|
|---|
| 2816 | G4ThreeVector vertex;
|
|---|
| 2817 | G4double meshAnglePhi,meshRMax,crossAnglePhi,
|
|---|
| 2818 | coscrossAnglePhi,sincrossAnglePhi,sAnglePhi;
|
|---|
| 2819 | G4double meshTheta,crossTheta,startTheta;
|
|---|
| 2820 | G4double rMaxX,rMaxY,rMinX,rMinY,rMinZ,rMaxZ;
|
|---|
| 2821 | G4int crossSectionPhi,noPhiCrossSections,crossSectionTheta,noThetaSections;
|
|---|
| 2822 |
|
|---|
| 2823 | // Phi cross sections
|
|---|
| 2824 |
|
|---|
| 2825 | noPhiCrossSections = G4int(fDPhi/kMeshAngleDefault)+1;
|
|---|
| 2826 |
|
|---|
| 2827 | if (noPhiCrossSections<kMinMeshSections)
|
|---|
| 2828 | {
|
|---|
| 2829 | noPhiCrossSections=kMinMeshSections;
|
|---|
| 2830 | }
|
|---|
| 2831 | else if (noPhiCrossSections>kMaxMeshSections)
|
|---|
| 2832 | {
|
|---|
| 2833 | noPhiCrossSections=kMaxMeshSections;
|
|---|
| 2834 | }
|
|---|
| 2835 | meshAnglePhi=fDPhi/(noPhiCrossSections-1);
|
|---|
| 2836 |
|
|---|
| 2837 | // If complete in phi, set start angle such that mesh will be at fRMax
|
|---|
| 2838 | // on the x axis. Will give better extent calculations when not rotated.
|
|---|
| 2839 |
|
|---|
| 2840 | if (fFullPhiSphere)
|
|---|
| 2841 | {
|
|---|
| 2842 | sAnglePhi = -meshAnglePhi*0.5;
|
|---|
| 2843 | }
|
|---|
| 2844 | else
|
|---|
| 2845 | {
|
|---|
| 2846 | sAnglePhi=fSPhi;
|
|---|
| 2847 | }
|
|---|
| 2848 |
|
|---|
| 2849 | // Theta cross sections
|
|---|
| 2850 |
|
|---|
| 2851 | noThetaSections = G4int(fDTheta/kMeshAngleDefault)+1;
|
|---|
| 2852 |
|
|---|
| 2853 | if (noThetaSections<kMinMeshSections)
|
|---|
| 2854 | {
|
|---|
| 2855 | noThetaSections=kMinMeshSections;
|
|---|
| 2856 | }
|
|---|
| 2857 | else if (noThetaSections>kMaxMeshSections)
|
|---|
| 2858 | {
|
|---|
| 2859 | noThetaSections=kMaxMeshSections;
|
|---|
| 2860 | }
|
|---|
| 2861 | meshTheta=fDTheta/(noThetaSections-1);
|
|---|
| 2862 |
|
|---|
| 2863 | // If complete in Theta, set start angle such that mesh will be at fRMax
|
|---|
| 2864 | // on the z axis. Will give better extent calculations when not rotated.
|
|---|
| 2865 |
|
|---|
| 2866 | if (fFullThetaSphere)
|
|---|
| 2867 | {
|
|---|
| 2868 | startTheta = -meshTheta*0.5;
|
|---|
| 2869 | }
|
|---|
| 2870 | else
|
|---|
| 2871 | {
|
|---|
| 2872 | startTheta=fSTheta;
|
|---|
| 2873 | }
|
|---|
| 2874 |
|
|---|
| 2875 | meshRMax = (meshAnglePhi >= meshTheta) ?
|
|---|
| 2876 | fRmax/std::cos(meshAnglePhi*0.5) : fRmax/std::cos(meshTheta*0.5);
|
|---|
| 2877 | G4double* cosCrossTheta = new G4double[noThetaSections];
|
|---|
| 2878 | G4double* sinCrossTheta = new G4double[noThetaSections];
|
|---|
| 2879 | vertices=new G4ThreeVectorList();
|
|---|
| 2880 | vertices->reserve(noPhiCrossSections*(noThetaSections*2));
|
|---|
| 2881 | if (vertices && cosCrossTheta && sinCrossTheta)
|
|---|
| 2882 | {
|
|---|
| 2883 | for (crossSectionPhi=0;
|
|---|
| 2884 | crossSectionPhi<noPhiCrossSections; crossSectionPhi++)
|
|---|
| 2885 | {
|
|---|
| 2886 | crossAnglePhi=sAnglePhi+crossSectionPhi*meshAnglePhi;
|
|---|
| 2887 | coscrossAnglePhi=std::cos(crossAnglePhi);
|
|---|
| 2888 | sincrossAnglePhi=std::sin(crossAnglePhi);
|
|---|
| 2889 | for (crossSectionTheta=0;
|
|---|
| 2890 | crossSectionTheta<noThetaSections;crossSectionTheta++)
|
|---|
| 2891 | {
|
|---|
| 2892 | // Compute coordinates of cross section at section crossSectionPhi
|
|---|
| 2893 | //
|
|---|
| 2894 | crossTheta=startTheta+crossSectionTheta*meshTheta;
|
|---|
| 2895 | cosCrossTheta[crossSectionTheta]=std::cos(crossTheta);
|
|---|
| 2896 | sinCrossTheta[crossSectionTheta]=std::sin(crossTheta);
|
|---|
| 2897 |
|
|---|
| 2898 | rMinX=fRmin*sinCrossTheta[crossSectionTheta]*coscrossAnglePhi;
|
|---|
| 2899 | rMinY=fRmin*sinCrossTheta[crossSectionTheta]*sincrossAnglePhi;
|
|---|
| 2900 | rMinZ=fRmin*cosCrossTheta[crossSectionTheta];
|
|---|
| 2901 |
|
|---|
| 2902 | vertex=G4ThreeVector(rMinX,rMinY,rMinZ);
|
|---|
| 2903 | vertices->push_back(pTransform.TransformPoint(vertex));
|
|---|
| 2904 |
|
|---|
| 2905 | } // Theta forward
|
|---|
| 2906 |
|
|---|
| 2907 | for (crossSectionTheta=noThetaSections-1;
|
|---|
| 2908 | crossSectionTheta>=0; crossSectionTheta--)
|
|---|
| 2909 | {
|
|---|
| 2910 | rMaxX=meshRMax*sinCrossTheta[crossSectionTheta]*coscrossAnglePhi;
|
|---|
| 2911 | rMaxY=meshRMax*sinCrossTheta[crossSectionTheta]*sincrossAnglePhi;
|
|---|
| 2912 | rMaxZ=meshRMax*cosCrossTheta[crossSectionTheta];
|
|---|
| 2913 |
|
|---|
| 2914 | vertex=G4ThreeVector(rMaxX,rMaxY,rMaxZ);
|
|---|
| 2915 | vertices->push_back(pTransform.TransformPoint(vertex));
|
|---|
| 2916 |
|
|---|
| 2917 | } // Theta back
|
|---|
| 2918 | } // Phi
|
|---|
| 2919 | noPolygonVertices = noThetaSections*2 ;
|
|---|
| 2920 | }
|
|---|
| 2921 | else
|
|---|
| 2922 | {
|
|---|
| 2923 | DumpInfo();
|
|---|
| 2924 | G4Exception("G4Sphere::CreateRotatedVertices()",
|
|---|
| 2925 | "FatalError", FatalException,
|
|---|
| 2926 | "Error in allocation of vertices. Out of memory !");
|
|---|
| 2927 | }
|
|---|
| 2928 |
|
|---|
| 2929 | delete [] cosCrossTheta;
|
|---|
| 2930 | delete [] sinCrossTheta;
|
|---|
| 2931 |
|
|---|
| 2932 | return vertices;
|
|---|
| 2933 | }
|
|---|
| 2934 |
|
|---|
| 2935 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 2936 | //
|
|---|
| 2937 | // G4EntityType
|
|---|
| 2938 |
|
|---|
| 2939 | G4GeometryType G4Sphere::GetEntityType() const
|
|---|
| 2940 | {
|
|---|
| 2941 | return G4String("G4Sphere");
|
|---|
| 2942 | }
|
|---|
| 2943 |
|
|---|
| 2944 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 2945 | //
|
|---|
| 2946 | // Stream object contents to an output stream
|
|---|
| 2947 |
|
|---|
| 2948 | std::ostream& G4Sphere::StreamInfo( std::ostream& os ) const
|
|---|
| 2949 | {
|
|---|
| 2950 | os << "-----------------------------------------------------------\n"
|
|---|
| 2951 | << " *** Dump for solid - " << GetName() << " ***\n"
|
|---|
| 2952 | << " ===================================================\n"
|
|---|
| 2953 | << " Solid type: G4Sphere\n"
|
|---|
| 2954 | << " Parameters: \n"
|
|---|
| 2955 | << " inner radius: " << fRmin/mm << " mm \n"
|
|---|
| 2956 | << " outer radius: " << fRmax/mm << " mm \n"
|
|---|
| 2957 | << " starting phi of segment : " << fSPhi/degree << " degrees \n"
|
|---|
| 2958 | << " delta phi of segment : " << fDPhi/degree << " degrees \n"
|
|---|
| 2959 | << " starting theta of segment: " << fSTheta/degree << " degrees \n"
|
|---|
| 2960 | << " delta theta of segment : " << fDTheta/degree << " degrees \n"
|
|---|
| 2961 | << "-----------------------------------------------------------\n";
|
|---|
| 2962 |
|
|---|
| 2963 | return os;
|
|---|
| 2964 | }
|
|---|
| 2965 |
|
|---|
| 2966 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 2967 | //
|
|---|
| 2968 | // GetPointOnSurface
|
|---|
| 2969 |
|
|---|
| 2970 | G4ThreeVector G4Sphere::GetPointOnSurface() const
|
|---|
| 2971 | {
|
|---|
| 2972 | G4double zRand, aOne, aTwo, aThr, aFou, aFiv, chose, phi, sinphi, cosphi;
|
|---|
| 2973 | G4double height1, height2, slant1, slant2, costheta, sintheta,theta,rRand;
|
|---|
| 2974 |
|
|---|
| 2975 | height1 = (fRmax-fRmin)*cosSTheta;
|
|---|
| 2976 | height2 = (fRmax-fRmin)*cosETheta;
|
|---|
| 2977 | slant1 = std::sqrt(sqr((fRmax - fRmin)*sinSTheta) + height1*height1);
|
|---|
| 2978 | slant2 = std::sqrt(sqr((fRmax - fRmin)*sinETheta) + height2*height2);
|
|---|
| 2979 | rRand = RandFlat::shoot(fRmin,fRmax);
|
|---|
| 2980 |
|
|---|
| 2981 | aOne = fRmax*fRmax*fDPhi*(cosSTheta-cosETheta);
|
|---|
| 2982 | aTwo = fRmin*fRmin*fDPhi*(cosSTheta-cosETheta);
|
|---|
| 2983 | aThr = fDPhi*((fRmax + fRmin)*sinSTheta)*slant1;
|
|---|
| 2984 | aFou = fDPhi*((fRmax + fRmin)*sinETheta)*slant2;
|
|---|
| 2985 | aFiv = 0.5*fDTheta*(fRmax*fRmax-fRmin*fRmin);
|
|---|
| 2986 |
|
|---|
| 2987 | phi = RandFlat::shoot(fSPhi, ePhi);
|
|---|
| 2988 | cosphi = std::cos(phi);
|
|---|
| 2989 | sinphi = std::sin(phi);
|
|---|
| 2990 | theta = RandFlat::shoot(fSTheta,eTheta);
|
|---|
| 2991 | costheta = std::cos(theta);
|
|---|
| 2992 | sintheta = std::sqrt(1.-sqr(costheta));
|
|---|
| 2993 |
|
|---|
| 2994 | if(fFullPhiSphere) { aFiv = 0; }
|
|---|
| 2995 | if(fSTheta == 0) { aThr=0; }
|
|---|
| 2996 | if(eTheta == pi) { aFou = 0; }
|
|---|
| 2997 | if(fSTheta == halfpi) { aThr = pi*(fRmax*fRmax-fRmin*fRmin); }
|
|---|
| 2998 | if(eTheta == halfpi) { aFou = pi*(fRmax*fRmax-fRmin*fRmin); }
|
|---|
| 2999 |
|
|---|
| 3000 | chose = RandFlat::shoot(0.,aOne+aTwo+aThr+aFou+2.*aFiv);
|
|---|
| 3001 | if( (chose>=0.) && (chose<aOne) )
|
|---|
| 3002 | {
|
|---|
| 3003 | return G4ThreeVector(fRmax*sintheta*cosphi,
|
|---|
| 3004 | fRmax*sintheta*sinphi, fRmax*costheta);
|
|---|
| 3005 | }
|
|---|
| 3006 | else if( (chose>=aOne) && (chose<aOne+aTwo) )
|
|---|
| 3007 | {
|
|---|
| 3008 | return G4ThreeVector(fRmin*sintheta*cosphi,
|
|---|
| 3009 | fRmin*sintheta*sinphi, fRmin*costheta);
|
|---|
| 3010 | }
|
|---|
| 3011 | else if( (chose>=aOne+aTwo) && (chose<aOne+aTwo+aThr) )
|
|---|
| 3012 | {
|
|---|
| 3013 | if (fSTheta != halfpi)
|
|---|
| 3014 | {
|
|---|
| 3015 | zRand = RandFlat::shoot(fRmin*cosSTheta,fRmax*cosSTheta);
|
|---|
| 3016 | return G4ThreeVector(tanSTheta*zRand*cosphi,
|
|---|
| 3017 | tanSTheta*zRand*sinphi,zRand);
|
|---|
| 3018 | }
|
|---|
| 3019 | else
|
|---|
| 3020 | {
|
|---|
| 3021 | return G4ThreeVector(rRand*cosphi, rRand*sinphi, 0.);
|
|---|
| 3022 | }
|
|---|
| 3023 | }
|
|---|
| 3024 | else if( (chose>=aOne+aTwo+aThr) && (chose<aOne+aTwo+aThr+aFou) )
|
|---|
| 3025 | {
|
|---|
| 3026 | if(eTheta != halfpi)
|
|---|
| 3027 | {
|
|---|
| 3028 | zRand = RandFlat::shoot(fRmin*cosETheta, fRmax*cosETheta);
|
|---|
| 3029 | return G4ThreeVector (tanETheta*zRand*cosphi,
|
|---|
| 3030 | tanETheta*zRand*sinphi,zRand);
|
|---|
| 3031 | }
|
|---|
| 3032 | else
|
|---|
| 3033 | {
|
|---|
| 3034 | return G4ThreeVector(rRand*cosphi, rRand*sinphi, 0.);
|
|---|
| 3035 | }
|
|---|
| 3036 | }
|
|---|
| 3037 | else if( (chose>=aOne+aTwo+aThr+aFou) && (chose<aOne+aTwo+aThr+aFou+aFiv) )
|
|---|
| 3038 | {
|
|---|
| 3039 | return G4ThreeVector(rRand*sintheta*cosSPhi,
|
|---|
| 3040 | rRand*sintheta*sinSPhi,rRand*costheta);
|
|---|
| 3041 | }
|
|---|
| 3042 | else
|
|---|
| 3043 | {
|
|---|
| 3044 | return G4ThreeVector(rRand*sintheta*cosEPhi,
|
|---|
| 3045 | rRand*sintheta*sinEPhi,rRand*costheta);
|
|---|
| 3046 | }
|
|---|
| 3047 | }
|
|---|
| 3048 |
|
|---|
| 3049 | ////////////////////////////////////////////////////////////////////////////////
|
|---|
| 3050 | //
|
|---|
| 3051 | // GetSurfaceArea
|
|---|
| 3052 |
|
|---|
| 3053 | G4double G4Sphere::GetSurfaceArea()
|
|---|
| 3054 | {
|
|---|
| 3055 | if(fSurfaceArea != 0.) {;}
|
|---|
| 3056 | else
|
|---|
| 3057 | {
|
|---|
| 3058 | G4double Rsq=fRmax*fRmax;
|
|---|
| 3059 | G4double rsq=fRmin*fRmin;
|
|---|
| 3060 |
|
|---|
| 3061 | fSurfaceArea = fDPhi*(rsq+Rsq)*(cosSTheta - cosETheta);
|
|---|
| 3062 | if(!fFullPhiSphere)
|
|---|
| 3063 | {
|
|---|
| 3064 | fSurfaceArea = fSurfaceArea + fDTheta*(Rsq-rsq);
|
|---|
| 3065 | }
|
|---|
| 3066 | if(fSTheta >0)
|
|---|
| 3067 | {
|
|---|
| 3068 | G4double acos1=std::acos( std::pow(sinSTheta,2) * std::cos(fDPhi)
|
|---|
| 3069 | + std::pow(cosSTheta,2));
|
|---|
| 3070 | if(fDPhi>pi)
|
|---|
| 3071 | {
|
|---|
| 3072 | fSurfaceArea = fSurfaceArea + 0.5*(Rsq-rsq)*(twopi-acos1);
|
|---|
| 3073 | }
|
|---|
| 3074 | else
|
|---|
| 3075 | {
|
|---|
| 3076 | fSurfaceArea = fSurfaceArea + 0.5*(Rsq-rsq)*acos1;
|
|---|
| 3077 | }
|
|---|
| 3078 | }
|
|---|
| 3079 | if(eTheta < pi)
|
|---|
| 3080 | {
|
|---|
| 3081 | G4double acos2=std::acos( std::pow(sinETheta,2) * std::cos(fDPhi)
|
|---|
| 3082 | + std::pow(cosETheta,2));
|
|---|
| 3083 | if(fDPhi>pi)
|
|---|
| 3084 | {
|
|---|
| 3085 | fSurfaceArea = fSurfaceArea + 0.5*(Rsq-rsq)*(twopi-acos2);
|
|---|
| 3086 | }
|
|---|
| 3087 | else
|
|---|
| 3088 | {
|
|---|
| 3089 | fSurfaceArea = fSurfaceArea + 0.5*(Rsq-rsq)*acos2;
|
|---|
| 3090 | }
|
|---|
| 3091 | }
|
|---|
| 3092 | }
|
|---|
| 3093 | return fSurfaceArea;
|
|---|
| 3094 | }
|
|---|
| 3095 |
|
|---|
| 3096 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 3097 | //
|
|---|
| 3098 | // Methods for visualisation
|
|---|
| 3099 |
|
|---|
| 3100 | G4VisExtent G4Sphere::GetExtent() const
|
|---|
| 3101 | {
|
|---|
| 3102 | return G4VisExtent(-fRmax, fRmax,-fRmax, fRmax,-fRmax, fRmax );
|
|---|
| 3103 | }
|
|---|
| 3104 |
|
|---|
| 3105 |
|
|---|
| 3106 | void G4Sphere::DescribeYourselfTo ( G4VGraphicsScene& scene ) const
|
|---|
| 3107 | {
|
|---|
| 3108 | scene.AddSolid (*this);
|
|---|
| 3109 | }
|
|---|
| 3110 |
|
|---|
| 3111 | G4Polyhedron* G4Sphere::CreatePolyhedron () const
|
|---|
| 3112 | {
|
|---|
| 3113 | return new G4PolyhedronSphere (fRmin, fRmax, fSPhi, fDPhi, fSTheta, fDTheta);
|
|---|
| 3114 | }
|
|---|
| 3115 |
|
|---|
| 3116 | G4NURBS* G4Sphere::CreateNURBS () const
|
|---|
| 3117 | {
|
|---|
| 3118 | return new G4NURBSbox (fRmax, fRmax, fRmax); // Box for now!!!
|
|---|
| 3119 | }
|
|---|