source: trunk/source/geometry/solids/specific/src/G4ExtrudedSolid.cc@ 834

Last change on this file since 834 was 831, checked in by garnier, 17 years ago

import all except CVS

File size: 22.7 KB
RevLine 
[831]1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id: G4ExtrudedSolid.cc,v 1.11.2.1 2008/04/23 08:10:24 gcosmo Exp $
28// GEANT4 tag $Name: geant4-09-01-patch-02 $
29//
30//
31// --------------------------------------------------------------------
32// GEANT 4 class source file
33//
34// G4ExtrudedSolid.cc
35//
36// Author: Ivana Hrivnacova, IPN Orsay
37// --------------------------------------------------------------------
38
39#include <set>
40#include <algorithm>
41#include <cmath>
42
43#include "G4ExtrudedSolid.hh"
44#include "G4TriangularFacet.hh"
45#include "G4QuadrangularFacet.hh"
46
47//_____________________________________________________________________________
48
49G4ExtrudedSolid::G4ExtrudedSolid( const G4String& pName,
50 std::vector<G4TwoVector> polygon,
51 std::vector<ZSection> zsections)
52 : G4TessellatedSolid(pName),
53 fNv(polygon.size()),
54 fNz(zsections.size()),
55 fPolygon(),
56 fZSections(),
57 fTriangles(),
58 fIsConvex(false),
59 fGeometryType("G4ExtrudedSolid")
60
61{
62 // General constructor
63
64 // First check input parameters
65
66 if ( fNv < 3 ) {
67 G4Exception(
68 "G4ExtrudedSolid::G4ExtrudedSolid()", "InvalidSetup",
69 FatalException, "Number of polygon vertices < 3");
70 }
71
72 if ( fNz < 2 ) {
73 G4Exception(
74 "G4ExtrudedSolid::G4ExtrudedSolid()", "InvalidSetup",
75 FatalException, "Number of z-sides < 2");
76 }
77
78 for ( G4int i=0; i<fNz-1; ++i )
79 {
80 if ( zsections[i].fZ > zsections[i+1].fZ )
81 {
82 G4Exception(
83 "G4ExtrudedSolid::G4ExtrudedSolid()", "InvalidSetup",
84 FatalException,
85 "Z-sections have to be ordered by z value (z0 < z1 < z2 ...)");
86 }
87 if ( std::fabs( zsections[i+1].fZ - zsections[i].fZ ) < kCarTolerance )
88 {
89 G4Exception(
90 "G4ExtrudedSolid::G4ExtrudedSolid()", "InvalidSetup",
91 FatalException,
92 "Z-sections with the same z position are not supported.");
93 }
94 }
95
96 // Copy polygon
97 //
98 for ( G4int i=0; i<fNv; ++i ) { fPolygon.push_back(polygon[i]); }
99
100 // Copy z-sections
101 //
102 for ( G4int i=0; i<fNz; ++i ) { fZSections.push_back(zsections[i]); }
103
104
105 G4bool result = MakeFacets();
106 if (!result)
107 {
108 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "InvalidSetup",
109 FatalException, "Making facets failed.");
110 }
111 fIsConvex = IsConvex();
112
113
114 ComputeProjectionParameters();
115}
116
117//_____________________________________________________________________________
118
119G4ExtrudedSolid::G4ExtrudedSolid( const G4String& pName,
120 std::vector<G4TwoVector> polygon,
121 G4double dz,
122 G4TwoVector off1, G4double scale1,
123 G4TwoVector off2, G4double scale2 )
124 : G4TessellatedSolid(pName),
125 fNv(polygon.size()),
126 fNz(2),
127 fPolygon(),
128 fZSections(),
129 fTriangles(),
130 fIsConvex(false),
131 fGeometryType("G4ExtrudedSolid")
132
133{
134 // Special constructor for solid with 2 z-sections
135
136 // First check input parameters
137 //
138 if ( fNv < 3 )
139 {
140 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "InvalidSetup",
141 FatalException, "Number of polygon vertices < 3");
142 }
143
144 // Copy polygon
145 //
146 for ( G4int i=0; i<fNv; ++i ) { fPolygon.push_back(polygon[i]); }
147
148 // Copy z-sections
149 //
150 fZSections.push_back(ZSection(-dz, off1, scale1));
151 fZSections.push_back(ZSection( dz, off2, scale2));
152
153 G4bool result = MakeFacets();
154 if (!result)
155 {
156 G4Exception("G4ExtrudedSolid::G4ExtrudedSolid()", "InvalidSetup",
157 FatalException, "Making facets failed.");
158 }
159 fIsConvex = IsConvex();
160
161 ComputeProjectionParameters();
162}
163
164//_____________________________________________________________________________
165
166G4ExtrudedSolid::G4ExtrudedSolid( __void__& a )
167 : G4TessellatedSolid(a)
168{
169 // Fake default constructor - sets only member data and allocates memory
170 // for usage restricted to object persistency.
171}
172
173
174//_____________________________________________________________________________
175
176G4ExtrudedSolid::~G4ExtrudedSolid()
177{
178 // Destructor
179}
180
181//_____________________________________________________________________________
182
183void G4ExtrudedSolid::ComputeProjectionParameters()
184{
185 // Compute parameters for point projections p(z)
186 // to the polygon scale & offset:
187 // scale(z) = k*z + scale0
188 // offset(z) = l*z + offset0
189 // p(z) = scale(z)*p0 + offset(z)
190 // p0 = (p(z) - offset(z))/scale(z);
191 //
192
193 for ( G4int iz=0; iz<fNz-1; ++iz)
194 {
195 G4double z1 = fZSections[iz].fZ;
196 G4double z2 = fZSections[iz+1].fZ;
197 G4double scale1 = fZSections[iz].fScale;
198 G4double scale2 = fZSections[iz+1].fScale;
199 G4TwoVector off1 = fZSections[iz].fOffset;
200 G4TwoVector off2 = fZSections[iz+1].fOffset;
201
202 G4double kscale = (scale2 - scale1)/(z2 - z1);
203 G4double scale0 = scale2 - kscale*(z2 - z1)/2.0;
204 G4TwoVector koff = (off2 - off1)/(z2 - z1);
205 G4TwoVector off0 = off2 - koff*(z2 - z1)/2.0;
206
207 fKScales.push_back(kscale);
208 fScale0s.push_back(scale0);
209 fKOffsets.push_back(koff);
210 fOffset0s.push_back(off0);
211 }
212}
213
214
215//_____________________________________________________________________________
216
217G4ThreeVector G4ExtrudedSolid::GetVertex(G4int iz, G4int ind) const
218{
219 // Shift and scale vertices
220
221 return G4ThreeVector( fPolygon[ind].x() * fZSections[iz].fScale
222 + fZSections[iz].fOffset.x(),
223 fPolygon[ind].y() * fZSections[iz].fScale
224 + fZSections[iz].fOffset.y(), fZSections[iz].fZ);
225}
226
227//_____________________________________________________________________________
228
229
230G4TwoVector G4ExtrudedSolid::ProjectPoint(const G4ThreeVector& point) const
231{
232 // Project point in the polygon scale
233 // scale(z) = k*z + scale0
234 // offset(z) = l*z + offset0
235 // p(z) = scale(z)*p0 + offset(z)
236 // p0 = (p(z) - offset(z))/scale(z);
237
238 // Select projection (z-segment of the solid) according to p.z()
239 //
240 G4int iz = 0;
241 while ( point.z() > fZSections[iz+1].fZ && iz < fNz-2 ) { ++iz; }
242
243 G4double z0 = ( fZSections[iz+1].fZ + fZSections[iz].fZ )/2.0;
244 G4TwoVector p2(point.x(), point.y());
245 G4double pscale = fKScales[iz]*(point.z()-z0) + fScale0s[iz];
246 G4TwoVector poffset = fKOffsets[iz]*(point.z()-z0) + fOffset0s[iz];
247
248 // G4cout << point << " projected to "
249 // << iz << "-th z-segment polygon as "
250 // << (p2 - poffset)/pscale << G4endl;
251
252 // pscale is always >0 as it is an interpolation between two
253 // positive scale values
254 //
255 return (p2 - poffset)/pscale;
256}
257
258//_____________________________________________________________________________
259
260G4bool G4ExtrudedSolid::IsSameLine(G4TwoVector p,
261 G4TwoVector l1, G4TwoVector l2) const
262{
263 // Return true if p is on the line through l1, l2
264
265 if ( l1.x() == l2.x() )
266 {
267 return std::fabs(p.x() - l1.x()) < kCarTolerance;
268 }
269
270 return std::fabs (p.y() - l1.y() - ((l2.y() - l1.y())/(l2.x() - l1.x()))
271 *(p.x() - l1.x())) < kCarTolerance;
272 }
273
274//_____________________________________________________________________________
275
276G4bool G4ExtrudedSolid::IsSameLineSegment(G4TwoVector p,
277 G4TwoVector l1, G4TwoVector l2) const
278{
279 // Return true if p is on the line through l1, l2 and lies between
280 // l1 and l2
281
282 if ( p.x() < std::min(l1.x(), l2.x()) - kCarTolerance ||
283 p.x() > std::max(l1.x(), l2.x()) + kCarTolerance ||
284 p.y() < std::min(l1.y(), l2.y()) - kCarTolerance||
285 p.y() > std::max(l1.y(), l2.y()) + kCarTolerance )
286 {
287 return false;
288 }
289
290 return IsSameLine(p, l1, l2);
291}
292
293//_____________________________________________________________________________
294
295G4bool G4ExtrudedSolid::IsSameSide(G4TwoVector p1, G4TwoVector p2,
296 G4TwoVector l1, G4TwoVector l2) const
297{
298 // Return true if p1 and p2 are on the same side of the line through l1, l2
299
300 return ( (p1.x() - l1.x()) * (l2.y() - l1.y())
301 - (l2.x() - l1.x()) * (p1.y() - l1.y()) )
302 * ( (p2.x() - l1.x()) * (l2.y() - l1.y())
303 - (l2.x() - l1.x()) * (p2.y() - l1.y()) ) > 0;
304}
305
306//_____________________________________________________________________________
307
308G4bool G4ExtrudedSolid::IsPointInside(G4TwoVector a, G4TwoVector b,
309 G4TwoVector c, G4TwoVector p) const
310{
311 // Return true if p is inside of triangle abc, else returns false
312
313 // Check extent first
314 //
315 if ( ( p.x() < a.x() && p.x() < b.x() && p.x() < c.x() ) ||
316 ( p.x() > a.x() && p.x() > b.x() && p.x() > c.x() ) ||
317 ( p.y() < a.y() && p.y() < b.y() && p.y() < c.y() ) ||
318 ( p.y() > a.y() && p.y() > b.y() && p.y() > c.y() ) ) return false;
319
320 return IsSameSide(p, a, b, c)
321 && IsSameSide(p, b, a, c)
322 && IsSameSide(p, c, a, b);
323}
324
325//_____________________________________________________________________________
326
327G4double
328G4ExtrudedSolid::GetAngle(G4TwoVector po, G4TwoVector pa, G4TwoVector pb) const
329{
330 // Return the angle of the vertex in po
331
332 G4TwoVector t1 = pa - po;
333 G4TwoVector t2 = pb - po;
334
335 G4double result
336 = (atan2(t1.y(), t1.x()) - atan2(t2.y(), t2.x()));
337
338 if ( result < 0 ) result += 2*pi;
339
340 return result;
341}
342
343//_____________________________________________________________________________
344
345G4VFacet*
346G4ExtrudedSolid::MakeDownFacet(G4int ind1, G4int ind2, G4int ind3) const
347{
348 // Create a triangular facet from the polygon points given by indices
349 // forming the down side ( the normal goes in -z)
350
351 std::vector<G4ThreeVector> vertices;
352 vertices.push_back(GetVertex(0, ind1));
353 vertices.push_back(GetVertex(0, ind2));
354 vertices.push_back(GetVertex(0, ind3));
355
356 // first vertex most left
357 //
358 G4ThreeVector cross
359 = (vertices[1]-vertices[0]).cross(vertices[2]-vertices[1]);
360
361 if ( cross.z() > 0.0 )
362 {
363 // vertices ardered clock wise has to be reordered
364
365 // G4cout << "G4ExtrudedSolid::MakeDownFacet: reordering vertices "
366 // << ind1 << ", " << ind2 << ", " << ind3 << G4endl;
367
368 G4ThreeVector tmp = vertices[1];
369 vertices[1] = vertices[2];
370 vertices[2] = tmp;
371 }
372
373 return new G4TriangularFacet(vertices[0], vertices[1],
374 vertices[2], ABSOLUTE);
375}
376
377//_____________________________________________________________________________
378
379G4VFacet*
380G4ExtrudedSolid::MakeUpFacet(G4int ind1, G4int ind2, G4int ind3) const
381{
382 // Creates a triangular facet from the polygon points given by indices
383 // forming the upper side ( z>0 )
384
385 std::vector<G4ThreeVector> vertices;
386 vertices.push_back(GetVertex(fNz-1, ind1));
387 vertices.push_back(GetVertex(fNz-1, ind2));
388 vertices.push_back(GetVertex(fNz-1, ind3));
389
390 // first vertex most left
391 //
392 G4ThreeVector cross
393 = (vertices[1]-vertices[0]).cross(vertices[2]-vertices[1]);
394
395 if ( cross.z() < 0.0 )
396 {
397 // vertices ordered clock wise has to be reordered
398
399 // G4cout << "G4ExtrudedSolid::MakeUpFacet: reordering vertices "
400 // << ind1 << ", " << ind2 << ", " << ind3 << G4endl;
401
402 G4ThreeVector tmp = vertices[1];
403 vertices[1] = vertices[2];
404 vertices[2] = tmp;
405 }
406
407 return new G4TriangularFacet(vertices[0], vertices[1],
408 vertices[2], ABSOLUTE);
409}
410
411//_____________________________________________________________________________
412
413G4bool G4ExtrudedSolid::AddGeneralPolygonFacets()
414{
415 // Decompose polygonal sides in triangular facets
416
417 typedef std::pair < G4TwoVector, G4int > Vertex;
418
419 // Fill one more vector
420 //
421 std::vector< Vertex > verticesToBeDone;
422 for ( G4int i=0; i<fNv; ++i )
423 {
424 verticesToBeDone.push_back(Vertex(fPolygon[i], i));
425 }
426 std::vector< Vertex > ears;
427
428 std::vector< Vertex >::iterator c1 = verticesToBeDone.begin();
429 std::vector< Vertex >::iterator c2 = c1+1;
430 std::vector< Vertex >::iterator c3 = c1+2;
431 while ( verticesToBeDone.size()>2 )
432 {
433
434 // G4cout << "Looking at triangle : "
435 // << c1->second << " " << c2->second
436 // << " " << c3->second << G4endl;
437
438 // skip concave vertices
439 //
440 G4double angle = GetAngle(c2->first, c3->first, c1->first);
441 //G4cout << angle << G4endl;
442 if ( angle > pi ) {
443 // G4cout << "Skipping concave vertex " << c2->second << G4endl;
444
445 // try next three consecutive vertices
446 //
447 c1 = c2;
448 c2 = c3;
449 ++c3;
450 if ( c3 == verticesToBeDone.end() ) { c3 = verticesToBeDone.begin(); }
451 }
452
453 G4bool good = true;
454 std::vector< Vertex >::iterator it;
455 for ( it=verticesToBeDone.begin(); it != verticesToBeDone.end(); ++it )
456 {
457 // skip vertices of tested triangle
458 //
459 if ( it == c1 || it == c2 || it == c3 ) { continue; }
460
461 if ( IsPointInside(c1->first, c2->first, c3->first, it->first) )
462 {
463 // G4cout << "Point " << it->second << " is inside" << G4endl;
464 good = false;
465
466 // try next three consecutive vertices
467 //
468 c1 = c2;
469 c2 = c3;
470 ++c3;
471 if ( c3 == verticesToBeDone.end() ) { c3 = verticesToBeDone.begin(); }
472 break;
473 }
474 // else
475 // { G4cout << "Point " << it->second << " is outside" << G4endl; }
476 }
477 if ( good )
478 {
479 // all points are outside triangle, we can make a facet
480
481 // G4cout << "Found triangle : "
482 // << c1->second << " " << c2->second
483 // << " " << c3->second << G4endl;
484
485 G4bool result;
486 result = AddFacet( MakeDownFacet(c1->second, c2->second, c3->second) );
487 if ( ! result ) { return false; }
488
489 result = AddFacet( MakeUpFacet(c1->second, c2->second, c3->second) );
490 if ( ! result ) { return false; }
491
492 std::vector<G4int> triangle(3);
493 triangle[0] = c1->second;
494 triangle[1] = c2->second;
495 triangle[2] = c3->second;
496 fTriangles.push_back(triangle);
497
498 // remove the ear point from verticesToBeDone
499 //
500 verticesToBeDone.erase(c2);
501 c1 = verticesToBeDone.begin();
502 c2 = c1+1;
503 c3 = c1+2;
504 }
505 }
506 return true;
507}
508
509//_____________________________________________________________________________
510
511G4bool G4ExtrudedSolid::MakeFacets()
512{
513 // Define facets
514
515 G4bool good;
516
517 // Decomposition of polygonal sides in the facets
518 //
519 if ( fNv == 3 )
520 {
521 good = AddFacet( new G4TriangularFacet( GetVertex(0, 0), GetVertex(0, 1),
522 GetVertex(0, 2), ABSOLUTE) );
523 if ( ! good ) { return false; }
524
525 good = AddFacet( new G4TriangularFacet( GetVertex(fNz-1, 2), GetVertex(fNz-1, 1),
526 GetVertex(fNz-1, 0), ABSOLUTE) );
527 if ( ! good ) { return false; }
528
529 std::vector<G4int> triangle(3);
530 triangle[0] = 0;
531 triangle[1] = 1;
532 triangle[2] = 2;
533 fTriangles.push_back(triangle);
534 }
535
536 else if ( fNv == 4 )
537 {
538 good = AddFacet( new G4QuadrangularFacet( GetVertex(0, 0),GetVertex(0, 1),
539 GetVertex(0, 2),GetVertex(0, 3),
540 ABSOLUTE) );
541 if ( ! good ) { return false; }
542
543 good = AddFacet( new G4QuadrangularFacet( GetVertex(fNz-1, 3), GetVertex(fNz-1, 2),
544 GetVertex(fNz-1, 1), GetVertex(1, 0),
545 ABSOLUTE) );
546 if ( ! good ) { return false; }
547
548 std::vector<G4int> triangle1(3);
549 triangle1[0] = 0;
550 triangle1[1] = 1;
551 triangle1[2] = 2;
552 fTriangles.push_back(triangle1);
553
554 std::vector<G4int> triangle2(3);
555 triangle2[0] = 0;
556 triangle2[1] = 2;
557 triangle2[2] = 3;
558 fTriangles.push_back(triangle2);
559 }
560 else
561 {
562 good = AddGeneralPolygonFacets();
563 if ( ! good ) { return false; }
564 }
565
566 // The quadrangular sides
567 //
568 for ( G4int iz = 0; iz < fNz-1; ++iz )
569 {
570 for ( G4int i = 0; i < fNv; ++i )
571 {
572 G4int j = (i+1) % fNv;
573 good = AddFacet( new G4QuadrangularFacet
574 ( GetVertex(iz, j), GetVertex(iz, i),
575 GetVertex(iz+1, i), GetVertex(iz+1, j), ABSOLUTE) );
576 if ( ! good ) { return false; }
577 }
578 }
579
580 SetSolidClosed(true);
581
582 return good;
583}
584
585//_____________________________________________________________________________
586
587G4bool G4ExtrudedSolid::IsConvex() const
588{
589 // Get polygon convexity (polygon is convex if all vertex angles are < pi )
590
591 for ( G4int i=0; i< fNv; ++i )
592 {
593 G4int j = ( i + 1 ) % fNv;
594 G4int k = ( i + 2 ) % fNv;
595 G4TwoVector v1 = fPolygon[i]-fPolygon[j];
596 G4TwoVector v2 = fPolygon[k]-fPolygon[j];
597 G4double dphi = v2.phi() - v1.phi();
598 if ( dphi < 0. ) { dphi += 2.*pi; }
599
600 if ( dphi >= pi ) { return false; }
601 }
602
603 return true;
604}
605
606//_____________________________________________________________________________
607
608G4GeometryType G4ExtrudedSolid::GetEntityType () const
609{
610 // Return entity type
611
612 return fGeometryType;
613}
614
615//_____________________________________________________________________________
616
617EInside G4ExtrudedSolid::Inside (const G4ThreeVector &p) const
618{
619 // Override the base class function as it fails in case of concave polygon.
620 // Project the point in the original polygon scale and check if it is inside
621 // for each triangle.
622
623 // Check first if outside extent
624 //
625 if ( p.x() < GetMinXExtent() - kCarTolerance ||
626 p.x() > GetMaxXExtent() + kCarTolerance ||
627 p.y() < GetMinYExtent() - kCarTolerance ||
628 p.y() > GetMaxYExtent() + kCarTolerance ||
629 p.z() < GetMinZExtent() - kCarTolerance ||
630 p.z() > GetMaxZExtent() + kCarTolerance )
631 {
632 // G4cout << "G4ExtrudedSolid::Outside extent: " << p << G4endl;
633 return kOutside;
634 }
635
636 // Project point p(z) to the polygon scale p0
637 //
638 G4TwoVector pscaled = ProjectPoint(p);
639
640 // Check if on surface of polygon
641 //
642 for ( G4int i=0; i<fNv; ++i )
643 {
644 G4int j = (i+1) % fNv;
645 if ( IsSameLine(pscaled, fPolygon[i], fPolygon[j]) )
646 {
647 // G4cout << "G4ExtrudedSolid::Inside return Surface (on polygon) "
648 // << G4endl;
649
650 return kSurface;
651 }
652 }
653
654 // Now check if inside triangles
655 //
656 std::vector< std::vector<G4int> >::const_iterator it = fTriangles.begin();
657 G4bool inside = false;
658 do
659 {
660 if ( IsPointInside(fPolygon[(*it)[0]], fPolygon[(*it)[1]],
661 fPolygon[(*it)[2]], pscaled) ) { inside = true; }
662
663 if ( IsSameLineSegment(pscaled, fPolygon[(*it)[0]], fPolygon[(*it)[1]]) ||
664 IsSameLineSegment(pscaled, fPolygon[(*it)[1]], fPolygon[(*it)[2]]) ||
665 IsSameLineSegment(pscaled, fPolygon[(*it)[2]], fPolygon[(*it)[0]]) )
666 { inside = true; }
667 ++it;
668 } while ( (inside == false) && (it != fTriangles.end()) );
669
670 if ( inside )
671 {
672 // Check if on surface of z sides
673 //
674 if ( std::fabs( p.z() - fZSections[0].fZ ) < kCarTolerance ||
675 std::fabs( p.z() - fZSections[fNz-1].fZ ) < kCarTolerance )
676 {
677 // G4cout << "G4ExtrudedSolid::Inside return Surface (on z side)"
678 // << G4endl;
679
680 return kSurface;
681 }
682
683 // G4cout << "G4ExtrudedSolid::Inside return Inside" << G4endl;
684
685 return kInside;
686 }
687
688 // G4cout << "G4ExtrudedSolid::Inside return Outside " << G4endl;
689
690 return kOutside;
691}
692
693//_____________________________________________________________________________
694
695G4double G4ExtrudedSolid::DistanceToOut (const G4ThreeVector &p,
696 const G4ThreeVector &v,
697 const G4bool calcNorm,
698 G4bool *validNorm,
699 G4ThreeVector *n) const
700{
701 // Override the base class function to redefine validNorm
702 // (the solid can be concave)
703
704 G4double distOut =
705 G4TessellatedSolid::DistanceToOut(p, v, calcNorm, validNorm, n);
706 if (validNorm) { *validNorm = fIsConvex; }
707
708 return distOut;
709}
710
711
712//_____________________________________________________________________________
713
714G4double G4ExtrudedSolid::DistanceToOut (const G4ThreeVector &p) const
715{
716 // Override the overloaded base class function
717
718 return G4TessellatedSolid::DistanceToOut(p);
719}
720
721
722//_____________________________________________________________________________
723
724std::ostream& G4ExtrudedSolid::StreamInfo(std::ostream &os) const
725{
726 os << "-----------------------------------------------------------\n"
727 << " *** Dump for solid - " << GetName() << " ***\n"
728 << " ===================================================\n"
729 << " Solid geometry type: " << fGeometryType << G4endl;
730
731 if ( fIsConvex)
732 { os << " Convex polygon; list of vertices:" << G4endl; }
733 else
734 { os << " Concave polygon; list of vertices:" << G4endl; }
735
736 for ( G4int i=0; i<fNv; ++i )
737 {
738 os << " vx = " << fPolygon[i].x()/mm << " mm"
739 << " vy = " << fPolygon[i].y()/mm << " mm" << G4endl;
740 }
741
742 os << " Sections:" << G4endl;
743 for ( G4int iz=0; iz<fNz; ++iz )
744 {
745 os << " z = " << fZSections[iz].fZ/mm << " mm "
746 << " x0= " << fZSections[iz].fOffset.x()/mm << " mm "
747 << " y0= " << fZSections[iz].fOffset.y()/mm << " mm "
748 << " scale= " << fZSections[iz].fScale << G4endl;
749 }
750
751 return os;
752}
Note: See TracBrowser for help on using the repository browser.