| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // $Id: G4Ellipsoid.cc,v 1.24 2009/09/24 15:51:02 gcosmo Exp $
|
|---|
| 27 | // GEANT4 tag $Name: geant4-09-04-beta-01 $
|
|---|
| 28 | //
|
|---|
| 29 | // class G4Ellipsoid
|
|---|
| 30 | //
|
|---|
| 31 | // Implementation for G4Ellipsoid class
|
|---|
| 32 | //
|
|---|
| 33 | // History:
|
|---|
| 34 | //
|
|---|
| 35 | // 10.11.99 G.Horton-Smith -- first writing, based on G4Sphere class
|
|---|
| 36 | // 25.02.05 G.Guerrieri -- Modified for future Geant4 release
|
|---|
| 37 | //
|
|---|
| 38 | // --------------------------------------------------------------------
|
|---|
| 39 |
|
|---|
| 40 | #include "globals.hh"
|
|---|
| 41 |
|
|---|
| 42 | #include "G4Ellipsoid.hh"
|
|---|
| 43 |
|
|---|
| 44 | #include "G4VoxelLimits.hh"
|
|---|
| 45 | #include "G4AffineTransform.hh"
|
|---|
| 46 | #include "G4GeometryTolerance.hh"
|
|---|
| 47 |
|
|---|
| 48 | #include "meshdefs.hh"
|
|---|
| 49 |
|
|---|
| 50 | #include "Randomize.hh"
|
|---|
| 51 |
|
|---|
| 52 | #include "G4VGraphicsScene.hh"
|
|---|
| 53 | #include "G4Polyhedron.hh"
|
|---|
| 54 | #include "G4NURBS.hh"
|
|---|
| 55 | #include "G4NURBSbox.hh"
|
|---|
| 56 | #include "G4VisExtent.hh"
|
|---|
| 57 |
|
|---|
| 58 | using namespace CLHEP;
|
|---|
| 59 |
|
|---|
| 60 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 61 | //
|
|---|
| 62 | // constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI
|
|---|
| 63 | // - note if pDPhi>2PI then reset to 2PI
|
|---|
| 64 |
|
|---|
| 65 | G4Ellipsoid::G4Ellipsoid(const G4String& pName,
|
|---|
| 66 | G4double pxSemiAxis,
|
|---|
| 67 | G4double pySemiAxis,
|
|---|
| 68 | G4double pzSemiAxis,
|
|---|
| 69 | G4double pzBottomCut,
|
|---|
| 70 | G4double pzTopCut)
|
|---|
| 71 | : G4VSolid(pName), fpPolyhedron(0), fCubicVolume(0.), fSurfaceArea(0.),
|
|---|
| 72 | zBottomCut(0.), zTopCut(0.)
|
|---|
| 73 | {
|
|---|
| 74 | // note: for users that want to use the full ellipsoid it is useful
|
|---|
| 75 | // to include a default for the cuts
|
|---|
| 76 |
|
|---|
| 77 | kRadTolerance = G4GeometryTolerance::GetInstance()->GetRadialTolerance();
|
|---|
| 78 |
|
|---|
| 79 | // Check Semi-Axis
|
|---|
| 80 | if ( (pxSemiAxis>0.) && (pySemiAxis>0.) && (pzSemiAxis>0.) )
|
|---|
| 81 | {
|
|---|
| 82 | SetSemiAxis(pxSemiAxis, pySemiAxis, pzSemiAxis);
|
|---|
| 83 | }
|
|---|
| 84 | else
|
|---|
| 85 | {
|
|---|
| 86 | G4cerr << "ERROR - G4Ellipsoid::G4Ellipsoid(): " << GetName() << G4endl
|
|---|
| 87 | << " Invalid semi-axis !"
|
|---|
| 88 | << G4endl;
|
|---|
| 89 | G4Exception("G4Ellipsoid::G4Ellipsoid()", "InvalidSetup",
|
|---|
| 90 | FatalException, "Invalid semi-axis.");
|
|---|
| 91 | }
|
|---|
| 92 |
|
|---|
| 93 | if ( pzBottomCut == 0 && pzTopCut == 0 )
|
|---|
| 94 | {
|
|---|
| 95 | SetZCuts(-pzSemiAxis, pzSemiAxis);
|
|---|
| 96 | }
|
|---|
| 97 | else if ( (pzBottomCut < pzSemiAxis) && (pzTopCut > -pzSemiAxis)
|
|---|
| 98 | && (pzBottomCut < pzTopCut) )
|
|---|
| 99 | {
|
|---|
| 100 | SetZCuts(pzBottomCut, pzTopCut);
|
|---|
| 101 | }
|
|---|
| 102 | else
|
|---|
| 103 | {
|
|---|
| 104 | G4cerr << "ERROR - G4Ellipsoid::G4Ellipsoid(): " << GetName() << G4endl
|
|---|
| 105 | << " Invalid z-coordinate for cutting plane !"
|
|---|
| 106 | << G4endl;
|
|---|
| 107 | G4Exception("G4Ellipsoid::G4Ellipsoid()", "InvalidSetup",
|
|---|
| 108 | FatalException, "Invalid z-coordinate for cutting plane.");
|
|---|
| 109 | }
|
|---|
| 110 | }
|
|---|
| 111 |
|
|---|
| 112 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 113 | //
|
|---|
| 114 | // Fake default constructor - sets only member data and allocates memory
|
|---|
| 115 | // for usage restricted to object persistency.
|
|---|
| 116 | //
|
|---|
| 117 | G4Ellipsoid::G4Ellipsoid( __void__& a )
|
|---|
| 118 | : G4VSolid(a), fpPolyhedron(0), fCubicVolume(0.), fSurfaceArea(0.)
|
|---|
| 119 | {
|
|---|
| 120 | }
|
|---|
| 121 |
|
|---|
| 122 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 123 | //
|
|---|
| 124 | // Destructor
|
|---|
| 125 |
|
|---|
| 126 | G4Ellipsoid::~G4Ellipsoid()
|
|---|
| 127 | {
|
|---|
| 128 | }
|
|---|
| 129 |
|
|---|
| 130 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 131 | //
|
|---|
| 132 | // Calculate extent under transform and specified limit
|
|---|
| 133 |
|
|---|
| 134 | G4bool
|
|---|
| 135 | G4Ellipsoid::CalculateExtent(const EAxis pAxis,
|
|---|
| 136 | const G4VoxelLimits& pVoxelLimit,
|
|---|
| 137 | const G4AffineTransform& pTransform,
|
|---|
| 138 | G4double& pMin, G4double& pMax) const
|
|---|
| 139 | {
|
|---|
| 140 | if (!pTransform.IsRotated())
|
|---|
| 141 | {
|
|---|
| 142 | // Special case handling for unrotated solid ellipsoid
|
|---|
| 143 | // Compute x/y/z mins and maxs for bounding box respecting limits,
|
|---|
| 144 | // with early returns if outside limits. Then switch() on pAxis,
|
|---|
| 145 | // and compute exact x and y limit for x/y case
|
|---|
| 146 |
|
|---|
| 147 | G4double xoffset,xMin,xMax;
|
|---|
| 148 | G4double yoffset,yMin,yMax;
|
|---|
| 149 | G4double zoffset,zMin,zMax;
|
|---|
| 150 |
|
|---|
| 151 | G4double maxDiff,newMin,newMax;
|
|---|
| 152 | G4double xoff,yoff;
|
|---|
| 153 |
|
|---|
| 154 | xoffset=pTransform.NetTranslation().x();
|
|---|
| 155 | xMin=xoffset - xSemiAxis;
|
|---|
| 156 | xMax=xoffset + xSemiAxis;
|
|---|
| 157 | if (pVoxelLimit.IsXLimited())
|
|---|
| 158 | {
|
|---|
| 159 | if ( (xMin>pVoxelLimit.GetMaxXExtent()+kCarTolerance)
|
|---|
| 160 | || (xMax<pVoxelLimit.GetMinXExtent()-kCarTolerance) )
|
|---|
| 161 | {
|
|---|
| 162 | return false;
|
|---|
| 163 | }
|
|---|
| 164 | else
|
|---|
| 165 | {
|
|---|
| 166 | if (xMin<pVoxelLimit.GetMinXExtent())
|
|---|
| 167 | {
|
|---|
| 168 | xMin=pVoxelLimit.GetMinXExtent();
|
|---|
| 169 | }
|
|---|
| 170 | if (xMax>pVoxelLimit.GetMaxXExtent())
|
|---|
| 171 | {
|
|---|
| 172 | xMax=pVoxelLimit.GetMaxXExtent();
|
|---|
| 173 | }
|
|---|
| 174 | }
|
|---|
| 175 | }
|
|---|
| 176 |
|
|---|
| 177 | yoffset=pTransform.NetTranslation().y();
|
|---|
| 178 | yMin=yoffset - ySemiAxis;
|
|---|
| 179 | yMax=yoffset + ySemiAxis;
|
|---|
| 180 | if (pVoxelLimit.IsYLimited())
|
|---|
| 181 | {
|
|---|
| 182 | if ( (yMin>pVoxelLimit.GetMaxYExtent()+kCarTolerance)
|
|---|
| 183 | || (yMax<pVoxelLimit.GetMinYExtent()-kCarTolerance) )
|
|---|
| 184 | {
|
|---|
| 185 | return false;
|
|---|
| 186 | }
|
|---|
| 187 | else
|
|---|
| 188 | {
|
|---|
| 189 | if (yMin<pVoxelLimit.GetMinYExtent())
|
|---|
| 190 | {
|
|---|
| 191 | yMin=pVoxelLimit.GetMinYExtent();
|
|---|
| 192 | }
|
|---|
| 193 | if (yMax>pVoxelLimit.GetMaxYExtent())
|
|---|
| 194 | {
|
|---|
| 195 | yMax=pVoxelLimit.GetMaxYExtent();
|
|---|
| 196 | }
|
|---|
| 197 | }
|
|---|
| 198 | }
|
|---|
| 199 |
|
|---|
| 200 | zoffset=pTransform.NetTranslation().z();
|
|---|
| 201 | zMin=zoffset + (-zSemiAxis > zBottomCut ? -zSemiAxis : zBottomCut);
|
|---|
| 202 | zMax=zoffset + ( zSemiAxis < zTopCut ? zSemiAxis : zTopCut);
|
|---|
| 203 | if (pVoxelLimit.IsZLimited())
|
|---|
| 204 | {
|
|---|
| 205 | if ( (zMin>pVoxelLimit.GetMaxZExtent()+kCarTolerance)
|
|---|
| 206 | || (zMax<pVoxelLimit.GetMinZExtent()-kCarTolerance) )
|
|---|
| 207 | {
|
|---|
| 208 | return false;
|
|---|
| 209 | }
|
|---|
| 210 | else
|
|---|
| 211 | {
|
|---|
| 212 | if (zMin<pVoxelLimit.GetMinZExtent())
|
|---|
| 213 | {
|
|---|
| 214 | zMin=pVoxelLimit.GetMinZExtent();
|
|---|
| 215 | }
|
|---|
| 216 | if (zMax>pVoxelLimit.GetMaxZExtent())
|
|---|
| 217 | {
|
|---|
| 218 | zMax=pVoxelLimit.GetMaxZExtent();
|
|---|
| 219 | }
|
|---|
| 220 | }
|
|---|
| 221 | }
|
|---|
| 222 |
|
|---|
| 223 | // if here, then known to cut bounding box around ellipsoid
|
|---|
| 224 | //
|
|---|
| 225 | xoff = (xoffset < xMin) ? (xMin-xoffset)
|
|---|
| 226 | : (xoffset > xMax) ? (xoffset-xMax) : 0.0;
|
|---|
| 227 | yoff = (yoffset < yMin) ? (yMin-yoffset)
|
|---|
| 228 | : (yoffset > yMax) ? (yoffset-yMax) : 0.0;
|
|---|
| 229 |
|
|---|
| 230 | // detailed calculations
|
|---|
| 231 | // NOTE: does not use X or Y offsets to adjust Z range,
|
|---|
| 232 | // and does not use Z offset to adjust X or Y range,
|
|---|
| 233 | // which is consistent with G4Sphere::CalculateExtent behavior
|
|---|
| 234 | //
|
|---|
| 235 | switch (pAxis)
|
|---|
| 236 | {
|
|---|
| 237 | case kXAxis:
|
|---|
| 238 | if (yoff==0.)
|
|---|
| 239 | {
|
|---|
| 240 | // YZ limits cross max/min x => no change
|
|---|
| 241 | //
|
|---|
| 242 | pMin=xMin;
|
|---|
| 243 | pMax=xMax;
|
|---|
| 244 | }
|
|---|
| 245 | else
|
|---|
| 246 | {
|
|---|
| 247 | // YZ limits don't cross max/min x => compute max delta x,
|
|---|
| 248 | // hence new mins/maxs
|
|---|
| 249 | //
|
|---|
| 250 | maxDiff= 1.0-sqr(yoff/ySemiAxis);
|
|---|
| 251 | if (maxDiff < 0.0) { return false; }
|
|---|
| 252 | maxDiff= xSemiAxis * std::sqrt(maxDiff);
|
|---|
| 253 | newMin=xoffset-maxDiff;
|
|---|
| 254 | newMax=xoffset+maxDiff;
|
|---|
| 255 | pMin=(newMin<xMin) ? xMin : newMin;
|
|---|
| 256 | pMax=(newMax>xMax) ? xMax : newMax;
|
|---|
| 257 | }
|
|---|
| 258 | break;
|
|---|
| 259 | case kYAxis:
|
|---|
| 260 | if (xoff==0.)
|
|---|
| 261 | {
|
|---|
| 262 | // XZ limits cross max/min y => no change
|
|---|
| 263 | //
|
|---|
| 264 | pMin=yMin;
|
|---|
| 265 | pMax=yMax;
|
|---|
| 266 | }
|
|---|
| 267 | else
|
|---|
| 268 | {
|
|---|
| 269 | // XZ limits don't cross max/min y => compute max delta y,
|
|---|
| 270 | // hence new mins/maxs
|
|---|
| 271 | //
|
|---|
| 272 | maxDiff= 1.0-sqr(xoff/xSemiAxis);
|
|---|
| 273 | if (maxDiff < 0.0) { return false; }
|
|---|
| 274 | maxDiff= ySemiAxis * std::sqrt(maxDiff);
|
|---|
| 275 | newMin=yoffset-maxDiff;
|
|---|
| 276 | newMax=yoffset+maxDiff;
|
|---|
| 277 | pMin=(newMin<yMin) ? yMin : newMin;
|
|---|
| 278 | pMax=(newMax>yMax) ? yMax : newMax;
|
|---|
| 279 | }
|
|---|
| 280 | break;
|
|---|
| 281 | case kZAxis:
|
|---|
| 282 | pMin=zMin;
|
|---|
| 283 | pMax=zMax;
|
|---|
| 284 | break;
|
|---|
| 285 | default:
|
|---|
| 286 | break;
|
|---|
| 287 | }
|
|---|
| 288 |
|
|---|
| 289 | pMin-=kCarTolerance;
|
|---|
| 290 | pMax+=kCarTolerance;
|
|---|
| 291 | return true;
|
|---|
| 292 | }
|
|---|
| 293 | else // not rotated
|
|---|
| 294 | {
|
|---|
| 295 | G4int i,j,noEntries,noBetweenSections;
|
|---|
| 296 | G4bool existsAfterClip=false;
|
|---|
| 297 |
|
|---|
| 298 | // Calculate rotated vertex coordinates
|
|---|
| 299 |
|
|---|
| 300 | G4int noPolygonVertices=0;
|
|---|
| 301 | G4ThreeVectorList* vertices =
|
|---|
| 302 | CreateRotatedVertices(pTransform,noPolygonVertices);
|
|---|
| 303 |
|
|---|
| 304 | pMin=+kInfinity;
|
|---|
| 305 | pMax=-kInfinity;
|
|---|
| 306 |
|
|---|
| 307 | noEntries=vertices->size(); // noPolygonVertices*noPhiCrossSections
|
|---|
| 308 | noBetweenSections=noEntries-noPolygonVertices;
|
|---|
| 309 |
|
|---|
| 310 | G4ThreeVectorList ThetaPolygon;
|
|---|
| 311 | for (i=0;i<noEntries;i+=noPolygonVertices)
|
|---|
| 312 | {
|
|---|
| 313 | for(j=0;j<(noPolygonVertices/2)-1;j++)
|
|---|
| 314 | {
|
|---|
| 315 | ThetaPolygon.push_back((*vertices)[i+j]);
|
|---|
| 316 | ThetaPolygon.push_back((*vertices)[i+j+1]);
|
|---|
| 317 | ThetaPolygon.push_back((*vertices)[i+noPolygonVertices-2-j]);
|
|---|
| 318 | ThetaPolygon.push_back((*vertices)[i+noPolygonVertices-1-j]);
|
|---|
| 319 | CalculateClippedPolygonExtent(ThetaPolygon,pVoxelLimit,pAxis,pMin,pMax);
|
|---|
| 320 | ThetaPolygon.clear();
|
|---|
| 321 | }
|
|---|
| 322 | }
|
|---|
| 323 | for (i=0;i<noBetweenSections;i+=noPolygonVertices)
|
|---|
| 324 | {
|
|---|
| 325 | for(j=0;j<noPolygonVertices-1;j++)
|
|---|
| 326 | {
|
|---|
| 327 | ThetaPolygon.push_back((*vertices)[i+j]);
|
|---|
| 328 | ThetaPolygon.push_back((*vertices)[i+j+1]);
|
|---|
| 329 | ThetaPolygon.push_back((*vertices)[i+noPolygonVertices+j+1]);
|
|---|
| 330 | ThetaPolygon.push_back((*vertices)[i+noPolygonVertices+j]);
|
|---|
| 331 | CalculateClippedPolygonExtent(ThetaPolygon,pVoxelLimit,pAxis,pMin,pMax);
|
|---|
| 332 | ThetaPolygon.clear();
|
|---|
| 333 | }
|
|---|
| 334 | ThetaPolygon.push_back((*vertices)[i+noPolygonVertices-1]);
|
|---|
| 335 | ThetaPolygon.push_back((*vertices)[i]);
|
|---|
| 336 | ThetaPolygon.push_back((*vertices)[i+noPolygonVertices]);
|
|---|
| 337 | ThetaPolygon.push_back((*vertices)[i+2*noPolygonVertices-1]);
|
|---|
| 338 | CalculateClippedPolygonExtent(ThetaPolygon,pVoxelLimit,pAxis,pMin,pMax);
|
|---|
| 339 | ThetaPolygon.clear();
|
|---|
| 340 | }
|
|---|
| 341 | if ( (pMin!=kInfinity) || (pMax!=-kInfinity) )
|
|---|
| 342 | {
|
|---|
| 343 | existsAfterClip=true;
|
|---|
| 344 |
|
|---|
| 345 | // Add 2*tolerance to avoid precision troubles
|
|---|
| 346 | //
|
|---|
| 347 | pMin-=kCarTolerance;
|
|---|
| 348 | pMax+=kCarTolerance;
|
|---|
| 349 |
|
|---|
| 350 | }
|
|---|
| 351 | else
|
|---|
| 352 | {
|
|---|
| 353 | // Check for case where completely enveloping clipping volume
|
|---|
| 354 | // If point inside then we are confident that the solid completely
|
|---|
| 355 | // envelopes the clipping volume. Hence set min/max extents according
|
|---|
| 356 | // to clipping volume extents along the specified axis.
|
|---|
| 357 | //
|
|---|
| 358 | G4ThreeVector
|
|---|
| 359 | clipCentre((pVoxelLimit.GetMinXExtent()+pVoxelLimit.GetMaxXExtent())*0.5,
|
|---|
| 360 | (pVoxelLimit.GetMinYExtent()+pVoxelLimit.GetMaxYExtent())*0.5,
|
|---|
| 361 | (pVoxelLimit.GetMinZExtent()+pVoxelLimit.GetMaxZExtent())*0.5);
|
|---|
| 362 |
|
|---|
| 363 | if (Inside(pTransform.Inverse().TransformPoint(clipCentre))!=kOutside)
|
|---|
| 364 | {
|
|---|
| 365 | existsAfterClip=true;
|
|---|
| 366 | pMin=pVoxelLimit.GetMinExtent(pAxis);
|
|---|
| 367 | pMax=pVoxelLimit.GetMaxExtent(pAxis);
|
|---|
| 368 | }
|
|---|
| 369 | }
|
|---|
| 370 | delete vertices;
|
|---|
| 371 | return existsAfterClip;
|
|---|
| 372 | }
|
|---|
| 373 | }
|
|---|
| 374 |
|
|---|
| 375 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 376 | //
|
|---|
| 377 | // Return whether point inside/outside/on surface
|
|---|
| 378 | // Split into radius, phi, theta checks
|
|---|
| 379 | // Each check modifies `in', or returns as approprate
|
|---|
| 380 |
|
|---|
| 381 | EInside G4Ellipsoid::Inside(const G4ThreeVector& p) const
|
|---|
| 382 | {
|
|---|
| 383 | G4double rad2oo, // outside surface outer tolerance
|
|---|
| 384 | rad2oi; // outside surface inner tolerance
|
|---|
| 385 | EInside in;
|
|---|
| 386 |
|
|---|
| 387 | static const G4double halfRadTolerance=kRadTolerance*0.5;
|
|---|
| 388 |
|
|---|
| 389 | // check this side of z cut first, because that's fast
|
|---|
| 390 | //
|
|---|
| 391 | if (p.z() < zBottomCut-halfRadTolerance) { return in=kOutside; }
|
|---|
| 392 | if (p.z() > zTopCut+halfRadTolerance) { return in=kOutside; }
|
|---|
| 393 |
|
|---|
| 394 | rad2oo= sqr(p.x()/(xSemiAxis+halfRadTolerance))
|
|---|
| 395 | + sqr(p.y()/(ySemiAxis+halfRadTolerance))
|
|---|
| 396 | + sqr(p.z()/(zSemiAxis+halfRadTolerance));
|
|---|
| 397 |
|
|---|
| 398 | if (rad2oo > 1.0) { return in=kOutside; }
|
|---|
| 399 |
|
|---|
| 400 | rad2oi= sqr(p.x()*(1.0+halfRadTolerance/xSemiAxis)/xSemiAxis)
|
|---|
| 401 | + sqr(p.y()*(1.0+halfRadTolerance/ySemiAxis)/ySemiAxis)
|
|---|
| 402 | + sqr(p.z()*(1.0+halfRadTolerance/zSemiAxis)/zSemiAxis);
|
|---|
| 403 |
|
|---|
| 404 | // Check radial surfaces
|
|---|
| 405 | // sets `in' (already checked for rad2oo > 1.0)
|
|---|
| 406 | //
|
|---|
| 407 | if (rad2oi < 1.0)
|
|---|
| 408 | {
|
|---|
| 409 | in = ( (p.z() < zBottomCut+halfRadTolerance)
|
|---|
| 410 | || (p.z() > zTopCut-halfRadTolerance) ) ? kSurface : kInside;
|
|---|
| 411 | if ( rad2oi > 1.0-halfRadTolerance ) { in=kSurface; }
|
|---|
| 412 | }
|
|---|
| 413 | else
|
|---|
| 414 | {
|
|---|
| 415 | in = kSurface;
|
|---|
| 416 | }
|
|---|
| 417 | return in;
|
|---|
| 418 |
|
|---|
| 419 | }
|
|---|
| 420 |
|
|---|
| 421 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 422 | //
|
|---|
| 423 | // Return unit normal of surface closest to p not protected against p=0
|
|---|
| 424 |
|
|---|
| 425 | G4ThreeVector G4Ellipsoid::SurfaceNormal( const G4ThreeVector& p) const
|
|---|
| 426 | {
|
|---|
| 427 | G4double distR, distZBottom, distZTop;
|
|---|
| 428 |
|
|---|
| 429 | // normal vector with special magnitude: parallel to normal, units 1/length
|
|---|
| 430 | // norm*p == 1.0 if on surface, >1.0 if outside, <1.0 if inside
|
|---|
| 431 | //
|
|---|
| 432 | G4ThreeVector norm(p.x()/(xSemiAxis*xSemiAxis),
|
|---|
| 433 | p.y()/(ySemiAxis*ySemiAxis),
|
|---|
| 434 | p.z()/(zSemiAxis*zSemiAxis));
|
|---|
| 435 | G4double radius = 1.0/norm.mag();
|
|---|
| 436 |
|
|---|
| 437 | // approximate distance to curved surface
|
|---|
| 438 | //
|
|---|
| 439 | distR = std::fabs( (p*norm - 1.0) * radius ) / 2.0;
|
|---|
| 440 |
|
|---|
| 441 | // Distance to z-cut plane
|
|---|
| 442 | //
|
|---|
| 443 | distZBottom = std::fabs( p.z() - zBottomCut );
|
|---|
| 444 | distZTop = std::fabs( p.z() - zTopCut );
|
|---|
| 445 |
|
|---|
| 446 | if ( (distZBottom < distR) || (distZTop < distR) )
|
|---|
| 447 | {
|
|---|
| 448 | return G4ThreeVector(0.,0.,(distZBottom < distZTop) ? -1.0 : 1.0);
|
|---|
| 449 | }
|
|---|
| 450 | return ( norm *= radius );
|
|---|
| 451 | }
|
|---|
| 452 |
|
|---|
| 453 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 454 | //
|
|---|
| 455 | // Calculate distance to shape from outside, along normalised vector
|
|---|
| 456 | // - return kInfinity if no intersection, or intersection distance <= tolerance
|
|---|
| 457 | //
|
|---|
| 458 |
|
|---|
| 459 | G4double G4Ellipsoid::DistanceToIn( const G4ThreeVector& p,
|
|---|
| 460 | const G4ThreeVector& v ) const
|
|---|
| 461 | {
|
|---|
| 462 | static const G4double halfCarTolerance=kCarTolerance*0.5;
|
|---|
| 463 | static const G4double halfRadTolerance=kRadTolerance*0.5;
|
|---|
| 464 |
|
|---|
| 465 | G4double distMin = std::min(xSemiAxis,ySemiAxis);
|
|---|
| 466 | const G4double dRmax = 100.*std::min(distMin,zSemiAxis);
|
|---|
| 467 | distMin= kInfinity;
|
|---|
| 468 |
|
|---|
| 469 | // check to see if Z plane is relevant
|
|---|
| 470 | if (p.z() <= zBottomCut+halfCarTolerance)
|
|---|
| 471 | {
|
|---|
| 472 | if (v.z() <= 0.0) { return distMin; }
|
|---|
| 473 | G4double distZ = (zBottomCut - p.z()) / v.z();
|
|---|
| 474 |
|
|---|
| 475 | if ( (distZ > -halfRadTolerance) && (Inside(p+distZ*v) != kOutside) )
|
|---|
| 476 | {
|
|---|
| 477 | // early exit since can't intercept curved surface if we reach here
|
|---|
| 478 | if ( std::abs(distZ) < halfRadTolerance ) { distZ=0.; }
|
|---|
| 479 | return distMin= distZ;
|
|---|
| 480 | }
|
|---|
| 481 | }
|
|---|
| 482 | if (p.z() >= zTopCut-halfCarTolerance)
|
|---|
| 483 | {
|
|---|
| 484 | if (v.z() >= 0.0) { return distMin;}
|
|---|
| 485 | G4double distZ = (zTopCut - p.z()) / v.z();
|
|---|
| 486 | if ( (distZ > -halfRadTolerance) && (Inside(p+distZ*v) != kOutside) )
|
|---|
| 487 | {
|
|---|
| 488 | // early exit since can't intercept curved surface if we reach here
|
|---|
| 489 | if ( std::abs(distZ) < halfRadTolerance ) { distZ=0.; }
|
|---|
| 490 | return distMin= distZ;
|
|---|
| 491 | }
|
|---|
| 492 | }
|
|---|
| 493 | // if fZCut1 <= p.z() <= fZCut2, then must hit curved surface
|
|---|
| 494 |
|
|---|
| 495 | // now check curved surface intercept
|
|---|
| 496 | G4double A,B,C;
|
|---|
| 497 |
|
|---|
| 498 | A= sqr(v.x()/xSemiAxis) + sqr(v.y()/ySemiAxis) + sqr(v.z()/zSemiAxis);
|
|---|
| 499 | C= sqr(p.x()/xSemiAxis) + sqr(p.y()/ySemiAxis) + sqr(p.z()/zSemiAxis) - 1.0;
|
|---|
| 500 | B= 2.0 * ( p.x()*v.x()/(xSemiAxis*xSemiAxis)
|
|---|
| 501 | + p.y()*v.y()/(ySemiAxis*ySemiAxis)
|
|---|
| 502 | + p.z()*v.z()/(zSemiAxis*zSemiAxis) );
|
|---|
| 503 |
|
|---|
| 504 | C= B*B - 4.0*A*C;
|
|---|
| 505 | if (C > 0.0)
|
|---|
| 506 | {
|
|---|
| 507 | G4double distR= (-B - std::sqrt(C)) / (2.0*A);
|
|---|
| 508 | G4double intZ = p.z()+distR*v.z();
|
|---|
| 509 | if ( (distR > halfRadTolerance)
|
|---|
| 510 | && (intZ >= zBottomCut-halfRadTolerance)
|
|---|
| 511 | && (intZ <= zTopCut+halfRadTolerance) )
|
|---|
| 512 | {
|
|---|
| 513 | distMin = distR;
|
|---|
| 514 | }
|
|---|
| 515 | else if( (distR >- halfRadTolerance)
|
|---|
| 516 | && (intZ >= zBottomCut-halfRadTolerance)
|
|---|
| 517 | && (intZ <= zTopCut+halfRadTolerance) )
|
|---|
| 518 | {
|
|---|
| 519 | // p is on the curved surface, DistanceToIn returns 0 or kInfinity:
|
|---|
| 520 | // DistanceToIn returns 0, if second root is positive (means going inside)
|
|---|
| 521 | // If second root is negative, DistanceToIn returns kInfinity (outside)
|
|---|
| 522 | //
|
|---|
| 523 | distR = (-B + std::sqrt(C) ) / (2.0*A);
|
|---|
| 524 | if(distR>0.) { distMin=0.; }
|
|---|
| 525 | }
|
|---|
| 526 | else
|
|---|
| 527 | {
|
|---|
| 528 | distR= (-B + std::sqrt(C)) / (2.0*A);
|
|---|
| 529 | intZ = p.z()+distR*v.z();
|
|---|
| 530 | if ( (distR > halfRadTolerance)
|
|---|
| 531 | && (intZ >= zBottomCut-halfRadTolerance)
|
|---|
| 532 | && (intZ <= zTopCut+halfRadTolerance) )
|
|---|
| 533 | {
|
|---|
| 534 | G4ThreeVector norm=SurfaceNormal(p);
|
|---|
| 535 | if (norm.dot(v)<0.) { distMin = distR; }
|
|---|
| 536 | }
|
|---|
| 537 | }
|
|---|
| 538 | if ( (distMin!=kInfinity) && (distMin>dRmax) )
|
|---|
| 539 | { // Avoid rounding errors due to precision issues on
|
|---|
| 540 | // 64 bits systems. Split long distances and recompute
|
|---|
| 541 | G4double fTerm = distMin-std::fmod(distMin,dRmax);
|
|---|
| 542 | distMin = fTerm + DistanceToIn(p+fTerm*v,v);
|
|---|
| 543 | }
|
|---|
| 544 | }
|
|---|
| 545 |
|
|---|
| 546 | if (std::abs(distMin)<halfRadTolerance) { distMin=0.; }
|
|---|
| 547 | return distMin;
|
|---|
| 548 | }
|
|---|
| 549 |
|
|---|
| 550 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 551 | //
|
|---|
| 552 | // Calculate distance (<= actual) to closest surface of shape from outside
|
|---|
| 553 | // - Return 0 if point inside
|
|---|
| 554 |
|
|---|
| 555 | G4double G4Ellipsoid::DistanceToIn(const G4ThreeVector& p) const
|
|---|
| 556 | {
|
|---|
| 557 | G4double distR, distZ;
|
|---|
| 558 |
|
|---|
| 559 | // normal vector: parallel to normal, magnitude 1/(characteristic radius)
|
|---|
| 560 | //
|
|---|
| 561 | G4ThreeVector norm(p.x()/(xSemiAxis*xSemiAxis),
|
|---|
| 562 | p.y()/(ySemiAxis*ySemiAxis),
|
|---|
| 563 | p.z()/(zSemiAxis*zSemiAxis));
|
|---|
| 564 | G4double radius= 1.0/norm.mag();
|
|---|
| 565 |
|
|---|
| 566 | // approximate distance to curved surface ( <= actual distance )
|
|---|
| 567 | //
|
|---|
| 568 | distR= (p*norm - 1.0) * radius / 2.0;
|
|---|
| 569 |
|
|---|
| 570 | // Distance to z-cut plane
|
|---|
| 571 | //
|
|---|
| 572 | distZ= zBottomCut - p.z();
|
|---|
| 573 | if (distZ < 0.0)
|
|---|
| 574 | {
|
|---|
| 575 | distZ = p.z() - zTopCut;
|
|---|
| 576 | }
|
|---|
| 577 |
|
|---|
| 578 | // Distance to closest surface from outside
|
|---|
| 579 | //
|
|---|
| 580 | if (distZ < 0.0)
|
|---|
| 581 | {
|
|---|
| 582 | return (distR < 0.0) ? 0.0 : distR;
|
|---|
| 583 | }
|
|---|
| 584 | else if (distR < 0.0)
|
|---|
| 585 | {
|
|---|
| 586 | return distZ;
|
|---|
| 587 | }
|
|---|
| 588 | else
|
|---|
| 589 | {
|
|---|
| 590 | return (distZ < distR) ? distZ : distR;
|
|---|
| 591 | }
|
|---|
| 592 | }
|
|---|
| 593 |
|
|---|
| 594 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 595 | //
|
|---|
| 596 | // Calculate distance to surface of shape from `inside', allowing for tolerance
|
|---|
| 597 |
|
|---|
| 598 | G4double G4Ellipsoid::DistanceToOut(const G4ThreeVector& p,
|
|---|
| 599 | const G4ThreeVector& v,
|
|---|
| 600 | const G4bool calcNorm,
|
|---|
| 601 | G4bool *validNorm,
|
|---|
| 602 | G4ThreeVector *n ) const
|
|---|
| 603 | {
|
|---|
| 604 | G4double distMin;
|
|---|
| 605 | enum surface_e {kPlaneSurf, kCurvedSurf, kNoSurf} surface;
|
|---|
| 606 |
|
|---|
| 607 | distMin= kInfinity;
|
|---|
| 608 | surface= kNoSurf;
|
|---|
| 609 |
|
|---|
| 610 | // check to see if Z plane is relevant
|
|---|
| 611 | //
|
|---|
| 612 | if (v.z() < 0.0)
|
|---|
| 613 | {
|
|---|
| 614 | G4double distZ = (zBottomCut - p.z()) / v.z();
|
|---|
| 615 | if (distZ < 0.0)
|
|---|
| 616 | {
|
|---|
| 617 | distZ= 0.0;
|
|---|
| 618 | if (!calcNorm) {return 0.0;}
|
|---|
| 619 | }
|
|---|
| 620 | distMin= distZ;
|
|---|
| 621 | surface= kPlaneSurf;
|
|---|
| 622 | }
|
|---|
| 623 | if (v.z() > 0.0)
|
|---|
| 624 | {
|
|---|
| 625 | G4double distZ = (zTopCut - p.z()) / v.z();
|
|---|
| 626 | if (distZ < 0.0)
|
|---|
| 627 | {
|
|---|
| 628 | distZ= 0.0;
|
|---|
| 629 | if (!calcNorm) {return 0.0;}
|
|---|
| 630 | }
|
|---|
| 631 | distMin= distZ;
|
|---|
| 632 | surface= kPlaneSurf;
|
|---|
| 633 | }
|
|---|
| 634 |
|
|---|
| 635 | // normal vector: parallel to normal, magnitude 1/(characteristic radius)
|
|---|
| 636 | //
|
|---|
| 637 | G4ThreeVector nearnorm(p.x()/(xSemiAxis*xSemiAxis),
|
|---|
| 638 | p.y()/(ySemiAxis*ySemiAxis),
|
|---|
| 639 | p.z()/(zSemiAxis*zSemiAxis));
|
|---|
| 640 |
|
|---|
| 641 | // now check curved surface intercept
|
|---|
| 642 | //
|
|---|
| 643 | G4double A,B,C;
|
|---|
| 644 |
|
|---|
| 645 | A= sqr(v.x()/xSemiAxis) + sqr(v.y()/ySemiAxis) + sqr(v.z()/zSemiAxis);
|
|---|
| 646 | C= (p * nearnorm) - 1.0;
|
|---|
| 647 | B= 2.0 * (v * nearnorm);
|
|---|
| 648 |
|
|---|
| 649 | C= B*B - 4.0*A*C;
|
|---|
| 650 | if (C > 0.0)
|
|---|
| 651 | {
|
|---|
| 652 | G4double distR= (-B + std::sqrt(C) ) / (2.0*A);
|
|---|
| 653 | if (distR < 0.0)
|
|---|
| 654 | {
|
|---|
| 655 | distR= 0.0;
|
|---|
| 656 | if (!calcNorm) {return 0.0;}
|
|---|
| 657 | }
|
|---|
| 658 | if (distR < distMin)
|
|---|
| 659 | {
|
|---|
| 660 | distMin= distR;
|
|---|
| 661 | surface= kCurvedSurf;
|
|---|
| 662 | }
|
|---|
| 663 | }
|
|---|
| 664 |
|
|---|
| 665 | // set normal if requested
|
|---|
| 666 | //
|
|---|
| 667 | if (calcNorm)
|
|---|
| 668 | {
|
|---|
| 669 | if (surface == kNoSurf)
|
|---|
| 670 | {
|
|---|
| 671 | *validNorm = false;
|
|---|
| 672 | }
|
|---|
| 673 | else
|
|---|
| 674 | {
|
|---|
| 675 | *validNorm = true;
|
|---|
| 676 | switch (surface)
|
|---|
| 677 | {
|
|---|
| 678 | case kPlaneSurf:
|
|---|
| 679 | *n= G4ThreeVector(0.,0.,(v.z() > 0.0 ? 1. : -1.));
|
|---|
| 680 | break;
|
|---|
| 681 | case kCurvedSurf:
|
|---|
| 682 | {
|
|---|
| 683 | G4ThreeVector pexit= p + distMin*v;
|
|---|
| 684 | G4ThreeVector truenorm(pexit.x()/(xSemiAxis*xSemiAxis),
|
|---|
| 685 | pexit.y()/(ySemiAxis*ySemiAxis),
|
|---|
| 686 | pexit.z()/(zSemiAxis*zSemiAxis));
|
|---|
| 687 | truenorm *= 1.0/truenorm.mag();
|
|---|
| 688 | *n= truenorm;
|
|---|
| 689 | } break;
|
|---|
| 690 | default:
|
|---|
| 691 | G4cout.precision(16);
|
|---|
| 692 | G4cout << G4endl;
|
|---|
| 693 | DumpInfo();
|
|---|
| 694 | G4cout << "Position:" << G4endl << G4endl;
|
|---|
| 695 | G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl;
|
|---|
| 696 | G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl;
|
|---|
| 697 | G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl;
|
|---|
| 698 | G4cout << "Direction:" << G4endl << G4endl;
|
|---|
| 699 | G4cout << "v.x() = " << v.x() << G4endl;
|
|---|
| 700 | G4cout << "v.y() = " << v.y() << G4endl;
|
|---|
| 701 | G4cout << "v.z() = " << v.z() << G4endl << G4endl;
|
|---|
| 702 | G4cout << "Proposed distance :" << G4endl << G4endl;
|
|---|
| 703 | G4cout << "distMin = " << distMin/mm << " mm" << G4endl << G4endl;
|
|---|
| 704 | G4Exception("G4Ellipsoid::DistanceToOut(p,v,..)",
|
|---|
| 705 | "Notification", JustWarning,
|
|---|
| 706 | "Undefined side for valid surface normal to solid.");
|
|---|
| 707 | break;
|
|---|
| 708 | }
|
|---|
| 709 | }
|
|---|
| 710 | }
|
|---|
| 711 |
|
|---|
| 712 | return distMin;
|
|---|
| 713 | }
|
|---|
| 714 |
|
|---|
| 715 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 716 | //
|
|---|
| 717 | // Calculate distance (<=actual) to closest surface of shape from inside
|
|---|
| 718 |
|
|---|
| 719 | G4double G4Ellipsoid::DistanceToOut(const G4ThreeVector& p) const
|
|---|
| 720 | {
|
|---|
| 721 | G4double distR, distZ;
|
|---|
| 722 |
|
|---|
| 723 | #ifdef G4SPECSDEBUG
|
|---|
| 724 | if( Inside(p) == kOutside )
|
|---|
| 725 | {
|
|---|
| 726 | G4cout.precision(16) ;
|
|---|
| 727 | G4cout << G4endl ;
|
|---|
| 728 | DumpInfo();
|
|---|
| 729 | G4cout << "Position:" << G4endl << G4endl ;
|
|---|
| 730 | G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ;
|
|---|
| 731 | G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ;
|
|---|
| 732 | G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ;
|
|---|
| 733 | G4Exception("G4Ellipsoid::DistanceToOut(p)", "Notification", JustWarning,
|
|---|
| 734 | "Point p is outside !?" );
|
|---|
| 735 | }
|
|---|
| 736 | #endif
|
|---|
| 737 |
|
|---|
| 738 | // Normal vector: parallel to normal, magnitude 1/(characteristic radius)
|
|---|
| 739 | //
|
|---|
| 740 | G4ThreeVector norm(p.x()/(xSemiAxis*xSemiAxis),
|
|---|
| 741 | p.y()/(ySemiAxis*ySemiAxis),
|
|---|
| 742 | p.z()/(zSemiAxis*zSemiAxis));
|
|---|
| 743 |
|
|---|
| 744 | // the following is a safe inlined "radius= min(1.0/norm.mag(),p.mag())
|
|---|
| 745 | //
|
|---|
| 746 | G4double radius= p.mag();
|
|---|
| 747 | G4double tmp= norm.mag();
|
|---|
| 748 | if ( (tmp > 0.0) && (1.0 < radius*tmp) ) {radius = 1.0/tmp;}
|
|---|
| 749 |
|
|---|
| 750 | // Approximate distance to curved surface ( <= actual distance )
|
|---|
| 751 | //
|
|---|
| 752 | distR = (1.0 - p*norm) * radius / 2.0;
|
|---|
| 753 |
|
|---|
| 754 | // Distance to z-cut plane
|
|---|
| 755 | //
|
|---|
| 756 | distZ = p.z() - zBottomCut;
|
|---|
| 757 | if (distZ < 0.0) {distZ= zTopCut - p.z();}
|
|---|
| 758 |
|
|---|
| 759 | // Distance to closest surface from inside
|
|---|
| 760 | //
|
|---|
| 761 | if ( (distZ < 0.0) || (distR < 0.0) )
|
|---|
| 762 | {
|
|---|
| 763 | return 0.0;
|
|---|
| 764 | }
|
|---|
| 765 | else
|
|---|
| 766 | {
|
|---|
| 767 | return (distZ < distR) ? distZ : distR;
|
|---|
| 768 | }
|
|---|
| 769 | }
|
|---|
| 770 |
|
|---|
| 771 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 772 | //
|
|---|
| 773 | // Create a List containing the transformed vertices
|
|---|
| 774 | // Ordering [0-3] -fDz cross section
|
|---|
| 775 | // [4-7] +fDz cross section such that [0] is below [4],
|
|---|
| 776 | // [1] below [5] etc.
|
|---|
| 777 | // Note:
|
|---|
| 778 | // Caller has deletion resposibility
|
|---|
| 779 | // Potential improvement: For last slice, use actual ending angle
|
|---|
| 780 | // to avoid rounding error problems.
|
|---|
| 781 |
|
|---|
| 782 | G4ThreeVectorList*
|
|---|
| 783 | G4Ellipsoid::CreateRotatedVertices(const G4AffineTransform& pTransform,
|
|---|
| 784 | G4int& noPolygonVertices) const
|
|---|
| 785 | {
|
|---|
| 786 | G4ThreeVectorList *vertices;
|
|---|
| 787 | G4ThreeVector vertex;
|
|---|
| 788 | G4double meshAnglePhi, meshRMaxFactor,
|
|---|
| 789 | crossAnglePhi, coscrossAnglePhi, sincrossAnglePhi, sAnglePhi;
|
|---|
| 790 | G4double meshTheta, crossTheta, startTheta;
|
|---|
| 791 | G4double rMaxX, rMaxY, rMaxZ, rMaxMax, rx, ry, rz;
|
|---|
| 792 | G4int crossSectionPhi, noPhiCrossSections, crossSectionTheta, noThetaSections;
|
|---|
| 793 |
|
|---|
| 794 | // Phi cross sections
|
|---|
| 795 | //
|
|---|
| 796 | noPhiCrossSections=G4int (twopi/kMeshAngleDefault)+1;
|
|---|
| 797 |
|
|---|
| 798 | if (noPhiCrossSections<kMinMeshSections)
|
|---|
| 799 | {
|
|---|
| 800 | noPhiCrossSections=kMinMeshSections;
|
|---|
| 801 | }
|
|---|
| 802 | else if (noPhiCrossSections>kMaxMeshSections)
|
|---|
| 803 | {
|
|---|
| 804 | noPhiCrossSections=kMaxMeshSections;
|
|---|
| 805 | }
|
|---|
| 806 | meshAnglePhi=twopi/(noPhiCrossSections-1);
|
|---|
| 807 |
|
|---|
| 808 | // Set start angle such that mesh will be at fRMax
|
|---|
| 809 | // on the x axis. Will give better extent calculations when not rotated.
|
|---|
| 810 |
|
|---|
| 811 | sAnglePhi = -meshAnglePhi*0.5;
|
|---|
| 812 |
|
|---|
| 813 | // Theta cross sections
|
|---|
| 814 |
|
|---|
| 815 | noThetaSections = G4int(pi/kMeshAngleDefault)+3;
|
|---|
| 816 |
|
|---|
| 817 | if (noThetaSections<kMinMeshSections)
|
|---|
| 818 | {
|
|---|
| 819 | noThetaSections=kMinMeshSections;
|
|---|
| 820 | }
|
|---|
| 821 | else if (noThetaSections>kMaxMeshSections)
|
|---|
| 822 | {
|
|---|
| 823 | noThetaSections=kMaxMeshSections;
|
|---|
| 824 | }
|
|---|
| 825 | meshTheta= pi/(noThetaSections-2);
|
|---|
| 826 |
|
|---|
| 827 | // Set start angle such that mesh will be at fRMax
|
|---|
| 828 | // on the z axis. Will give better extent calculations when not rotated.
|
|---|
| 829 |
|
|---|
| 830 | startTheta = -meshTheta*0.5;
|
|---|
| 831 |
|
|---|
| 832 | meshRMaxFactor = 1.0/std::cos(0.5*
|
|---|
| 833 | std::sqrt(meshAnglePhi*meshAnglePhi+meshTheta*meshTheta));
|
|---|
| 834 | rMaxMax= (xSemiAxis > ySemiAxis ? xSemiAxis : ySemiAxis);
|
|---|
| 835 | if (zSemiAxis > rMaxMax) rMaxMax= zSemiAxis;
|
|---|
| 836 | rMaxX= xSemiAxis + rMaxMax*(meshRMaxFactor-1.0);
|
|---|
| 837 | rMaxY= ySemiAxis + rMaxMax*(meshRMaxFactor-1.0);
|
|---|
| 838 | rMaxZ= zSemiAxis + rMaxMax*(meshRMaxFactor-1.0);
|
|---|
| 839 | G4double* cosCrossTheta = new G4double[noThetaSections];
|
|---|
| 840 | G4double* sinCrossTheta = new G4double[noThetaSections];
|
|---|
| 841 | vertices=new G4ThreeVectorList(noPhiCrossSections*noThetaSections);
|
|---|
| 842 | if (vertices && cosCrossTheta && sinCrossTheta)
|
|---|
| 843 | {
|
|---|
| 844 | for (crossSectionTheta=0; crossSectionTheta<noThetaSections;
|
|---|
| 845 | crossSectionTheta++)
|
|---|
| 846 | {
|
|---|
| 847 | // Compute sine and cosine table (for historical reasons)
|
|---|
| 848 | //
|
|---|
| 849 | crossTheta=startTheta+crossSectionTheta*meshTheta;
|
|---|
| 850 | cosCrossTheta[crossSectionTheta]=std::cos(crossTheta);
|
|---|
| 851 | sinCrossTheta[crossSectionTheta]=std::sin(crossTheta);
|
|---|
| 852 | }
|
|---|
| 853 | for (crossSectionPhi=0; crossSectionPhi<noPhiCrossSections;
|
|---|
| 854 | crossSectionPhi++)
|
|---|
| 855 | {
|
|---|
| 856 | crossAnglePhi=sAnglePhi+crossSectionPhi*meshAnglePhi;
|
|---|
| 857 | coscrossAnglePhi=std::cos(crossAnglePhi);
|
|---|
| 858 | sincrossAnglePhi=std::sin(crossAnglePhi);
|
|---|
| 859 | for (crossSectionTheta=0; crossSectionTheta<noThetaSections;
|
|---|
| 860 | crossSectionTheta++)
|
|---|
| 861 | {
|
|---|
| 862 | // Compute coordinates of cross section at section crossSectionPhi
|
|---|
| 863 | //
|
|---|
| 864 | rx= sinCrossTheta[crossSectionTheta]*coscrossAnglePhi*rMaxX;
|
|---|
| 865 | ry= sinCrossTheta[crossSectionTheta]*sincrossAnglePhi*rMaxY;
|
|---|
| 866 | rz= cosCrossTheta[crossSectionTheta]*rMaxZ;
|
|---|
| 867 | if (rz < zBottomCut)
|
|---|
| 868 | { rz= zBottomCut; }
|
|---|
| 869 | if (rz > zTopCut)
|
|---|
| 870 | { rz= zTopCut; }
|
|---|
| 871 | vertex= G4ThreeVector(rx,ry,rz);
|
|---|
| 872 | vertices->push_back(pTransform.TransformPoint(vertex));
|
|---|
| 873 | } // Theta forward
|
|---|
| 874 | } // Phi
|
|---|
| 875 | noPolygonVertices = noThetaSections ;
|
|---|
| 876 | }
|
|---|
| 877 | else
|
|---|
| 878 | {
|
|---|
| 879 | DumpInfo();
|
|---|
| 880 | G4Exception("G4Ellipsoid::CreateRotatedVertices()",
|
|---|
| 881 | "FatalError", FatalException,
|
|---|
| 882 | "Error in allocation of vertices. Out of memory !");
|
|---|
| 883 | }
|
|---|
| 884 |
|
|---|
| 885 | delete[] cosCrossTheta;
|
|---|
| 886 | delete[] sinCrossTheta;
|
|---|
| 887 |
|
|---|
| 888 | return vertices;
|
|---|
| 889 | }
|
|---|
| 890 |
|
|---|
| 891 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 892 | //
|
|---|
| 893 | // G4EntityType
|
|---|
| 894 |
|
|---|
| 895 | G4GeometryType G4Ellipsoid::GetEntityType() const
|
|---|
| 896 | {
|
|---|
| 897 | return G4String("G4Ellipsoid");
|
|---|
| 898 | }
|
|---|
| 899 |
|
|---|
| 900 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 901 | //
|
|---|
| 902 | // Stream object contents to an output stream
|
|---|
| 903 |
|
|---|
| 904 | std::ostream& G4Ellipsoid::StreamInfo( std::ostream& os ) const
|
|---|
| 905 | {
|
|---|
| 906 | os << "-----------------------------------------------------------\n"
|
|---|
| 907 | << " *** Dump for solid - " << GetName() << " ***\n"
|
|---|
| 908 | << " ===================================================\n"
|
|---|
| 909 | << " Solid type: G4Ellipsoid\n"
|
|---|
| 910 | << " Parameters: \n"
|
|---|
| 911 |
|
|---|
| 912 | << " semi-axis x: " << xSemiAxis/mm << " mm \n"
|
|---|
| 913 | << " semi-axis y: " << ySemiAxis/mm << " mm \n"
|
|---|
| 914 | << " semi-axis z: " << zSemiAxis/mm << " mm \n"
|
|---|
| 915 | << " max semi-axis: " << semiAxisMax/mm << " mm \n"
|
|---|
| 916 | << " lower cut plane level z: " << zBottomCut/mm << " mm \n"
|
|---|
| 917 | << " upper cut plane level z: " << zTopCut/mm << " mm \n"
|
|---|
| 918 | << "-----------------------------------------------------------\n";
|
|---|
| 919 |
|
|---|
| 920 | return os;
|
|---|
| 921 | }
|
|---|
| 922 |
|
|---|
| 923 | ////////////////////////////////////////////////////////////////////
|
|---|
| 924 | //
|
|---|
| 925 | // GetPointOnSurface
|
|---|
| 926 |
|
|---|
| 927 | G4ThreeVector G4Ellipsoid::GetPointOnSurface() const
|
|---|
| 928 | {
|
|---|
| 929 | G4double aTop, aBottom, aCurved, chose, xRand, yRand, zRand, phi, theta;
|
|---|
| 930 | G4double cosphi, sinphi, costheta, sintheta, alpha, beta, max1, max2, max3;
|
|---|
| 931 |
|
|---|
| 932 | max1 = xSemiAxis > ySemiAxis ? xSemiAxis : ySemiAxis;
|
|---|
| 933 | max1 = max1 > zSemiAxis ? max1 : zSemiAxis;
|
|---|
| 934 | if (max1 == xSemiAxis) { max2 = ySemiAxis; max3 = zSemiAxis; }
|
|---|
| 935 | else if (max1 == ySemiAxis) { max2 = xSemiAxis; max3 = zSemiAxis; }
|
|---|
| 936 | else { max2 = xSemiAxis; max3 = ySemiAxis; }
|
|---|
| 937 |
|
|---|
| 938 | phi = RandFlat::shoot(0.,twopi);
|
|---|
| 939 | theta = RandFlat::shoot(0.,pi);
|
|---|
| 940 |
|
|---|
| 941 | cosphi = std::cos(phi); sinphi = std::sin(phi);
|
|---|
| 942 | costheta = RandFlat::shoot(zBottomCut,zTopCut)/zSemiAxis;
|
|---|
| 943 | sintheta = std::sqrt(1.-sqr(costheta));
|
|---|
| 944 |
|
|---|
| 945 | alpha = 1.-sqr(max2/max1); beta = 1.-sqr(max3/max1);
|
|---|
| 946 |
|
|---|
| 947 | aTop = pi*xSemiAxis*ySemiAxis*(1 - sqr(zTopCut/zSemiAxis));
|
|---|
| 948 | aBottom = pi*xSemiAxis*ySemiAxis*(1 - sqr(zBottomCut/zSemiAxis));
|
|---|
| 949 |
|
|---|
| 950 | // approximation
|
|---|
| 951 | // from:" http://www.citr.auckland.ac.nz/techreports/2004/CITR-TR-139.pdf"
|
|---|
| 952 | aCurved = 4.*pi*max1*max2*(1.-1./6.*(alpha+beta)-
|
|---|
| 953 | 1./120.*(3.*sqr(alpha)+2.*alpha*beta+3.*sqr(beta)));
|
|---|
| 954 |
|
|---|
| 955 | aCurved *= 0.5*(1.2*zTopCut/zSemiAxis - 1.2*zBottomCut/zSemiAxis);
|
|---|
| 956 |
|
|---|
| 957 | if( ( zTopCut >= zSemiAxis && zBottomCut <= -1.*zSemiAxis )
|
|---|
| 958 | || ( zTopCut == 0 && zBottomCut ==0 ) )
|
|---|
| 959 | {
|
|---|
| 960 | aTop = 0; aBottom = 0;
|
|---|
| 961 | }
|
|---|
| 962 |
|
|---|
| 963 | chose = RandFlat::shoot(0.,aTop + aBottom + aCurved);
|
|---|
| 964 |
|
|---|
| 965 | if(chose < aCurved)
|
|---|
| 966 | {
|
|---|
| 967 | xRand = xSemiAxis*sintheta*cosphi;
|
|---|
| 968 | yRand = ySemiAxis*sintheta*sinphi;
|
|---|
| 969 | zRand = zSemiAxis*costheta;
|
|---|
| 970 | return G4ThreeVector (xRand,yRand,zRand);
|
|---|
| 971 | }
|
|---|
| 972 | else if(chose >= aCurved && chose < aCurved + aTop)
|
|---|
| 973 | {
|
|---|
| 974 | xRand = RandFlat::shoot(-1.,1.)*xSemiAxis
|
|---|
| 975 | * std::sqrt(1-sqr(zTopCut/zSemiAxis));
|
|---|
| 976 | yRand = RandFlat::shoot(-1.,1.)*ySemiAxis
|
|---|
| 977 | * std::sqrt(1.-sqr(zTopCut/zSemiAxis)-sqr(xRand/xSemiAxis));
|
|---|
| 978 | zRand = zTopCut;
|
|---|
| 979 | return G4ThreeVector (xRand,yRand,zRand);
|
|---|
| 980 | }
|
|---|
| 981 | else
|
|---|
| 982 | {
|
|---|
| 983 | xRand = RandFlat::shoot(-1.,1.)*xSemiAxis
|
|---|
| 984 | * std::sqrt(1-sqr(zBottomCut/zSemiAxis));
|
|---|
| 985 | yRand = RandFlat::shoot(-1.,1.)*ySemiAxis
|
|---|
| 986 | * std::sqrt(1.-sqr(zBottomCut/zSemiAxis)-sqr(xRand/xSemiAxis));
|
|---|
| 987 | zRand = zBottomCut;
|
|---|
| 988 | return G4ThreeVector (xRand,yRand,zRand);
|
|---|
| 989 | }
|
|---|
| 990 | }
|
|---|
| 991 |
|
|---|
| 992 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 993 | //
|
|---|
| 994 | // Methods for visualisation
|
|---|
| 995 |
|
|---|
| 996 | void G4Ellipsoid::DescribeYourselfTo (G4VGraphicsScene& scene) const
|
|---|
| 997 | {
|
|---|
| 998 | scene.AddSolid(*this);
|
|---|
| 999 | }
|
|---|
| 1000 |
|
|---|
| 1001 | G4VisExtent G4Ellipsoid::GetExtent() const
|
|---|
| 1002 | {
|
|---|
| 1003 | // Define the sides of the box into which the G4Ellipsoid instance would fit.
|
|---|
| 1004 | //
|
|---|
| 1005 | return G4VisExtent (-semiAxisMax, semiAxisMax,
|
|---|
| 1006 | -semiAxisMax, semiAxisMax,
|
|---|
| 1007 | -semiAxisMax, semiAxisMax);
|
|---|
| 1008 | }
|
|---|
| 1009 |
|
|---|
| 1010 | G4NURBS* G4Ellipsoid::CreateNURBS () const
|
|---|
| 1011 | {
|
|---|
| 1012 | // Box for now!!!
|
|---|
| 1013 | //
|
|---|
| 1014 | return new G4NURBSbox(semiAxisMax, semiAxisMax, semiAxisMax);
|
|---|
| 1015 | }
|
|---|
| 1016 |
|
|---|
| 1017 | G4Polyhedron* G4Ellipsoid::CreatePolyhedron () const
|
|---|
| 1018 | {
|
|---|
| 1019 | return new G4PolyhedronEllipsoid(xSemiAxis, ySemiAxis, zSemiAxis,
|
|---|
| 1020 | zBottomCut, zTopCut);
|
|---|
| 1021 | }
|
|---|
| 1022 |
|
|---|
| 1023 | G4Polyhedron* G4Ellipsoid::GetPolyhedron () const
|
|---|
| 1024 | {
|
|---|
| 1025 | if (!fpPolyhedron ||
|
|---|
| 1026 | fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() !=
|
|---|
| 1027 | fpPolyhedron->GetNumberOfRotationSteps())
|
|---|
| 1028 | {
|
|---|
| 1029 | delete fpPolyhedron;
|
|---|
| 1030 | fpPolyhedron = CreatePolyhedron();
|
|---|
| 1031 | }
|
|---|
| 1032 | return fpPolyhedron;
|
|---|
| 1033 | }
|
|---|