| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4EllipticalTube.cc,v 1.27 2006/10/20 13:45:21 gcosmo Exp $
|
|---|
| 28 | // GEANT4 tag $Name: HEAD $
|
|---|
| 29 | //
|
|---|
| 30 | //
|
|---|
| 31 | // --------------------------------------------------------------------
|
|---|
| 32 | // GEANT 4 class source file
|
|---|
| 33 | //
|
|---|
| 34 | //
|
|---|
| 35 | // G4EllipticalTube.cc
|
|---|
| 36 | //
|
|---|
| 37 | // Implementation of a CSG volume representing a tube with elliptical cross
|
|---|
| 38 | // section (geant3 solid 'ELTU')
|
|---|
| 39 | //
|
|---|
| 40 | // --------------------------------------------------------------------
|
|---|
| 41 |
|
|---|
| 42 | #include "G4EllipticalTube.hh"
|
|---|
| 43 |
|
|---|
| 44 | #include "G4ClippablePolygon.hh"
|
|---|
| 45 | #include "G4AffineTransform.hh"
|
|---|
| 46 | #include "G4SolidExtentList.hh"
|
|---|
| 47 | #include "G4VoxelLimits.hh"
|
|---|
| 48 | #include "meshdefs.hh"
|
|---|
| 49 |
|
|---|
| 50 | #include "Randomize.hh"
|
|---|
| 51 |
|
|---|
| 52 | #include "G4VGraphicsScene.hh"
|
|---|
| 53 | #include "G4Polyhedron.hh"
|
|---|
| 54 | #include "G4VisExtent.hh"
|
|---|
| 55 |
|
|---|
| 56 | using namespace CLHEP;
|
|---|
| 57 |
|
|---|
| 58 | //
|
|---|
| 59 | // Constructor
|
|---|
| 60 | //
|
|---|
| 61 | G4EllipticalTube::G4EllipticalTube( const G4String &name,
|
|---|
| 62 | G4double theDx,
|
|---|
| 63 | G4double theDy,
|
|---|
| 64 | G4double theDz )
|
|---|
| 65 | : G4VSolid( name ), fCubicVolume(0.), fSurfaceArea(0.), fpPolyhedron(0)
|
|---|
| 66 | {
|
|---|
| 67 | dx = theDx;
|
|---|
| 68 | dy = theDy;
|
|---|
| 69 | dz = theDz;
|
|---|
| 70 | }
|
|---|
| 71 |
|
|---|
| 72 |
|
|---|
| 73 | //
|
|---|
| 74 | // Fake default constructor - sets only member data and allocates memory
|
|---|
| 75 | // for usage restricted to object persistency.
|
|---|
| 76 | //
|
|---|
| 77 | G4EllipticalTube::G4EllipticalTube( __void__& a )
|
|---|
| 78 | : G4VSolid(a), fCubicVolume(0.), fSurfaceArea(0.), fpPolyhedron(0)
|
|---|
| 79 | {
|
|---|
| 80 | }
|
|---|
| 81 |
|
|---|
| 82 |
|
|---|
| 83 | //
|
|---|
| 84 | // Destructor
|
|---|
| 85 | //
|
|---|
| 86 | G4EllipticalTube::~G4EllipticalTube()
|
|---|
| 87 | {
|
|---|
| 88 | delete fpPolyhedron;
|
|---|
| 89 | }
|
|---|
| 90 |
|
|---|
| 91 |
|
|---|
| 92 | //
|
|---|
| 93 | // CalculateExtent
|
|---|
| 94 | //
|
|---|
| 95 | G4bool
|
|---|
| 96 | G4EllipticalTube::CalculateExtent( const EAxis axis,
|
|---|
| 97 | const G4VoxelLimits &voxelLimit,
|
|---|
| 98 | const G4AffineTransform &transform,
|
|---|
| 99 | G4double &min, G4double &max ) const
|
|---|
| 100 | {
|
|---|
| 101 | G4SolidExtentList extentList( axis, voxelLimit );
|
|---|
| 102 |
|
|---|
| 103 | //
|
|---|
| 104 | // We are going to divide up our elliptical face into small
|
|---|
| 105 | // pieces
|
|---|
| 106 | //
|
|---|
| 107 |
|
|---|
| 108 | //
|
|---|
| 109 | // Choose phi size of our segment(s) based on constants as
|
|---|
| 110 | // defined in meshdefs.hh
|
|---|
| 111 | //
|
|---|
| 112 | G4int numPhi = kMaxMeshSections;
|
|---|
| 113 | G4double sigPhi = twopi/numPhi;
|
|---|
| 114 |
|
|---|
| 115 | //
|
|---|
| 116 | // We have to be careful to keep our segments completely outside
|
|---|
| 117 | // of the elliptical surface. To do so we imagine we have
|
|---|
| 118 | // a simple (unit radius) circular cross section (as in G4Tubs)
|
|---|
| 119 | // and then "stretch" the dimensions as necessary to fit the ellipse.
|
|---|
| 120 | //
|
|---|
| 121 | G4double rFudge = 1.0/std::cos(0.5*sigPhi);
|
|---|
| 122 | G4double dxFudge = dx*rFudge,
|
|---|
| 123 | dyFudge = dy*rFudge;
|
|---|
| 124 |
|
|---|
| 125 | //
|
|---|
| 126 | // As we work around the elliptical surface, we build
|
|---|
| 127 | // a "phi" segment on the way, and keep track of two
|
|---|
| 128 | // additional polygons for the two ends.
|
|---|
| 129 | //
|
|---|
| 130 | G4ClippablePolygon endPoly1, endPoly2, phiPoly;
|
|---|
| 131 |
|
|---|
| 132 | G4double phi = 0,
|
|---|
| 133 | cosPhi = std::cos(phi),
|
|---|
| 134 | sinPhi = std::sin(phi);
|
|---|
| 135 | G4ThreeVector v0( dxFudge*cosPhi, dyFudge*sinPhi, +dz ),
|
|---|
| 136 | v1( dxFudge*cosPhi, dyFudge*sinPhi, -dz ),
|
|---|
| 137 | w0, w1;
|
|---|
| 138 | transform.ApplyPointTransform( v0 );
|
|---|
| 139 | transform.ApplyPointTransform( v1 );
|
|---|
| 140 | do
|
|---|
| 141 | {
|
|---|
| 142 | phi += sigPhi;
|
|---|
| 143 | if (numPhi == 1) phi = 0; // Try to avoid roundoff
|
|---|
| 144 | cosPhi = std::cos(phi),
|
|---|
| 145 | sinPhi = std::sin(phi);
|
|---|
| 146 |
|
|---|
| 147 | w0 = G4ThreeVector( dxFudge*cosPhi, dyFudge*sinPhi, +dz );
|
|---|
| 148 | w1 = G4ThreeVector( dxFudge*cosPhi, dyFudge*sinPhi, -dz );
|
|---|
| 149 | transform.ApplyPointTransform( w0 );
|
|---|
| 150 | transform.ApplyPointTransform( w1 );
|
|---|
| 151 |
|
|---|
| 152 | //
|
|---|
| 153 | // Add a point to our z ends
|
|---|
| 154 | //
|
|---|
| 155 | endPoly1.AddVertexInOrder( v0 );
|
|---|
| 156 | endPoly2.AddVertexInOrder( v1 );
|
|---|
| 157 |
|
|---|
| 158 | //
|
|---|
| 159 | // Build phi polygon
|
|---|
| 160 | //
|
|---|
| 161 | phiPoly.ClearAllVertices();
|
|---|
| 162 |
|
|---|
| 163 | phiPoly.AddVertexInOrder( v0 );
|
|---|
| 164 | phiPoly.AddVertexInOrder( v1 );
|
|---|
| 165 | phiPoly.AddVertexInOrder( w1 );
|
|---|
| 166 | phiPoly.AddVertexInOrder( w0 );
|
|---|
| 167 |
|
|---|
| 168 | if (phiPoly.PartialClip( voxelLimit, axis ))
|
|---|
| 169 | {
|
|---|
| 170 | //
|
|---|
| 171 | // Get unit normal
|
|---|
| 172 | //
|
|---|
| 173 | phiPoly.SetNormal( (v1-v0).cross(w0-v0).unit() );
|
|---|
| 174 |
|
|---|
| 175 | extentList.AddSurface( phiPoly );
|
|---|
| 176 | }
|
|---|
| 177 |
|
|---|
| 178 | //
|
|---|
| 179 | // Next vertex
|
|---|
| 180 | //
|
|---|
| 181 | v0 = w0;
|
|---|
| 182 | v1 = w1;
|
|---|
| 183 | } while( --numPhi > 0 );
|
|---|
| 184 |
|
|---|
| 185 | //
|
|---|
| 186 | // Process the end pieces
|
|---|
| 187 | //
|
|---|
| 188 | if (endPoly1.PartialClip( voxelLimit, axis ))
|
|---|
| 189 | {
|
|---|
| 190 | static const G4ThreeVector normal(0,0,+1);
|
|---|
| 191 | endPoly1.SetNormal( transform.TransformAxis(normal) );
|
|---|
| 192 | extentList.AddSurface( endPoly1 );
|
|---|
| 193 | }
|
|---|
| 194 |
|
|---|
| 195 | if (endPoly2.PartialClip( voxelLimit, axis ))
|
|---|
| 196 | {
|
|---|
| 197 | static const G4ThreeVector normal(0,0,-1);
|
|---|
| 198 | endPoly2.SetNormal( transform.TransformAxis(normal) );
|
|---|
| 199 | extentList.AddSurface( endPoly2 );
|
|---|
| 200 | }
|
|---|
| 201 |
|
|---|
| 202 | //
|
|---|
| 203 | // Return min/max value
|
|---|
| 204 | //
|
|---|
| 205 | return extentList.GetExtent( min, max );
|
|---|
| 206 | }
|
|---|
| 207 |
|
|---|
| 208 |
|
|---|
| 209 | //
|
|---|
| 210 | // Inside
|
|---|
| 211 | //
|
|---|
| 212 | // Note that for this solid, we've decided to define the tolerant
|
|---|
| 213 | // surface as that which is bounded by ellipses with axes
|
|---|
| 214 | // at +/- 0.5*kCarTolerance.
|
|---|
| 215 | //
|
|---|
| 216 | EInside G4EllipticalTube::Inside( const G4ThreeVector& p ) const
|
|---|
| 217 | {
|
|---|
| 218 | static const G4double halfTol = 0.5*kCarTolerance;
|
|---|
| 219 |
|
|---|
| 220 | //
|
|---|
| 221 | // Check z extents: are we outside?
|
|---|
| 222 | //
|
|---|
| 223 | G4double absZ = std::fabs(p.z());
|
|---|
| 224 | if (absZ > dz+halfTol) return kOutside;
|
|---|
| 225 |
|
|---|
| 226 | //
|
|---|
| 227 | // Check x,y: are we outside?
|
|---|
| 228 | //
|
|---|
| 229 | // G4double x = p.x(), y = p.y();
|
|---|
| 230 |
|
|---|
| 231 | if (CheckXY(p.x(), p.y(), +halfTol) > 1.0) return kOutside;
|
|---|
| 232 |
|
|---|
| 233 | //
|
|---|
| 234 | // We are either inside or on the surface: recheck z extents
|
|---|
| 235 | //
|
|---|
| 236 | if (absZ > dz-halfTol) return kSurface;
|
|---|
| 237 |
|
|---|
| 238 | //
|
|---|
| 239 | // Recheck x,y
|
|---|
| 240 | //
|
|---|
| 241 | if (CheckXY(p.x(), p.y(), -halfTol) > 1.0) return kSurface;
|
|---|
| 242 |
|
|---|
| 243 | return kInside;
|
|---|
| 244 | }
|
|---|
| 245 |
|
|---|
| 246 |
|
|---|
| 247 | //
|
|---|
| 248 | // SurfaceNormal
|
|---|
| 249 | //
|
|---|
| 250 | G4ThreeVector G4EllipticalTube::SurfaceNormal( const G4ThreeVector& p ) const
|
|---|
| 251 | {
|
|---|
| 252 | //
|
|---|
| 253 | // Which of the three surfaces are we closest to (approximately)?
|
|---|
| 254 | //
|
|---|
| 255 | G4double distZ = std::fabs(p.z()) - dz;
|
|---|
| 256 |
|
|---|
| 257 | G4double rxy = CheckXY( p.x(), p.y() );
|
|---|
| 258 | G4double distR2 = (rxy < DBL_MIN) ? DBL_MAX : 1.0/rxy;
|
|---|
| 259 |
|
|---|
| 260 | //
|
|---|
| 261 | // Closer to z?
|
|---|
| 262 | //
|
|---|
| 263 | if (distZ*distZ < distR2)
|
|---|
| 264 | return G4ThreeVector( 0.0, 0.0, p.z() < 0 ? -1.0 : 1.0 );
|
|---|
| 265 |
|
|---|
| 266 | //
|
|---|
| 267 | // Closer to x/y
|
|---|
| 268 | //
|
|---|
| 269 | return G4ThreeVector( p.x()*dy*dy, p.y()*dx*dx, 0.0 ).unit();
|
|---|
| 270 | }
|
|---|
| 271 |
|
|---|
| 272 |
|
|---|
| 273 | //
|
|---|
| 274 | // DistanceToIn(p,v)
|
|---|
| 275 | //
|
|---|
| 276 | // Unlike DistanceToOut(p,v), it is possible for the trajectory
|
|---|
| 277 | // to miss. The geometric calculations here are quite simple.
|
|---|
| 278 | // More difficult is the logic required to prevent particles
|
|---|
| 279 | // from sneaking (or leaking) between the elliptical and end
|
|---|
| 280 | // surfaces.
|
|---|
| 281 | //
|
|---|
| 282 | // Keep in mind that the true distance is allowed to be
|
|---|
| 283 | // negative if the point is currently on the surface. For oblique
|
|---|
| 284 | // angles, it can be very negative.
|
|---|
| 285 | //
|
|---|
| 286 | G4double G4EllipticalTube::DistanceToIn( const G4ThreeVector& p,
|
|---|
| 287 | const G4ThreeVector& v ) const
|
|---|
| 288 | {
|
|---|
| 289 | static const G4double halfTol = 0.5*kCarTolerance;
|
|---|
| 290 |
|
|---|
| 291 | //
|
|---|
| 292 | // Check z = -dz planer surface
|
|---|
| 293 | //
|
|---|
| 294 | G4double sigz = p.z()+dz;
|
|---|
| 295 |
|
|---|
| 296 | if (sigz < halfTol)
|
|---|
| 297 | {
|
|---|
| 298 | //
|
|---|
| 299 | // We are "behind" the shape in z, and so can
|
|---|
| 300 | // potentially hit the rear face. Correct direction?
|
|---|
| 301 | //
|
|---|
| 302 | if (v.z() <= 0)
|
|---|
| 303 | {
|
|---|
| 304 | //
|
|---|
| 305 | // As long as we are far enough away, we know we
|
|---|
| 306 | // can't intersect
|
|---|
| 307 | //
|
|---|
| 308 | if (sigz < 0) return kInfinity;
|
|---|
| 309 |
|
|---|
| 310 | //
|
|---|
| 311 | // Otherwise, we don't intersect unless we are
|
|---|
| 312 | // on the surface of the ellipse
|
|---|
| 313 | //
|
|---|
| 314 | if (CheckXY(p.x(),p.y(),-halfTol) <= 1.0) return kInfinity;
|
|---|
| 315 | }
|
|---|
| 316 | else
|
|---|
| 317 | {
|
|---|
| 318 | //
|
|---|
| 319 | // How far?
|
|---|
| 320 | //
|
|---|
| 321 | G4double s = -sigz/v.z();
|
|---|
| 322 |
|
|---|
| 323 | //
|
|---|
| 324 | // Where does that place us?
|
|---|
| 325 | //
|
|---|
| 326 | G4double xi = p.x() + s*v.x(),
|
|---|
| 327 | yi = p.y() + s*v.y();
|
|---|
| 328 |
|
|---|
| 329 | //
|
|---|
| 330 | // Is this on the surface (within ellipse)?
|
|---|
| 331 | //
|
|---|
| 332 | if (CheckXY(xi,yi) <= 1.0)
|
|---|
| 333 | {
|
|---|
| 334 | //
|
|---|
| 335 | // Yup. Return s, unless we are on the surface
|
|---|
| 336 | //
|
|---|
| 337 | return (sigz < -halfTol) ? s : 0;
|
|---|
| 338 | }
|
|---|
| 339 | else if (xi*dy*dy*v.x() + yi*dx*dx*v.y() >= 0)
|
|---|
| 340 | {
|
|---|
| 341 | //
|
|---|
| 342 | // Else, if we are traveling outwards, we know
|
|---|
| 343 | // we must miss
|
|---|
| 344 | //
|
|---|
| 345 | return kInfinity;
|
|---|
| 346 | }
|
|---|
| 347 | }
|
|---|
| 348 | }
|
|---|
| 349 |
|
|---|
| 350 | //
|
|---|
| 351 | // Check z = +dz planer surface
|
|---|
| 352 | //
|
|---|
| 353 | sigz = p.z() - dz;
|
|---|
| 354 |
|
|---|
| 355 | if (sigz > -halfTol)
|
|---|
| 356 | {
|
|---|
| 357 | if (v.z() >= 0)
|
|---|
| 358 | {
|
|---|
| 359 | if (sigz > 0) return kInfinity;
|
|---|
| 360 | if (CheckXY(p.x(),p.y(),-halfTol) <= 1.0) return kInfinity;
|
|---|
| 361 | }
|
|---|
| 362 | else {
|
|---|
| 363 | G4double s = -sigz/v.z();
|
|---|
| 364 |
|
|---|
| 365 | G4double xi = p.x() + s*v.x(),
|
|---|
| 366 | yi = p.y() + s*v.y();
|
|---|
| 367 |
|
|---|
| 368 | if (CheckXY(xi,yi) <= 1.0)
|
|---|
| 369 | {
|
|---|
| 370 | return (sigz > -halfTol) ? s : 0;
|
|---|
| 371 | }
|
|---|
| 372 | else if (xi*dy*dy*v.x() + yi*dx*dx*v.y() >= 0)
|
|---|
| 373 | {
|
|---|
| 374 | return kInfinity;
|
|---|
| 375 | }
|
|---|
| 376 | }
|
|---|
| 377 | }
|
|---|
| 378 |
|
|---|
| 379 | //
|
|---|
| 380 | // Check intersection with the elliptical tube
|
|---|
| 381 | //
|
|---|
| 382 | G4double s[2];
|
|---|
| 383 | G4int n = IntersectXY( p, v, s );
|
|---|
| 384 |
|
|---|
| 385 | if (n==0) return kInfinity;
|
|---|
| 386 |
|
|---|
| 387 | //
|
|---|
| 388 | // Is the original point on the surface?
|
|---|
| 389 | //
|
|---|
| 390 | if (std::fabs(p.z()) < dz+halfTol) {
|
|---|
| 391 | if (CheckXY( p.x(), p.y(), halfTol ) < 1.0)
|
|---|
| 392 | {
|
|---|
| 393 | //
|
|---|
| 394 | // Well, yes, but are we traveling inwards at this point?
|
|---|
| 395 | //
|
|---|
| 396 | if (p.x()*dy*dy*v.x() + p.y()*dx*dx*v.y() < 0) return 0;
|
|---|
| 397 | }
|
|---|
| 398 | }
|
|---|
| 399 |
|
|---|
| 400 | //
|
|---|
| 401 | // We are now certain that point p is not on the surface of
|
|---|
| 402 | // the solid (and thus std::fabs(s[0]) > halfTol).
|
|---|
| 403 | // Return kInfinity if the intersection is "behind" the point.
|
|---|
| 404 | //
|
|---|
| 405 | if (s[0] < 0) return kInfinity;
|
|---|
| 406 |
|
|---|
| 407 | //
|
|---|
| 408 | // Check to see if we intersect the tube within
|
|---|
| 409 | // dz, but only when we know it might miss
|
|---|
| 410 | //
|
|---|
| 411 | G4double zi = p.z() + s[0]*v.z();
|
|---|
| 412 |
|
|---|
| 413 | if (v.z() < 0)
|
|---|
| 414 | {
|
|---|
| 415 | if (zi < -dz) return kInfinity;
|
|---|
| 416 | }
|
|---|
| 417 | else if (v.z() > 0)
|
|---|
| 418 | {
|
|---|
| 419 | if (zi > +dz) return kInfinity;
|
|---|
| 420 | }
|
|---|
| 421 |
|
|---|
| 422 | return s[0];
|
|---|
| 423 | }
|
|---|
| 424 |
|
|---|
| 425 |
|
|---|
| 426 | //
|
|---|
| 427 | // DistanceToIn(p)
|
|---|
| 428 | //
|
|---|
| 429 | // The distance from a point to an ellipse (in 2 dimensions) is a
|
|---|
| 430 | // surprisingly complicated quadric expression (this is easy to
|
|---|
| 431 | // appreciate once one understands that there may be up to
|
|---|
| 432 | // four lines normal to the ellipse intersecting any point). To
|
|---|
| 433 | // solve it exactly would be rather time consuming. This method,
|
|---|
| 434 | // however, is supposed to be a quick check, and is allowed to be an
|
|---|
| 435 | // underestimate.
|
|---|
| 436 | //
|
|---|
| 437 | // So, I will use the following underestimate of the distance
|
|---|
| 438 | // from an outside point to an ellipse. First: find the intersection "A"
|
|---|
| 439 | // of the line from the origin to the point with the ellipse.
|
|---|
| 440 | // Find the line passing through "A" and tangent to the ellipse
|
|---|
| 441 | // at A. The distance of the point p from the ellipse will be approximated
|
|---|
| 442 | // as the distance to this line.
|
|---|
| 443 | //
|
|---|
| 444 | G4double G4EllipticalTube::DistanceToIn( const G4ThreeVector& p ) const
|
|---|
| 445 | {
|
|---|
| 446 | static const G4double halfTol = 0.5*kCarTolerance;
|
|---|
| 447 |
|
|---|
| 448 | if (CheckXY( p.x(), p.y(), +halfTol ) < 1.0)
|
|---|
| 449 | {
|
|---|
| 450 | //
|
|---|
| 451 | // We are inside or on the surface of the
|
|---|
| 452 | // elliptical cross section in x/y. Check z
|
|---|
| 453 | //
|
|---|
| 454 | if (p.z() < -dz-halfTol)
|
|---|
| 455 | return -p.z()-dz;
|
|---|
| 456 | else if (p.z() > dz+halfTol)
|
|---|
| 457 | return p.z()-dz;
|
|---|
| 458 | else
|
|---|
| 459 | return 0; // On any surface here (or inside)
|
|---|
| 460 | }
|
|---|
| 461 |
|
|---|
| 462 | //
|
|---|
| 463 | // Find point on ellipse
|
|---|
| 464 | //
|
|---|
| 465 | G4double qnorm = CheckXY( p.x(), p.y() );
|
|---|
| 466 | if (qnorm < DBL_MIN) return 0; // This should never happen
|
|---|
| 467 |
|
|---|
| 468 | G4double q = 1.0/std::sqrt(qnorm);
|
|---|
| 469 |
|
|---|
| 470 | G4double xe = q*p.x(), ye = q*p.y();
|
|---|
| 471 |
|
|---|
| 472 | //
|
|---|
| 473 | // Get tangent to ellipse
|
|---|
| 474 | //
|
|---|
| 475 | G4double tx = -ye*dx*dx, ty = +xe*dy*dy;
|
|---|
| 476 | G4double tnorm = std::sqrt( tx*tx + ty*ty );
|
|---|
| 477 |
|
|---|
| 478 | //
|
|---|
| 479 | // Calculate distance
|
|---|
| 480 | //
|
|---|
| 481 | G4double distR = ( (p.x()-xe)*ty - (p.y()-ye)*tx )/tnorm;
|
|---|
| 482 |
|
|---|
| 483 | //
|
|---|
| 484 | // Add the result in quadrature if we are, in addition,
|
|---|
| 485 | // outside the z bounds of the shape
|
|---|
| 486 | //
|
|---|
| 487 | // We could save some time by returning the maximum rather
|
|---|
| 488 | // than the quadrature sum
|
|---|
| 489 | //
|
|---|
| 490 | if (p.z() < -dz)
|
|---|
| 491 | return std::sqrt( (p.z()+dz)*(p.z()+dz) + distR*distR );
|
|---|
| 492 | else if (p.z() > dz)
|
|---|
| 493 | return std::sqrt( (p.z()-dz)*(p.z()-dz) + distR*distR );
|
|---|
| 494 |
|
|---|
| 495 | return distR;
|
|---|
| 496 | }
|
|---|
| 497 |
|
|---|
| 498 |
|
|---|
| 499 | //
|
|---|
| 500 | // DistanceToOut(p,v)
|
|---|
| 501 | //
|
|---|
| 502 | // This method can be somewhat complicated for a general shape.
|
|---|
| 503 | // For a convex one, like this, there are several simplifications,
|
|---|
| 504 | // the most important of which is that one can treat the surfaces
|
|---|
| 505 | // as infinite in extent when deciding if the p is on the surface.
|
|---|
| 506 | //
|
|---|
| 507 | G4double G4EllipticalTube::DistanceToOut( const G4ThreeVector& p,
|
|---|
| 508 | const G4ThreeVector& v,
|
|---|
| 509 | const G4bool calcNorm,
|
|---|
| 510 | G4bool *validNorm,
|
|---|
| 511 | G4ThreeVector *norm ) const
|
|---|
| 512 | {
|
|---|
| 513 | static const G4double halfTol = 0.5*kCarTolerance;
|
|---|
| 514 |
|
|---|
| 515 | //
|
|---|
| 516 | // Our normal is always valid
|
|---|
| 517 | //
|
|---|
| 518 | if (calcNorm) *validNorm = true;
|
|---|
| 519 |
|
|---|
| 520 | G4double sBest = kInfinity;
|
|---|
| 521 | const G4ThreeVector *nBest=0;
|
|---|
| 522 |
|
|---|
| 523 | //
|
|---|
| 524 | // Might we intersect the -dz surface?
|
|---|
| 525 | //
|
|---|
| 526 | if (v.z() < 0)
|
|---|
| 527 | {
|
|---|
| 528 | static const G4ThreeVector normHere(0.0,0.0,-1.0);
|
|---|
| 529 | //
|
|---|
| 530 | // Yup. What distance?
|
|---|
| 531 | //
|
|---|
| 532 | sBest = -(p.z()+dz)/v.z();
|
|---|
| 533 |
|
|---|
| 534 | //
|
|---|
| 535 | // Are we on the surface? If so, return zero
|
|---|
| 536 | //
|
|---|
| 537 | if (p.z() < -dz+halfTol) {
|
|---|
| 538 | if (calcNorm) *norm = normHere;
|
|---|
| 539 | return 0;
|
|---|
| 540 | }
|
|---|
| 541 | else
|
|---|
| 542 | nBest = &normHere;
|
|---|
| 543 | }
|
|---|
| 544 |
|
|---|
| 545 | //
|
|---|
| 546 | // How about the +dz surface?
|
|---|
| 547 | //
|
|---|
| 548 | if (v.z() > 0)
|
|---|
| 549 | {
|
|---|
| 550 | static const G4ThreeVector normHere(0.0,0.0,+1.0);
|
|---|
| 551 | //
|
|---|
| 552 | // Yup. What distance?
|
|---|
| 553 | //
|
|---|
| 554 | G4double s = (dz-p.z())/v.z();
|
|---|
| 555 |
|
|---|
| 556 | //
|
|---|
| 557 | // Are we on the surface? If so, return zero
|
|---|
| 558 | //
|
|---|
| 559 | if (p.z() > +dz-halfTol) {
|
|---|
| 560 | if (calcNorm) *norm = normHere;
|
|---|
| 561 | return 0;
|
|---|
| 562 | }
|
|---|
| 563 |
|
|---|
| 564 | //
|
|---|
| 565 | // Best so far?
|
|---|
| 566 | //
|
|---|
| 567 | if (s < sBest) { sBest = s; nBest = &normHere; }
|
|---|
| 568 | }
|
|---|
| 569 |
|
|---|
| 570 | //
|
|---|
| 571 | // Check furthest intersection with ellipse
|
|---|
| 572 | //
|
|---|
| 573 | G4double s[2];
|
|---|
| 574 | G4int n = IntersectXY( p, v, s );
|
|---|
| 575 |
|
|---|
| 576 | if (n == 0)
|
|---|
| 577 | {
|
|---|
| 578 | if (sBest == kInfinity)
|
|---|
| 579 | {
|
|---|
| 580 | G4cout.precision(16) ;
|
|---|
| 581 | G4cout << G4endl ;
|
|---|
| 582 | DumpInfo();
|
|---|
| 583 | G4cout << "Position:" << G4endl << G4endl ;
|
|---|
| 584 | G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ;
|
|---|
| 585 | G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ;
|
|---|
| 586 | G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ;
|
|---|
| 587 | G4cout << "Direction:" << G4endl << G4endl;
|
|---|
| 588 | G4cout << "v.x() = " << v.x() << G4endl;
|
|---|
| 589 | G4cout << "v.y() = " << v.y() << G4endl;
|
|---|
| 590 | G4cout << "v.z() = " << v.z() << G4endl << G4endl;
|
|---|
| 591 | G4cout << "Proposed distance :" << G4endl << G4endl;
|
|---|
| 592 | G4cout << "snxt = " << sBest/mm << " mm" << G4endl << G4endl;
|
|---|
| 593 | G4Exception( "G4EllipticalTube::DistanceToOut(p,v,...)",
|
|---|
| 594 | "Notification", JustWarning, "Point p is outside !?" );
|
|---|
| 595 | }
|
|---|
| 596 | if (calcNorm) *norm = *nBest;
|
|---|
| 597 | return sBest;
|
|---|
| 598 | }
|
|---|
| 599 | else if (s[n-1] > sBest)
|
|---|
| 600 | {
|
|---|
| 601 | if (calcNorm) *norm = *nBest;
|
|---|
| 602 | return sBest;
|
|---|
| 603 | }
|
|---|
| 604 | sBest = s[n-1];
|
|---|
| 605 |
|
|---|
| 606 | //
|
|---|
| 607 | // Intersection with ellipse. Get normal at intersection point.
|
|---|
| 608 | //
|
|---|
| 609 | if (calcNorm)
|
|---|
| 610 | {
|
|---|
| 611 | G4ThreeVector ip = p + sBest*v;
|
|---|
| 612 | *norm = G4ThreeVector( ip.x()*dy*dy, ip.y()*dx*dx, 0.0 ).unit();
|
|---|
| 613 | }
|
|---|
| 614 |
|
|---|
| 615 | //
|
|---|
| 616 | // Do we start on the surface?
|
|---|
| 617 | //
|
|---|
| 618 | if (CheckXY( p.x(), p.y(), -halfTol ) > 1.0)
|
|---|
| 619 | {
|
|---|
| 620 | //
|
|---|
| 621 | // Well, yes, but are we traveling outwards at this point?
|
|---|
| 622 | //
|
|---|
| 623 | if (p.x()*dy*dy*v.x() + p.y()*dx*dx*v.y() > 0) return 0;
|
|---|
| 624 | }
|
|---|
| 625 |
|
|---|
| 626 | return sBest;
|
|---|
| 627 | }
|
|---|
| 628 |
|
|---|
| 629 |
|
|---|
| 630 | //
|
|---|
| 631 | // DistanceToOut(p)
|
|---|
| 632 | //
|
|---|
| 633 | // See DistanceToIn(p) for notes on the distance from a point
|
|---|
| 634 | // to an ellipse in two dimensions.
|
|---|
| 635 | //
|
|---|
| 636 | // The approximation used here for a point inside the ellipse
|
|---|
| 637 | // is to find the intersection with the ellipse of the lines
|
|---|
| 638 | // through the point and parallel to the x and y axes. The
|
|---|
| 639 | // distance of the point from the line connecting the two
|
|---|
| 640 | // intersecting points is then used.
|
|---|
| 641 | //
|
|---|
| 642 | G4double G4EllipticalTube::DistanceToOut( const G4ThreeVector& p ) const
|
|---|
| 643 | {
|
|---|
| 644 | static const G4double halfTol = 0.5*kCarTolerance;
|
|---|
| 645 |
|
|---|
| 646 | //
|
|---|
| 647 | // We need to calculate the distances to all surfaces,
|
|---|
| 648 | // and then return the smallest
|
|---|
| 649 | //
|
|---|
| 650 | // Check -dz and +dz surface
|
|---|
| 651 | //
|
|---|
| 652 | G4double sBest = dz - std::fabs(p.z());
|
|---|
| 653 | if (sBest < halfTol) return 0;
|
|---|
| 654 |
|
|---|
| 655 | //
|
|---|
| 656 | // Check elliptical surface: find intersection of
|
|---|
| 657 | // line through p and parallel to x axis
|
|---|
| 658 | //
|
|---|
| 659 | G4double radical = 1.0 - p.y()*p.y()/dy/dy;
|
|---|
| 660 | if (radical < +DBL_MIN) return 0;
|
|---|
| 661 |
|
|---|
| 662 | G4double xi = dx*std::sqrt( radical );
|
|---|
| 663 | if (p.x() < 0) xi = -xi;
|
|---|
| 664 |
|
|---|
| 665 | //
|
|---|
| 666 | // Do the same with y axis
|
|---|
| 667 | //
|
|---|
| 668 | radical = 1.0 - p.x()*p.x()/dx/dx;
|
|---|
| 669 | if (radical < +DBL_MIN) return 0;
|
|---|
| 670 |
|
|---|
| 671 | G4double yi = dy*std::sqrt( radical );
|
|---|
| 672 | if (p.y() < 0) yi = -yi;
|
|---|
| 673 |
|
|---|
| 674 | //
|
|---|
| 675 | // Get distance from p to the line connecting
|
|---|
| 676 | // these two points
|
|---|
| 677 | //
|
|---|
| 678 | G4double xdi = p.x() - xi,
|
|---|
| 679 | ydi = yi - p.y();
|
|---|
| 680 |
|
|---|
| 681 | G4double normi = std::sqrt( xdi*xdi + ydi*ydi );
|
|---|
| 682 | if (normi < halfTol) return 0;
|
|---|
| 683 | xdi /= normi;
|
|---|
| 684 | ydi /= normi;
|
|---|
| 685 |
|
|---|
| 686 | G4double s = 0.5*(xdi*(p.y()-yi) - ydi*(p.x()-xi));
|
|---|
| 687 | if (xi*yi < 0) s = -s;
|
|---|
| 688 |
|
|---|
| 689 | if (s < sBest) sBest = s;
|
|---|
| 690 |
|
|---|
| 691 | //
|
|---|
| 692 | // Return best answer
|
|---|
| 693 | //
|
|---|
| 694 | return sBest < halfTol ? 0 : sBest;
|
|---|
| 695 | }
|
|---|
| 696 |
|
|---|
| 697 |
|
|---|
| 698 | //
|
|---|
| 699 | // IntersectXY
|
|---|
| 700 | //
|
|---|
| 701 | // Decide if and where the x/y trajectory hits the elliptical cross
|
|---|
| 702 | // section.
|
|---|
| 703 | //
|
|---|
| 704 | // Arguments:
|
|---|
| 705 | // p - (in) Point on trajectory
|
|---|
| 706 | // v - (in) Vector along trajectory
|
|---|
| 707 | // s - (out) Up to two points of intersection, where the
|
|---|
| 708 | // intersection point is p + s*v, and if there are
|
|---|
| 709 | // two intersections, s[0] < s[1]. May be negative.
|
|---|
| 710 | // Returns:
|
|---|
| 711 | // The number of intersections. If 0, the trajectory misses. If 1, the
|
|---|
| 712 | // trajectory just grazes the surface.
|
|---|
| 713 | //
|
|---|
| 714 | // Solution:
|
|---|
| 715 | // One needs to solve: ( (p.x + s*v.x)/dx )**2 + ( (p.y + s*v.y)/dy )**2 = 1
|
|---|
| 716 | //
|
|---|
| 717 | // The solution is quadratic: a*s**2 + b*s + c = 0
|
|---|
| 718 | //
|
|---|
| 719 | // a = (v.x/dx)**2 + (v.y/dy)**2
|
|---|
| 720 | // b = 2*p.x*v.x/dx**2 + 2*p.y*v.y/dy**2
|
|---|
| 721 | // c = (p.x/dx)**2 + (p.y/dy)**2 - 1
|
|---|
| 722 | //
|
|---|
| 723 | G4int G4EllipticalTube::IntersectXY( const G4ThreeVector &p,
|
|---|
| 724 | const G4ThreeVector &v,
|
|---|
| 725 | G4double s[2] ) const
|
|---|
| 726 | {
|
|---|
| 727 | G4double px = p.x(), py = p.y();
|
|---|
| 728 | G4double vx = v.x(), vy = v.y();
|
|---|
| 729 |
|
|---|
| 730 | G4double a = (vx/dx)*(vx/dx) + (vy/dy)*(vy/dy);
|
|---|
| 731 | G4double b = 2.0*( px*vx/dx/dx + py*vy/dy/dy );
|
|---|
| 732 | G4double c = (px/dx)*(px/dx) + (py/dy)*(py/dy) - 1.0;
|
|---|
| 733 |
|
|---|
| 734 | if (a < DBL_MIN) return 0; // Trajectory parallel to z axis
|
|---|
| 735 |
|
|---|
| 736 | G4double radical = b*b - 4*a*c;
|
|---|
| 737 |
|
|---|
| 738 | if (radical < -DBL_MIN) return 0; // No solution
|
|---|
| 739 |
|
|---|
| 740 | if (radical < DBL_MIN)
|
|---|
| 741 | {
|
|---|
| 742 | //
|
|---|
| 743 | // Grazes surface
|
|---|
| 744 | //
|
|---|
| 745 | s[0] = -b/a/2.0;
|
|---|
| 746 | return 1;
|
|---|
| 747 | }
|
|---|
| 748 |
|
|---|
| 749 | radical = std::sqrt(radical);
|
|---|
| 750 |
|
|---|
| 751 | G4double q = -0.5*( b + (b < 0 ? -radical : +radical) );
|
|---|
| 752 | G4double sa = q/a;
|
|---|
| 753 | G4double sb = c/q;
|
|---|
| 754 | if (sa < sb) { s[0] = sa; s[1] = sb; } else { s[0] = sb; s[1] = sa; }
|
|---|
| 755 | return 2;
|
|---|
| 756 | }
|
|---|
| 757 |
|
|---|
| 758 |
|
|---|
| 759 | //
|
|---|
| 760 | // GetEntityType
|
|---|
| 761 | //
|
|---|
| 762 | G4GeometryType G4EllipticalTube::GetEntityType() const
|
|---|
| 763 | {
|
|---|
| 764 | return G4String("G4EllipticalTube");
|
|---|
| 765 | }
|
|---|
| 766 |
|
|---|
| 767 |
|
|---|
| 768 | //
|
|---|
| 769 | // GetCubicVolume
|
|---|
| 770 | //
|
|---|
| 771 | G4double G4EllipticalTube::GetCubicVolume()
|
|---|
| 772 | {
|
|---|
| 773 | if(fCubicVolume != 0.) {;}
|
|---|
| 774 | else { fCubicVolume = G4VSolid::GetCubicVolume(); }
|
|---|
| 775 | return fCubicVolume;
|
|---|
| 776 | }
|
|---|
| 777 |
|
|---|
| 778 | //
|
|---|
| 779 | // GetSurfaceArea
|
|---|
| 780 | //
|
|---|
| 781 | G4double G4EllipticalTube::GetSurfaceArea()
|
|---|
| 782 | {
|
|---|
| 783 | if(fSurfaceArea != 0.) {;}
|
|---|
| 784 | else { fSurfaceArea = G4VSolid::GetSurfaceArea(); }
|
|---|
| 785 | return fSurfaceArea;
|
|---|
| 786 | }
|
|---|
| 787 |
|
|---|
| 788 | //
|
|---|
| 789 | // Stream object contents to an output stream
|
|---|
| 790 | //
|
|---|
| 791 | std::ostream& G4EllipticalTube::StreamInfo(std::ostream& os) const
|
|---|
| 792 | {
|
|---|
| 793 | os << "-----------------------------------------------------------\n"
|
|---|
| 794 | << " *** Dump for solid - " << GetName() << " ***\n"
|
|---|
| 795 | << " ===================================================\n"
|
|---|
| 796 | << " Solid type: G4EllipticalTube\n"
|
|---|
| 797 | << " Parameters: \n"
|
|---|
| 798 | << " length Z: " << dz/mm << " mm \n"
|
|---|
| 799 | << " surface equation in X and Y: \n"
|
|---|
| 800 | << " (X / " << dx << ")^2 + (Y / " << dy << ")^2 = 1 \n"
|
|---|
| 801 | << "-----------------------------------------------------------\n";
|
|---|
| 802 |
|
|---|
| 803 | return os;
|
|---|
| 804 | }
|
|---|
| 805 |
|
|---|
| 806 |
|
|---|
| 807 | //
|
|---|
| 808 | // GetPointOnSurface
|
|---|
| 809 | //
|
|---|
| 810 | // Randomly generates a point on the surface,
|
|---|
| 811 | // with ~ uniform distribution across surface.
|
|---|
| 812 | //
|
|---|
| 813 | G4ThreeVector G4EllipticalTube::GetPointOnSurface() const
|
|---|
| 814 | {
|
|---|
| 815 | G4double xRand, yRand, zRand, phi, cosphi, sinphi, zArea, cArea,p, chose;
|
|---|
| 816 |
|
|---|
| 817 | phi = RandFlat::shoot(0., 2.*pi);
|
|---|
| 818 | cosphi = std::cos(phi);
|
|---|
| 819 | sinphi = std::sin(phi);
|
|---|
| 820 |
|
|---|
| 821 | // the ellipse perimeter from: "http://mathworld.wolfram.com/Ellipse.html"
|
|---|
| 822 | // m = (dx - dy)/(dx + dy);
|
|---|
| 823 | // k = 1.+1./4.*m*m+1./64.*sqr(m)*sqr(m)+1./256.*sqr(m)*sqr(m)*sqr(m);
|
|---|
| 824 | // p = pi*(a+b)*k;
|
|---|
| 825 |
|
|---|
| 826 | // perimeter below from "http://www.efunda.com/math/areas/EllipseGen.cfm"
|
|---|
| 827 |
|
|---|
| 828 | p = 2.*pi*std::sqrt(0.5*(dx*dx+dy*dy));
|
|---|
| 829 |
|
|---|
| 830 | cArea = 2.*dz*p;
|
|---|
| 831 | zArea = pi*dx*dy;
|
|---|
| 832 |
|
|---|
| 833 | xRand = dx*cosphi;
|
|---|
| 834 | yRand = dy*sinphi;
|
|---|
| 835 | zRand = RandFlat::shoot(dz, -1.*dz);
|
|---|
| 836 |
|
|---|
| 837 | chose = RandFlat::shoot(0.,2.*zArea+cArea);
|
|---|
| 838 |
|
|---|
| 839 | if( (chose>=0) && (chose < cArea) )
|
|---|
| 840 | {
|
|---|
| 841 | return G4ThreeVector (xRand,yRand,zRand);
|
|---|
| 842 | }
|
|---|
| 843 | else if( (chose >= cArea) && (chose < cArea + zArea) )
|
|---|
| 844 | {
|
|---|
| 845 | xRand = RandFlat::shoot(-1.*dx,dx);
|
|---|
| 846 | yRand = std::sqrt(1.-sqr(xRand/dx));
|
|---|
| 847 | yRand = RandFlat::shoot(-1.*yRand, yRand);
|
|---|
| 848 | return G4ThreeVector (xRand,yRand,dz);
|
|---|
| 849 | }
|
|---|
| 850 | else
|
|---|
| 851 | {
|
|---|
| 852 | xRand = RandFlat::shoot(-1.*dx,dx);
|
|---|
| 853 | yRand = std::sqrt(1.-sqr(xRand/dx));
|
|---|
| 854 | yRand = RandFlat::shoot(-1.*yRand, yRand);
|
|---|
| 855 | return G4ThreeVector (xRand,yRand,-1.*dz);
|
|---|
| 856 | }
|
|---|
| 857 | }
|
|---|
| 858 |
|
|---|
| 859 |
|
|---|
| 860 | //
|
|---|
| 861 | // CreatePolyhedron
|
|---|
| 862 | //
|
|---|
| 863 | G4Polyhedron* G4EllipticalTube::CreatePolyhedron() const
|
|---|
| 864 | {
|
|---|
| 865 | // create cylinder with radius=1...
|
|---|
| 866 | //
|
|---|
| 867 | G4Polyhedron* eTube = new G4PolyhedronTube(0.,1.,dz);
|
|---|
| 868 |
|
|---|
| 869 | // apply non-uniform scaling...
|
|---|
| 870 | //
|
|---|
| 871 | eTube->Transform(G4Scale3D(dx,dy,1.));
|
|---|
| 872 | return eTube;
|
|---|
| 873 | }
|
|---|
| 874 |
|
|---|
| 875 |
|
|---|
| 876 | //
|
|---|
| 877 | // GetPolyhedron
|
|---|
| 878 | //
|
|---|
| 879 | G4Polyhedron* G4EllipticalTube::GetPolyhedron () const
|
|---|
| 880 | {
|
|---|
| 881 | if (!fpPolyhedron ||
|
|---|
| 882 | fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() !=
|
|---|
| 883 | fpPolyhedron->GetNumberOfRotationSteps())
|
|---|
| 884 | {
|
|---|
| 885 | delete fpPolyhedron;
|
|---|
| 886 | fpPolyhedron = CreatePolyhedron();
|
|---|
| 887 | }
|
|---|
| 888 | return fpPolyhedron;
|
|---|
| 889 | }
|
|---|
| 890 |
|
|---|
| 891 |
|
|---|
| 892 | //
|
|---|
| 893 | // DescribeYourselfTo
|
|---|
| 894 | //
|
|---|
| 895 | void G4EllipticalTube::DescribeYourselfTo( G4VGraphicsScene& scene ) const
|
|---|
| 896 | {
|
|---|
| 897 | scene.AddSolid (*this);
|
|---|
| 898 | }
|
|---|
| 899 |
|
|---|
| 900 |
|
|---|
| 901 | //
|
|---|
| 902 | // GetExtent
|
|---|
| 903 | //
|
|---|
| 904 | G4VisExtent G4EllipticalTube::GetExtent() const
|
|---|
| 905 | {
|
|---|
| 906 | return G4VisExtent( -dx, dx, -dy, dy, -dz, dz );
|
|---|
| 907 | }
|
|---|