| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| 27 | // $Id: G4Hype.cc,v 1.27 2008/04/14 08:49:28 gcosmo Exp $
|
|---|
| 28 | // $Original: G4Hype.cc,v 1.0 1998/06/09 16:57:50 safai Exp $
|
|---|
| 29 | // GEANT4 tag $Name: geant4-09-02-ref-02 $
|
|---|
| 30 | //
|
|---|
| 31 | //
|
|---|
| 32 | // --------------------------------------------------------------------
|
|---|
| 33 | // GEANT 4 class source file
|
|---|
| 34 | //
|
|---|
| 35 | //
|
|---|
| 36 | // G4Hype.cc
|
|---|
| 37 | //
|
|---|
| 38 | // --------------------------------------------------------------------
|
|---|
| 39 | //
|
|---|
| 40 | // Authors:
|
|---|
| 41 | // Ernesto Lamanna (Ernesto.Lamanna@roma1.infn.it) &
|
|---|
| 42 | // Francesco Safai Tehrani (Francesco.SafaiTehrani@roma1.infn.it)
|
|---|
| 43 | // Rome, INFN & University of Rome "La Sapienza", 9 June 1998.
|
|---|
| 44 | //
|
|---|
| 45 | // --------------------------------------------------------------------
|
|---|
| 46 |
|
|---|
| 47 | #include "G4Hype.hh"
|
|---|
| 48 |
|
|---|
| 49 | #include "G4VoxelLimits.hh"
|
|---|
| 50 | #include "G4AffineTransform.hh"
|
|---|
| 51 | #include "G4SolidExtentList.hh"
|
|---|
| 52 | #include "G4ClippablePolygon.hh"
|
|---|
| 53 |
|
|---|
| 54 | #include "G4VPVParameterisation.hh"
|
|---|
| 55 |
|
|---|
| 56 | #include "meshdefs.hh"
|
|---|
| 57 |
|
|---|
| 58 | #include <cmath>
|
|---|
| 59 |
|
|---|
| 60 | #include "Randomize.hh"
|
|---|
| 61 |
|
|---|
| 62 | #include "G4VGraphicsScene.hh"
|
|---|
| 63 | #include "G4Polyhedron.hh"
|
|---|
| 64 | #include "G4VisExtent.hh"
|
|---|
| 65 | #include "G4NURBS.hh"
|
|---|
| 66 | #include "G4NURBStube.hh"
|
|---|
| 67 | #include "G4NURBScylinder.hh"
|
|---|
| 68 | #include "G4NURBStubesector.hh"
|
|---|
| 69 |
|
|---|
| 70 | using namespace CLHEP;
|
|---|
| 71 |
|
|---|
| 72 | // Constructor - check parameters, and fills protected data members
|
|---|
| 73 | G4Hype::G4Hype(const G4String& pName,
|
|---|
| 74 | G4double newInnerRadius,
|
|---|
| 75 | G4double newOuterRadius,
|
|---|
| 76 | G4double newInnerStereo,
|
|---|
| 77 | G4double newOuterStereo,
|
|---|
| 78 | G4double newHalfLenZ)
|
|---|
| 79 | : G4VSolid(pName), fCubicVolume(0.), fSurfaceArea(0.), fpPolyhedron(0)
|
|---|
| 80 | {
|
|---|
| 81 | // Check z-len
|
|---|
| 82 | //
|
|---|
| 83 | if (newHalfLenZ>0)
|
|---|
| 84 | {
|
|---|
| 85 | halfLenZ=newHalfLenZ;
|
|---|
| 86 | }
|
|---|
| 87 | else
|
|---|
| 88 | {
|
|---|
| 89 | G4cerr << "ERROR - G4Hype::G4Hype(): " << GetName() << G4endl
|
|---|
| 90 | << " Invalid Z half-length: "
|
|---|
| 91 | << newHalfLenZ/mm << " mm" << G4endl;
|
|---|
| 92 | G4Exception("G4Hype::G4Hype()", "InvalidSetup", FatalException,
|
|---|
| 93 | "Invalid Z half-length.");
|
|---|
| 94 | }
|
|---|
| 95 |
|
|---|
| 96 | // Check radii
|
|---|
| 97 | //
|
|---|
| 98 | if (newInnerRadius>=0 && newOuterRadius>=0)
|
|---|
| 99 | {
|
|---|
| 100 | if (newInnerRadius < newOuterRadius)
|
|---|
| 101 | {
|
|---|
| 102 | innerRadius=newInnerRadius;
|
|---|
| 103 | outerRadius=newOuterRadius;
|
|---|
| 104 | }
|
|---|
| 105 | else
|
|---|
| 106 | { // swapping radii (:-)
|
|---|
| 107 | // innerRadius=newOuterRadius;
|
|---|
| 108 | // outerRadius=newInnerRadius;
|
|---|
| 109 | // DCW: swapping is fine, but what about the stereo angles???
|
|---|
| 110 |
|
|---|
| 111 | G4cerr << "ERROR - G4Hype::G4Hype(): " << GetName() << G4endl
|
|---|
| 112 | << " Invalid radii ! Inner radius: "
|
|---|
| 113 | << newInnerRadius/mm << " mm" << G4endl
|
|---|
| 114 | << " Outer radius: "
|
|---|
| 115 | << newOuterRadius/mm << " mm" << G4endl;
|
|---|
| 116 | G4Exception("G4Hype::G4Hype()", "InvalidSetup", FatalException,
|
|---|
| 117 | "Error: outer > inner radius.");
|
|---|
| 118 | }
|
|---|
| 119 | }
|
|---|
| 120 | else
|
|---|
| 121 | {
|
|---|
| 122 | G4cerr << "ERROR - G4Hype::G4Hype(): " << GetName() << G4endl
|
|---|
| 123 | << " Invalid radii ! Inner radius: "
|
|---|
| 124 | << newInnerRadius/mm << " mm" << G4endl
|
|---|
| 125 | << " Outer radius: "
|
|---|
| 126 | << newOuterRadius/mm << " mm" << G4endl;
|
|---|
| 127 | G4Exception("G4Hype::G4Hype()", "InvalidSetup", FatalException,
|
|---|
| 128 | "Invalid radii.");
|
|---|
| 129 | }
|
|---|
| 130 |
|
|---|
| 131 | innerRadius2=innerRadius*innerRadius;
|
|---|
| 132 | outerRadius2=outerRadius*outerRadius;
|
|---|
| 133 |
|
|---|
| 134 | SetInnerStereo( newInnerStereo );
|
|---|
| 135 | SetOuterStereo( newOuterStereo );
|
|---|
| 136 | }
|
|---|
| 137 |
|
|---|
| 138 |
|
|---|
| 139 | //
|
|---|
| 140 | // Fake default constructor - sets only member data and allocates memory
|
|---|
| 141 | // for usage restricted to object persistency.
|
|---|
| 142 | //
|
|---|
| 143 | G4Hype::G4Hype( __void__& a )
|
|---|
| 144 | : G4VSolid(a), fCubicVolume(0.), fSurfaceArea(0.), fpPolyhedron(0)
|
|---|
| 145 | {
|
|---|
| 146 | }
|
|---|
| 147 |
|
|---|
| 148 |
|
|---|
| 149 | //
|
|---|
| 150 | // Destructor
|
|---|
| 151 | //
|
|---|
| 152 | G4Hype::~G4Hype()
|
|---|
| 153 | {
|
|---|
| 154 | delete fpPolyhedron;
|
|---|
| 155 | }
|
|---|
| 156 |
|
|---|
| 157 |
|
|---|
| 158 | //
|
|---|
| 159 | // Dispatch to parameterisation for replication mechanism dimension
|
|---|
| 160 | // computation & modification.
|
|---|
| 161 | //
|
|---|
| 162 | void G4Hype::ComputeDimensions(G4VPVParameterisation* p,
|
|---|
| 163 | const G4int n,
|
|---|
| 164 | const G4VPhysicalVolume* pRep)
|
|---|
| 165 | {
|
|---|
| 166 | p->ComputeDimensions(*this,n,pRep);
|
|---|
| 167 | }
|
|---|
| 168 |
|
|---|
| 169 |
|
|---|
| 170 | //
|
|---|
| 171 | // CalculateExtent
|
|---|
| 172 | //
|
|---|
| 173 | G4bool G4Hype::CalculateExtent( const EAxis axis,
|
|---|
| 174 | const G4VoxelLimits &voxelLimit,
|
|---|
| 175 | const G4AffineTransform &transform,
|
|---|
| 176 | G4double &min, G4double &max ) const
|
|---|
| 177 | {
|
|---|
| 178 | G4SolidExtentList extentList( axis, voxelLimit );
|
|---|
| 179 |
|
|---|
| 180 | //
|
|---|
| 181 | // Choose phi size of our segment(s) based on constants as
|
|---|
| 182 | // defined in meshdefs.hh
|
|---|
| 183 | //
|
|---|
| 184 | G4int numPhi = kMaxMeshSections;
|
|---|
| 185 | G4double sigPhi = twopi/numPhi;
|
|---|
| 186 | G4double rFudge = 1.0/std::cos(0.5*sigPhi);
|
|---|
| 187 |
|
|---|
| 188 | //
|
|---|
| 189 | // We work around in phi building polygons along the way.
|
|---|
| 190 | // As a reasonable compromise between accuracy and
|
|---|
| 191 | // complexity (=cpu time), the following facets are chosen:
|
|---|
| 192 | //
|
|---|
| 193 | // 1. If outerRadius/endOuterRadius > 0.95, approximate
|
|---|
| 194 | // the outer surface as a cylinder, and use one
|
|---|
| 195 | // rectangular polygon (0-1) to build its mesh.
|
|---|
| 196 | //
|
|---|
| 197 | // Otherwise, use two trapazoidal polygons that
|
|---|
| 198 | // meet at z = 0 (0-4-1)
|
|---|
| 199 | //
|
|---|
| 200 | // 2. If there is no inner surface, then use one
|
|---|
| 201 | // polygon for each entire endcap. (0) and (1)
|
|---|
| 202 | //
|
|---|
| 203 | // Otherwise, use a trapazoidal polygon for each
|
|---|
| 204 | // phi segment of each endcap. (0-2) and (1-3)
|
|---|
| 205 | //
|
|---|
| 206 | // 3. For the inner surface, if innerRadius/endInnerRadius > 0.95,
|
|---|
| 207 | // approximate the inner surface as a cylinder of
|
|---|
| 208 | // radius innerRadius and use one rectangular polygon
|
|---|
| 209 | // to build each phi segment of its mesh. (2-3)
|
|---|
| 210 | //
|
|---|
| 211 | // Otherwise, use one rectangular polygon centered
|
|---|
| 212 | // at z = 0 (5-6) and two connecting trapazoidal polygons
|
|---|
| 213 | // for each phi segment (2-5) and (3-6).
|
|---|
| 214 | //
|
|---|
| 215 |
|
|---|
| 216 | G4bool splitOuter = (outerRadius/endOuterRadius < 0.95);
|
|---|
| 217 | G4bool splitInner = 0;
|
|---|
| 218 | if (InnerSurfaceExists())
|
|---|
| 219 | {
|
|---|
| 220 | splitInner = (innerRadius/endInnerRadius < 0.95);
|
|---|
| 221 | }
|
|---|
| 222 |
|
|---|
| 223 | //
|
|---|
| 224 | // Vertex assignments (v and w arrays)
|
|---|
| 225 | // [0] and [1] are mandatory
|
|---|
| 226 | // the rest are optional
|
|---|
| 227 | //
|
|---|
| 228 | // + -
|
|---|
| 229 | // [0]------[4]------[1] <--- outer radius
|
|---|
| 230 | // | |
|
|---|
| 231 | // | |
|
|---|
| 232 | // [2]---[5]---[6]---[3] <--- inner radius
|
|---|
| 233 | //
|
|---|
| 234 |
|
|---|
| 235 |
|
|---|
| 236 | G4ClippablePolygon endPoly1, endPoly2;
|
|---|
| 237 |
|
|---|
| 238 | G4double phi = 0,
|
|---|
| 239 | cosPhi = std::cos(phi),
|
|---|
| 240 | sinPhi = std::sin(phi);
|
|---|
| 241 | G4ThreeVector v0( rFudge*endOuterRadius*cosPhi,
|
|---|
| 242 | rFudge*endOuterRadius*sinPhi,
|
|---|
| 243 | +halfLenZ ),
|
|---|
| 244 | v1( rFudge*endOuterRadius*cosPhi,
|
|---|
| 245 | rFudge*endOuterRadius*sinPhi,
|
|---|
| 246 | -halfLenZ ),
|
|---|
| 247 | v2, v3, v4, v5, v6,
|
|---|
| 248 | w0, w1, w2, w3, w4, w5, w6;
|
|---|
| 249 | transform.ApplyPointTransform( v0 );
|
|---|
| 250 | transform.ApplyPointTransform( v1 );
|
|---|
| 251 |
|
|---|
| 252 | G4double zInnerSplit=0.;
|
|---|
| 253 | if (InnerSurfaceExists())
|
|---|
| 254 | {
|
|---|
| 255 | if (splitInner)
|
|---|
| 256 | {
|
|---|
| 257 | v2 = transform.TransformPoint(
|
|---|
| 258 | G4ThreeVector( endInnerRadius*cosPhi,
|
|---|
| 259 | endInnerRadius*sinPhi, +halfLenZ ) );
|
|---|
| 260 | v3 = transform.TransformPoint(
|
|---|
| 261 | G4ThreeVector( endInnerRadius*cosPhi,
|
|---|
| 262 | endInnerRadius*sinPhi, -halfLenZ ) );
|
|---|
| 263 | //
|
|---|
| 264 | // Find intersection of line normal to inner
|
|---|
| 265 | // surface at z = halfLenZ and line r=innerRadius
|
|---|
| 266 | //
|
|---|
| 267 | G4double rn = halfLenZ*tanInnerStereo2;
|
|---|
| 268 | G4double zn = endInnerRadius;
|
|---|
| 269 |
|
|---|
| 270 | zInnerSplit = halfLenZ + (innerRadius - endInnerRadius)*zn/rn;
|
|---|
| 271 |
|
|---|
| 272 | //
|
|---|
| 273 | // Build associated vertices
|
|---|
| 274 | //
|
|---|
| 275 | v5 = transform.TransformPoint(
|
|---|
| 276 | G4ThreeVector( innerRadius*cosPhi,
|
|---|
| 277 | innerRadius*sinPhi, +zInnerSplit ) );
|
|---|
| 278 | v6 = transform.TransformPoint(
|
|---|
| 279 | G4ThreeVector( innerRadius*cosPhi,
|
|---|
| 280 | innerRadius*sinPhi, -zInnerSplit ) );
|
|---|
| 281 | }
|
|---|
| 282 | else
|
|---|
| 283 | {
|
|---|
| 284 | v2 = transform.TransformPoint(
|
|---|
| 285 | G4ThreeVector( innerRadius*cosPhi,
|
|---|
| 286 | innerRadius*sinPhi, +halfLenZ ) );
|
|---|
| 287 | v3 = transform.TransformPoint(
|
|---|
| 288 | G4ThreeVector( innerRadius*cosPhi,
|
|---|
| 289 | innerRadius*sinPhi, -halfLenZ ) );
|
|---|
| 290 | }
|
|---|
| 291 | }
|
|---|
| 292 |
|
|---|
| 293 | if (splitOuter)
|
|---|
| 294 | {
|
|---|
| 295 | v4 = transform.TransformPoint(
|
|---|
| 296 | G4ThreeVector( rFudge*outerRadius*cosPhi,
|
|---|
| 297 | rFudge*outerRadius*sinPhi, 0 ) );
|
|---|
| 298 | }
|
|---|
| 299 |
|
|---|
| 300 | //
|
|---|
| 301 | // Loop over phi segments
|
|---|
| 302 | //
|
|---|
| 303 | do
|
|---|
| 304 | {
|
|---|
| 305 | phi += sigPhi;
|
|---|
| 306 | if (numPhi == 1) phi = 0; // Try to avoid roundoff
|
|---|
| 307 | cosPhi = std::cos(phi),
|
|---|
| 308 | sinPhi = std::sin(phi);
|
|---|
| 309 |
|
|---|
| 310 | G4double r(rFudge*endOuterRadius);
|
|---|
| 311 | w0 = G4ThreeVector( r*cosPhi, r*sinPhi, +halfLenZ );
|
|---|
| 312 | w1 = G4ThreeVector( r*cosPhi, r*sinPhi, -halfLenZ );
|
|---|
| 313 | transform.ApplyPointTransform( w0 );
|
|---|
| 314 | transform.ApplyPointTransform( w1 );
|
|---|
| 315 |
|
|---|
| 316 | //
|
|---|
| 317 | // Outer hyperbolic surface
|
|---|
| 318 | //
|
|---|
| 319 | if (splitOuter)
|
|---|
| 320 | {
|
|---|
| 321 | r = rFudge*outerRadius;
|
|---|
| 322 | w4 = G4ThreeVector( r*cosPhi, r*sinPhi, 0 );
|
|---|
| 323 | transform.ApplyPointTransform( w4 );
|
|---|
| 324 |
|
|---|
| 325 | AddPolyToExtent( v0, v4, w4, w0, voxelLimit, axis, extentList );
|
|---|
| 326 | AddPolyToExtent( v4, v1, w1, w4, voxelLimit, axis, extentList );
|
|---|
| 327 | }
|
|---|
| 328 | else
|
|---|
| 329 | {
|
|---|
| 330 | AddPolyToExtent( v0, v1, w1, w0, voxelLimit, axis, extentList );
|
|---|
| 331 | }
|
|---|
| 332 |
|
|---|
| 333 | if (InnerSurfaceExists())
|
|---|
| 334 | {
|
|---|
| 335 | //
|
|---|
| 336 | // Inner hyperbolic surface
|
|---|
| 337 | //
|
|---|
| 338 | if (splitInner)
|
|---|
| 339 | {
|
|---|
| 340 | w2 = G4ThreeVector( endInnerRadius*cosPhi,
|
|---|
| 341 | endInnerRadius*sinPhi, +halfLenZ );
|
|---|
| 342 | w3 = G4ThreeVector( endInnerRadius*cosPhi,
|
|---|
| 343 | endInnerRadius*sinPhi, -halfLenZ );
|
|---|
| 344 | transform.ApplyPointTransform( w2 );
|
|---|
| 345 | transform.ApplyPointTransform( w3 );
|
|---|
| 346 |
|
|---|
| 347 | w5 = G4ThreeVector( innerRadius*cosPhi,
|
|---|
| 348 | innerRadius*sinPhi, +zInnerSplit );
|
|---|
| 349 | w6 = G4ThreeVector( innerRadius*cosPhi,
|
|---|
| 350 | innerRadius*sinPhi, -zInnerSplit );
|
|---|
| 351 | transform.ApplyPointTransform( w5 );
|
|---|
| 352 | transform.ApplyPointTransform( w6 );
|
|---|
| 353 | AddPolyToExtent( v3, v6, w6, w3, voxelLimit, axis, extentList );
|
|---|
| 354 | AddPolyToExtent( v6, v5, w5, w6, voxelLimit, axis, extentList );
|
|---|
| 355 | AddPolyToExtent( v5, v2, w2, w5, voxelLimit, axis, extentList );
|
|---|
| 356 | }
|
|---|
| 357 | else
|
|---|
| 358 | {
|
|---|
| 359 | w2 = G4ThreeVector( innerRadius*cosPhi,
|
|---|
| 360 | innerRadius*sinPhi, +halfLenZ );
|
|---|
| 361 | w3 = G4ThreeVector( innerRadius*cosPhi,
|
|---|
| 362 | innerRadius*sinPhi, -halfLenZ );
|
|---|
| 363 | transform.ApplyPointTransform( w2 );
|
|---|
| 364 | transform.ApplyPointTransform( w3 );
|
|---|
| 365 |
|
|---|
| 366 | AddPolyToExtent( v3, v2, w2, w3, voxelLimit, axis, extentList );
|
|---|
| 367 | }
|
|---|
| 368 |
|
|---|
| 369 | //
|
|---|
| 370 | // Endplate segments
|
|---|
| 371 | //
|
|---|
| 372 | AddPolyToExtent( v1, v3, w3, w1, voxelLimit, axis, extentList );
|
|---|
| 373 | AddPolyToExtent( v2, v0, w0, w2, voxelLimit, axis, extentList );
|
|---|
| 374 | }
|
|---|
| 375 | else
|
|---|
| 376 | {
|
|---|
| 377 | //
|
|---|
| 378 | // Continue building endplate polygons
|
|---|
| 379 | //
|
|---|
| 380 | endPoly1.AddVertexInOrder( v0 );
|
|---|
| 381 | endPoly2.AddVertexInOrder( v1 );
|
|---|
| 382 | }
|
|---|
| 383 |
|
|---|
| 384 | //
|
|---|
| 385 | // Next phi segments
|
|---|
| 386 | //
|
|---|
| 387 | v0 = w0;
|
|---|
| 388 | v1 = w1;
|
|---|
| 389 | if (InnerSurfaceExists())
|
|---|
| 390 | {
|
|---|
| 391 | v2 = w2;
|
|---|
| 392 | v3 = w3;
|
|---|
| 393 | if (splitInner)
|
|---|
| 394 | {
|
|---|
| 395 | v5 = w5;
|
|---|
| 396 | v6 = w6;
|
|---|
| 397 | }
|
|---|
| 398 | }
|
|---|
| 399 | if (splitOuter) v4 = w4;
|
|---|
| 400 |
|
|---|
| 401 | } while( --numPhi > 0 );
|
|---|
| 402 |
|
|---|
| 403 |
|
|---|
| 404 | //
|
|---|
| 405 | // Don't forget about the endplate polygons, if
|
|---|
| 406 | // we use them
|
|---|
| 407 | //
|
|---|
| 408 | if (!InnerSurfaceExists())
|
|---|
| 409 | {
|
|---|
| 410 | if (endPoly1.PartialClip( voxelLimit, axis ))
|
|---|
| 411 | {
|
|---|
| 412 | static const G4ThreeVector normal(0,0,+1);
|
|---|
| 413 | endPoly1.SetNormal( transform.TransformAxis(normal) );
|
|---|
| 414 | extentList.AddSurface( endPoly1 );
|
|---|
| 415 | }
|
|---|
| 416 |
|
|---|
| 417 | if (endPoly2.PartialClip( voxelLimit, axis ))
|
|---|
| 418 | {
|
|---|
| 419 | static const G4ThreeVector normal(0,0,-1);
|
|---|
| 420 | endPoly2.SetNormal( transform.TransformAxis(normal) );
|
|---|
| 421 | extentList.AddSurface( endPoly2 );
|
|---|
| 422 | }
|
|---|
| 423 | }
|
|---|
| 424 |
|
|---|
| 425 | //
|
|---|
| 426 | // Return min/max value
|
|---|
| 427 | //
|
|---|
| 428 | return extentList.GetExtent( min, max );
|
|---|
| 429 | }
|
|---|
| 430 |
|
|---|
| 431 |
|
|---|
| 432 | //
|
|---|
| 433 | // AddPolyToExtent (static)
|
|---|
| 434 | //
|
|---|
| 435 | // Utility function for CalculateExtent
|
|---|
| 436 | //
|
|---|
| 437 | void G4Hype::AddPolyToExtent( const G4ThreeVector &v0,
|
|---|
| 438 | const G4ThreeVector &v1,
|
|---|
| 439 | const G4ThreeVector &w1,
|
|---|
| 440 | const G4ThreeVector &w0,
|
|---|
| 441 | const G4VoxelLimits &voxelLimit,
|
|---|
| 442 | const EAxis axis,
|
|---|
| 443 | G4SolidExtentList &extentList )
|
|---|
| 444 | {
|
|---|
| 445 | G4ClippablePolygon phiPoly;
|
|---|
| 446 |
|
|---|
| 447 | phiPoly.AddVertexInOrder( v0 );
|
|---|
| 448 | phiPoly.AddVertexInOrder( v1 );
|
|---|
| 449 | phiPoly.AddVertexInOrder( w1 );
|
|---|
| 450 | phiPoly.AddVertexInOrder( w0 );
|
|---|
| 451 |
|
|---|
| 452 | if (phiPoly.PartialClip( voxelLimit, axis ))
|
|---|
| 453 | {
|
|---|
| 454 | phiPoly.SetNormal( (v1-v0).cross(w0-v0).unit() );
|
|---|
| 455 | extentList.AddSurface( phiPoly );
|
|---|
| 456 | }
|
|---|
| 457 | }
|
|---|
| 458 |
|
|---|
| 459 |
|
|---|
| 460 | //
|
|---|
| 461 | // Decides whether point is inside,outside or on the surface
|
|---|
| 462 | //
|
|---|
| 463 | EInside G4Hype::Inside(const G4ThreeVector& p) const
|
|---|
| 464 | {
|
|---|
| 465 | static const G4double halfTol = 0.5*kCarTolerance;
|
|---|
| 466 |
|
|---|
| 467 | //
|
|---|
| 468 | // Check z extents: are we outside?
|
|---|
| 469 | //
|
|---|
| 470 | const G4double absZ(std::fabs(p.z()));
|
|---|
| 471 | if (absZ > halfLenZ + halfTol) return kOutside;
|
|---|
| 472 |
|
|---|
| 473 | //
|
|---|
| 474 | // Check outer radius
|
|---|
| 475 | //
|
|---|
| 476 | const G4double oRad2(HypeOuterRadius2(absZ));
|
|---|
| 477 | const G4double xR2( p.x()*p.x()+p.y()*p.y() );
|
|---|
| 478 |
|
|---|
| 479 | if (xR2 > oRad2 + kCarTolerance*endOuterRadius) return kOutside;
|
|---|
| 480 |
|
|---|
| 481 | if (xR2 > oRad2 - kCarTolerance*endOuterRadius) return kSurface;
|
|---|
| 482 |
|
|---|
| 483 | if (InnerSurfaceExists())
|
|---|
| 484 | {
|
|---|
| 485 | //
|
|---|
| 486 | // Check inner radius
|
|---|
| 487 | //
|
|---|
| 488 | const G4double iRad2(HypeInnerRadius2(absZ));
|
|---|
| 489 |
|
|---|
| 490 | if (xR2 < iRad2 - kCarTolerance*endInnerRadius) return kOutside;
|
|---|
| 491 |
|
|---|
| 492 | if (xR2 < iRad2 + kCarTolerance*endInnerRadius) return kSurface;
|
|---|
| 493 | }
|
|---|
| 494 |
|
|---|
| 495 | //
|
|---|
| 496 | // We are inside in radius, now check endplate surface
|
|---|
| 497 | //
|
|---|
| 498 | if (absZ > halfLenZ - halfTol) return kSurface;
|
|---|
| 499 |
|
|---|
| 500 | return kInside;
|
|---|
| 501 | }
|
|---|
| 502 |
|
|---|
| 503 |
|
|---|
| 504 |
|
|---|
| 505 | //
|
|---|
| 506 | // return the normal unit vector to the Hyperbolical Surface at a point
|
|---|
| 507 | // p on (or nearly on) the surface
|
|---|
| 508 | //
|
|---|
| 509 | G4ThreeVector G4Hype::SurfaceNormal( const G4ThreeVector& p ) const
|
|---|
| 510 | {
|
|---|
| 511 | //
|
|---|
| 512 | // Which of the three or four surfaces are we closest to?
|
|---|
| 513 | //
|
|---|
| 514 | const G4double absZ(std::fabs(p.z()));
|
|---|
| 515 | const G4double distZ(absZ - halfLenZ);
|
|---|
| 516 | const G4double dist2Z(distZ*distZ);
|
|---|
| 517 |
|
|---|
| 518 | const G4double xR2( p.x()*p.x()+p.y()*p.y() );
|
|---|
| 519 | const G4double dist2Outer( std::fabs(xR2 - HypeOuterRadius2(absZ)) );
|
|---|
| 520 |
|
|---|
| 521 | if (InnerSurfaceExists())
|
|---|
| 522 | {
|
|---|
| 523 | //
|
|---|
| 524 | // Has inner surface: is this closest?
|
|---|
| 525 | //
|
|---|
| 526 | const G4double dist2Inner( std::fabs(xR2 - HypeInnerRadius2(absZ)) );
|
|---|
| 527 | if (dist2Inner < dist2Z && dist2Inner < dist2Outer)
|
|---|
| 528 | return G4ThreeVector( -p.x(), -p.y(), p.z()*tanInnerStereo2 ).unit();
|
|---|
| 529 | }
|
|---|
| 530 |
|
|---|
| 531 | //
|
|---|
| 532 | // Do the "endcaps" win?
|
|---|
| 533 | //
|
|---|
| 534 | if (dist2Z < dist2Outer)
|
|---|
| 535 | return G4ThreeVector( 0.0, 0.0, p.z() < 0 ? -1.0 : 1.0 );
|
|---|
| 536 |
|
|---|
| 537 |
|
|---|
| 538 | //
|
|---|
| 539 | // Outer surface wins
|
|---|
| 540 | //
|
|---|
| 541 | return G4ThreeVector( p.x(), p.y(), -p.z()*tanOuterStereo2 ).unit();
|
|---|
| 542 | }
|
|---|
| 543 |
|
|---|
| 544 |
|
|---|
| 545 | //
|
|---|
| 546 | // Calculate distance to shape from outside, along normalised vector
|
|---|
| 547 | // - return kInfinity if no intersection,
|
|---|
| 548 | // or intersection distance <= tolerance
|
|---|
| 549 | //
|
|---|
| 550 | // Calculating the intersection of a line with the surfaces
|
|---|
| 551 | // is fairly straight forward. The difficult problem is dealing
|
|---|
| 552 | // with the intersections of the surfaces in a consistent manner,
|
|---|
| 553 | // and this accounts for the complicated logic.
|
|---|
| 554 | //
|
|---|
| 555 | G4double G4Hype::DistanceToIn( const G4ThreeVector& p,
|
|---|
| 556 | const G4ThreeVector& v ) const
|
|---|
| 557 | {
|
|---|
| 558 | static const G4double halfTol = 0.5*kCarTolerance;
|
|---|
| 559 |
|
|---|
| 560 | //
|
|---|
| 561 | // Quick test. Beware! This assumes v is a unit vector!
|
|---|
| 562 | //
|
|---|
| 563 | if (std::fabs(p.x()*v.y() - p.y()*v.x()) > endOuterRadius+kCarTolerance)
|
|---|
| 564 | return kInfinity;
|
|---|
| 565 |
|
|---|
| 566 | //
|
|---|
| 567 | // Take advantage of z symmetry, and reflect throught the
|
|---|
| 568 | // z=0 plane so that pz is always positive
|
|---|
| 569 | //
|
|---|
| 570 | G4double pz(p.z()), vz(v.z());
|
|---|
| 571 | if (pz < 0)
|
|---|
| 572 | {
|
|---|
| 573 | pz = -pz;
|
|---|
| 574 | vz = -vz;
|
|---|
| 575 | }
|
|---|
| 576 |
|
|---|
| 577 | //
|
|---|
| 578 | // We must be very careful if we don't want to
|
|---|
| 579 | // create subtle leaks at the edges where the
|
|---|
| 580 | // hyperbolic surfaces connect to the endplate.
|
|---|
| 581 | // The only reliable way to do so is to make sure
|
|---|
| 582 | // that the decision as to when a track passes
|
|---|
| 583 | // over the edge of one surface is exactly the
|
|---|
| 584 | // same decision as to when a track passes into the
|
|---|
| 585 | // other surface. By "exact", we don't mean algebraicly
|
|---|
| 586 | // exact, but we mean the same machine instructions
|
|---|
| 587 | // should be used.
|
|---|
| 588 | //
|
|---|
| 589 | G4bool couldMissOuter(true),
|
|---|
| 590 | couldMissInner(true),
|
|---|
| 591 | cantMissInnerCylinder(false);
|
|---|
| 592 |
|
|---|
| 593 | //
|
|---|
| 594 | // Check endplate intersection
|
|---|
| 595 | //
|
|---|
| 596 | G4double sigz = pz-halfLenZ;
|
|---|
| 597 |
|
|---|
| 598 | if (sigz > -halfTol) // equivalent to: if (pz > halfLenZ - halfTol)
|
|---|
| 599 | {
|
|---|
| 600 | //
|
|---|
| 601 | // We start in front of the endplate (within roundoff)
|
|---|
| 602 | // Correct direction to intersect endplate?
|
|---|
| 603 | //
|
|---|
| 604 | if (vz >= 0)
|
|---|
| 605 | {
|
|---|
| 606 | //
|
|---|
| 607 | // Nope. As long as we are far enough away, we
|
|---|
| 608 | // can't intersect anything
|
|---|
| 609 | //
|
|---|
| 610 | if (sigz > 0) return kInfinity;
|
|---|
| 611 |
|
|---|
| 612 | //
|
|---|
| 613 | // Otherwise, we may still hit a hyperbolic surface
|
|---|
| 614 | // if the point is on the hyperbolic surface (within tolerance)
|
|---|
| 615 | //
|
|---|
| 616 | G4double pr2 = p.x()*p.x() + p.y()*p.y();
|
|---|
| 617 | if (pr2 > endOuterRadius2 + kCarTolerance*endOuterRadius)
|
|---|
| 618 | return kInfinity;
|
|---|
| 619 |
|
|---|
| 620 | if (InnerSurfaceExists())
|
|---|
| 621 | {
|
|---|
| 622 | if (pr2 < endInnerRadius2 - kCarTolerance*endInnerRadius)
|
|---|
| 623 | return kInfinity;
|
|---|
| 624 | if ( (pr2 < endOuterRadius2 - kCarTolerance*endOuterRadius)
|
|---|
| 625 | && (pr2 > endInnerRadius2 + kCarTolerance*endInnerRadius) )
|
|---|
| 626 | return kInfinity;
|
|---|
| 627 | }
|
|---|
| 628 | else
|
|---|
| 629 | {
|
|---|
| 630 | if (pr2 < endOuterRadius2 - kCarTolerance*endOuterRadius)
|
|---|
| 631 | return kInfinity;
|
|---|
| 632 | }
|
|---|
| 633 | }
|
|---|
| 634 | else
|
|---|
| 635 | {
|
|---|
| 636 | //
|
|---|
| 637 | // Where do we intersect at z = halfLenZ?
|
|---|
| 638 | //
|
|---|
| 639 | G4double s = -sigz/vz;
|
|---|
| 640 | G4double xi = p.x() + s*v.x(),
|
|---|
| 641 | yi = p.y() + s*v.y();
|
|---|
| 642 |
|
|---|
| 643 | //
|
|---|
| 644 | // Is this on the endplate? If so, return s, unless
|
|---|
| 645 | // we are on the tolerant surface, in which case return 0
|
|---|
| 646 | //
|
|---|
| 647 | G4double pr2 = xi*xi + yi*yi;
|
|---|
| 648 | if (pr2 <= endOuterRadius2)
|
|---|
| 649 | {
|
|---|
| 650 | if (InnerSurfaceExists())
|
|---|
| 651 | {
|
|---|
| 652 | if (pr2 >= endInnerRadius2) return (sigz < halfTol) ? 0 : s;
|
|---|
| 653 | //
|
|---|
| 654 | // This test is sufficient to ensure that the
|
|---|
| 655 | // trajectory cannot miss the inner hyperbolic surface
|
|---|
| 656 | // for z > 0, if the normal is correct.
|
|---|
| 657 | //
|
|---|
| 658 | G4double dot1 = (xi*v.x() + yi*v.y())*endInnerRadius/std::sqrt(pr2);
|
|---|
| 659 | couldMissInner = (dot1 - halfLenZ*tanInnerStereo2*vz <= 0);
|
|---|
| 660 |
|
|---|
| 661 | if (pr2 > endInnerRadius2*(1 - 2*DBL_EPSILON) )
|
|---|
| 662 | {
|
|---|
| 663 | //
|
|---|
| 664 | // There is a potential leak if the inner
|
|---|
| 665 | // surface is a cylinder
|
|---|
| 666 | //
|
|---|
| 667 | if ( (innerStereo < DBL_MIN)
|
|---|
| 668 | && ((std::fabs(v.x()) > DBL_MIN) || (std::fabs(v.y()) > DBL_MIN)) )
|
|---|
| 669 | cantMissInnerCylinder = true;
|
|---|
| 670 | }
|
|---|
| 671 | }
|
|---|
| 672 | else
|
|---|
| 673 | {
|
|---|
| 674 | return (sigz < halfTol) ? 0 : s;
|
|---|
| 675 | }
|
|---|
| 676 | }
|
|---|
| 677 | else
|
|---|
| 678 | {
|
|---|
| 679 | G4double dotR( xi*v.x() + yi*v.y() );
|
|---|
| 680 | if (dotR >= 0)
|
|---|
| 681 | {
|
|---|
| 682 | //
|
|---|
| 683 | // Otherwise, if we are traveling outwards, we know
|
|---|
| 684 | // we must miss the hyperbolic surfaces also, so
|
|---|
| 685 | // we need not bother checking
|
|---|
| 686 | //
|
|---|
| 687 | return kInfinity;
|
|---|
| 688 | }
|
|---|
| 689 | else
|
|---|
| 690 | {
|
|---|
| 691 | //
|
|---|
| 692 | // This test is sufficient to ensure that the
|
|---|
| 693 | // trajectory cannot miss the outer hyperbolic surface
|
|---|
| 694 | // for z > 0, if the normal is correct.
|
|---|
| 695 | //
|
|---|
| 696 | G4double dot1 = dotR*endOuterRadius/std::sqrt(pr2);
|
|---|
| 697 | couldMissOuter = (dot1 - halfLenZ*tanOuterStereo2*vz>= 0);
|
|---|
| 698 | }
|
|---|
| 699 | }
|
|---|
| 700 | }
|
|---|
| 701 | }
|
|---|
| 702 |
|
|---|
| 703 | //
|
|---|
| 704 | // Check intersection with outer hyperbolic surface, save
|
|---|
| 705 | // distance to valid intersection into "best".
|
|---|
| 706 | //
|
|---|
| 707 | G4double best = kInfinity;
|
|---|
| 708 |
|
|---|
| 709 | G4double s[2];
|
|---|
| 710 | G4int n = IntersectHype( p, v, outerRadius2, tanOuterStereo2, s );
|
|---|
| 711 |
|
|---|
| 712 | if (n > 0)
|
|---|
| 713 | {
|
|---|
| 714 | //
|
|---|
| 715 | // Potential intersection: is p on this surface?
|
|---|
| 716 | //
|
|---|
| 717 | if (pz < halfLenZ+halfTol)
|
|---|
| 718 | {
|
|---|
| 719 | G4double dr2 = p.x()*p.x() + p.y()*p.y() - HypeOuterRadius2(pz);
|
|---|
| 720 | if (std::fabs(dr2) < kCarTolerance*endOuterRadius)
|
|---|
| 721 | {
|
|---|
| 722 | //
|
|---|
| 723 | // Sure, but make sure we're traveling inwards at
|
|---|
| 724 | // this point
|
|---|
| 725 | //
|
|---|
| 726 | if (p.x()*v.x() + p.y()*v.y() - pz*tanOuterStereo2*vz < 0)
|
|---|
| 727 | return 0;
|
|---|
| 728 | }
|
|---|
| 729 | }
|
|---|
| 730 |
|
|---|
| 731 | //
|
|---|
| 732 | // We are now certain that p is not on the tolerant surface.
|
|---|
| 733 | // Accept only position distance s
|
|---|
| 734 | //
|
|---|
| 735 | G4int i;
|
|---|
| 736 | for( i=0; i<n; i++ )
|
|---|
| 737 | {
|
|---|
| 738 | if (s[i] >= 0)
|
|---|
| 739 | {
|
|---|
| 740 | //
|
|---|
| 741 | // Check to make sure this intersection point is
|
|---|
| 742 | // on the surface, but only do so if we haven't
|
|---|
| 743 | // checked the endplate intersection already
|
|---|
| 744 | //
|
|---|
| 745 | G4double zi = pz + s[i]*vz;
|
|---|
| 746 |
|
|---|
| 747 | if (zi < -halfLenZ) continue;
|
|---|
| 748 | if (zi > +halfLenZ && couldMissOuter) continue;
|
|---|
| 749 |
|
|---|
| 750 | //
|
|---|
| 751 | // Check normal
|
|---|
| 752 | //
|
|---|
| 753 | G4double xi = p.x() + s[i]*v.x(),
|
|---|
| 754 | yi = p.y() + s[i]*v.y();
|
|---|
| 755 |
|
|---|
| 756 | if (xi*v.x() + yi*v.y() - zi*tanOuterStereo2*vz > 0) continue;
|
|---|
| 757 |
|
|---|
| 758 | best = s[i];
|
|---|
| 759 | break;
|
|---|
| 760 | }
|
|---|
| 761 | }
|
|---|
| 762 | }
|
|---|
| 763 |
|
|---|
| 764 | if (!InnerSurfaceExists()) return best;
|
|---|
| 765 |
|
|---|
| 766 | //
|
|---|
| 767 | // Check intersection with inner hyperbolic surface
|
|---|
| 768 | //
|
|---|
| 769 | n = IntersectHype( p, v, innerRadius2, tanInnerStereo2, s );
|
|---|
| 770 | if (n == 0)
|
|---|
| 771 | {
|
|---|
| 772 | if (cantMissInnerCylinder) return (sigz < halfTol) ? 0 : -sigz/vz;
|
|---|
| 773 |
|
|---|
| 774 | return best;
|
|---|
| 775 | }
|
|---|
| 776 |
|
|---|
| 777 | //
|
|---|
| 778 | // P on this surface?
|
|---|
| 779 | //
|
|---|
| 780 | if (pz < halfLenZ+halfTol)
|
|---|
| 781 | {
|
|---|
| 782 | G4double dr2 = p.x()*p.x() + p.y()*p.y() - HypeInnerRadius2(pz);
|
|---|
| 783 | if (std::fabs(dr2) < kCarTolerance*endInnerRadius)
|
|---|
| 784 | {
|
|---|
| 785 | //
|
|---|
| 786 | // Sure, but make sure we're traveling outwards at
|
|---|
| 787 | // this point
|
|---|
| 788 | //
|
|---|
| 789 | if (p.x()*v.x() + p.y()*v.y() - pz*tanInnerStereo2*vz > 0) return 0;
|
|---|
| 790 | }
|
|---|
| 791 | }
|
|---|
| 792 |
|
|---|
| 793 | //
|
|---|
| 794 | // No, so only positive s is valid. Search for a valid intersection
|
|---|
| 795 | // that is closer than the outer intersection (if it exists)
|
|---|
| 796 | //
|
|---|
| 797 | G4int i;
|
|---|
| 798 | for( i=0; i<n; i++ )
|
|---|
| 799 | {
|
|---|
| 800 | if (s[i] > best) break;
|
|---|
| 801 | if (s[i] >= 0)
|
|---|
| 802 | {
|
|---|
| 803 | //
|
|---|
| 804 | // Check to make sure this intersection point is
|
|---|
| 805 | // on the surface, but only do so if we haven't
|
|---|
| 806 | // checked the endplate intersection already
|
|---|
| 807 | //
|
|---|
| 808 | G4double zi = pz + s[i]*vz;
|
|---|
| 809 |
|
|---|
| 810 | if (zi < -halfLenZ) continue;
|
|---|
| 811 | if (zi > +halfLenZ && couldMissInner) continue;
|
|---|
| 812 |
|
|---|
| 813 | //
|
|---|
| 814 | // Check normal
|
|---|
| 815 | //
|
|---|
| 816 | G4double xi = p.x() + s[i]*v.x(),
|
|---|
| 817 | yi = p.y() + s[i]*v.y();
|
|---|
| 818 |
|
|---|
| 819 | if (xi*v.x() + yi*v.y() - zi*tanOuterStereo2*vz < 0) continue;
|
|---|
| 820 |
|
|---|
| 821 | best = s[i];
|
|---|
| 822 | break;
|
|---|
| 823 | }
|
|---|
| 824 | }
|
|---|
| 825 |
|
|---|
| 826 | //
|
|---|
| 827 | // Done
|
|---|
| 828 | //
|
|---|
| 829 | return best;
|
|---|
| 830 | }
|
|---|
| 831 |
|
|---|
| 832 |
|
|---|
| 833 | //
|
|---|
| 834 | // Calculate distance to shape from outside, along perpendicular direction
|
|---|
| 835 | // (if one exists). May be an underestimate.
|
|---|
| 836 | //
|
|---|
| 837 | // There are five (r,z) regions:
|
|---|
| 838 | // 1. a point that is beyond the endcap but within the
|
|---|
| 839 | // endcap radii
|
|---|
| 840 | // 2. a point with r > outer endcap radius and with
|
|---|
| 841 | // a z position that is beyond the cone formed by the
|
|---|
| 842 | // normal of the outer hyperbolic surface at the
|
|---|
| 843 | // edge at which it meets the endcap.
|
|---|
| 844 | // 3. a point that is outside the outer surface and not in (1 or 2)
|
|---|
| 845 | // 4. a point that is inside the inner surface and not in (5)
|
|---|
| 846 | // 5. a point with radius < inner endcap radius and
|
|---|
| 847 | // with a z position beyond the cone formed by the
|
|---|
| 848 | // normal of the inner hyperbolic surface at the
|
|---|
| 849 | // edge at which it meets the endcap.
|
|---|
| 850 | // (regions 4 and 5 only exist if there is an inner surface)
|
|---|
| 851 | //
|
|---|
| 852 | G4double G4Hype::DistanceToIn(const G4ThreeVector& p) const
|
|---|
| 853 | {
|
|---|
| 854 | static const G4double halfTol(0.5*kCarTolerance);
|
|---|
| 855 |
|
|---|
| 856 | G4double absZ(std::fabs(p.z()));
|
|---|
| 857 |
|
|---|
| 858 | //
|
|---|
| 859 | // Check region
|
|---|
| 860 | //
|
|---|
| 861 | G4double r2 = p.x()*p.x() + p.y()*p.y();
|
|---|
| 862 | G4double r = std::sqrt(r2);
|
|---|
| 863 |
|
|---|
| 864 | G4double sigz = absZ - halfLenZ;
|
|---|
| 865 |
|
|---|
| 866 | if (r < endOuterRadius)
|
|---|
| 867 | {
|
|---|
| 868 | if (sigz > -halfTol)
|
|---|
| 869 | {
|
|---|
| 870 | if (InnerSurfaceExists())
|
|---|
| 871 | {
|
|---|
| 872 | if (r > endInnerRadius)
|
|---|
| 873 | return sigz < halfTol ? 0 : sigz; // Region 1
|
|---|
| 874 |
|
|---|
| 875 | G4double dr = endInnerRadius - r;
|
|---|
| 876 | if (sigz > dr*tanInnerStereo2)
|
|---|
| 877 | {
|
|---|
| 878 | //
|
|---|
| 879 | // In region 5
|
|---|
| 880 | //
|
|---|
| 881 | G4double answer = std::sqrt( dr*dr + sigz*sigz );
|
|---|
| 882 | return answer < halfTol ? 0 : answer;
|
|---|
| 883 | }
|
|---|
| 884 | }
|
|---|
| 885 | else
|
|---|
| 886 | {
|
|---|
| 887 | //
|
|---|
| 888 | // In region 1 (no inner surface)
|
|---|
| 889 | //
|
|---|
| 890 | return sigz < halfTol ? 0 : sigz;
|
|---|
| 891 | }
|
|---|
| 892 | }
|
|---|
| 893 | }
|
|---|
| 894 | else
|
|---|
| 895 | {
|
|---|
| 896 | G4double dr = r - endOuterRadius;
|
|---|
| 897 | if (sigz > -dr*tanOuterStereo2)
|
|---|
| 898 | {
|
|---|
| 899 | //
|
|---|
| 900 | // In region 2
|
|---|
| 901 | //
|
|---|
| 902 | G4double answer = std::sqrt( dr*dr + sigz*sigz );
|
|---|
| 903 | return answer < halfTol ? 0 : answer;
|
|---|
| 904 | }
|
|---|
| 905 | }
|
|---|
| 906 |
|
|---|
| 907 | if (InnerSurfaceExists())
|
|---|
| 908 | {
|
|---|
| 909 | if (r2 < HypeInnerRadius2(absZ)+kCarTolerance*endInnerRadius)
|
|---|
| 910 | {
|
|---|
| 911 | //
|
|---|
| 912 | // In region 4
|
|---|
| 913 | //
|
|---|
| 914 | G4double answer = ApproxDistInside( r,absZ,innerRadius,tanInnerStereo2 );
|
|---|
| 915 | return answer < halfTol ? 0 : answer;
|
|---|
| 916 | }
|
|---|
| 917 | }
|
|---|
| 918 |
|
|---|
| 919 | //
|
|---|
| 920 | // We are left by elimination with region 3
|
|---|
| 921 | //
|
|---|
| 922 | G4double answer = ApproxDistOutside( r, absZ, outerRadius, tanOuterStereo );
|
|---|
| 923 | return answer < halfTol ? 0 : answer;
|
|---|
| 924 | }
|
|---|
| 925 |
|
|---|
| 926 |
|
|---|
| 927 | //
|
|---|
| 928 | // Calculate distance to surface of shape from `inside', allowing for tolerance
|
|---|
| 929 | //
|
|---|
| 930 | // The situation here is much simplier than DistanceToIn(p,v). For
|
|---|
| 931 | // example, there is no need to even check whether an intersection
|
|---|
| 932 | // point is inside the boundary of a surface, as long as all surfaces
|
|---|
| 933 | // are checked and the smallest distance is used.
|
|---|
| 934 | //
|
|---|
| 935 | G4double G4Hype::DistanceToOut( const G4ThreeVector& p, const G4ThreeVector& v,
|
|---|
| 936 | const G4bool calcNorm,
|
|---|
| 937 | G4bool *validNorm, G4ThreeVector *norm ) const
|
|---|
| 938 | {
|
|---|
| 939 | static const G4double halfTol = 0.5*kCarTolerance;
|
|---|
| 940 |
|
|---|
| 941 |
|
|---|
| 942 | static const G4ThreeVector normEnd1(0.0,0.0,+1.0);
|
|---|
| 943 | static const G4ThreeVector normEnd2(0.0,0.0,-1.0);
|
|---|
| 944 |
|
|---|
| 945 | //
|
|---|
| 946 | // Keep track of closest surface
|
|---|
| 947 | //
|
|---|
| 948 | G4double sBest; // distance to
|
|---|
| 949 | const G4ThreeVector *nBest; // normal vector
|
|---|
| 950 | G4bool vBest; // whether "valid"
|
|---|
| 951 |
|
|---|
| 952 | //
|
|---|
| 953 | // Check endplate, taking advantage of symmetry.
|
|---|
| 954 | // Note that the endcap is the only surface which
|
|---|
| 955 | // has a "valid" normal, i.e. is a surface of which
|
|---|
| 956 | // the entire solid is behind.
|
|---|
| 957 | //
|
|---|
| 958 | G4double pz(p.z()), vz(v.z());
|
|---|
| 959 | if (vz < 0)
|
|---|
| 960 | {
|
|---|
| 961 | pz = -pz;
|
|---|
| 962 | vz = -vz;
|
|---|
| 963 | nBest = &normEnd2;
|
|---|
| 964 | }
|
|---|
| 965 | else
|
|---|
| 966 | nBest = &normEnd1;
|
|---|
| 967 |
|
|---|
| 968 | //
|
|---|
| 969 | // Possible intercept. Are we on the surface?
|
|---|
| 970 | //
|
|---|
| 971 | if (pz > halfLenZ-halfTol)
|
|---|
| 972 | {
|
|---|
| 973 | if (calcNorm) { *norm = *nBest; *validNorm = true; }
|
|---|
| 974 | return 0;
|
|---|
| 975 | }
|
|---|
| 976 |
|
|---|
| 977 | //
|
|---|
| 978 | // Nope. Get distance. Beware of zero vz.
|
|---|
| 979 | //
|
|---|
| 980 | sBest = (vz > DBL_MIN) ? (halfLenZ - pz)/vz : kInfinity;
|
|---|
| 981 | vBest = true;
|
|---|
| 982 |
|
|---|
| 983 | //
|
|---|
| 984 | // Check outer surface
|
|---|
| 985 | //
|
|---|
| 986 | G4double r2 = p.x()*p.x() + p.y()*p.y();
|
|---|
| 987 |
|
|---|
| 988 | G4double s[2];
|
|---|
| 989 | G4int n = IntersectHype( p, v, outerRadius2, tanOuterStereo2, s );
|
|---|
| 990 |
|
|---|
| 991 | G4ThreeVector norm1, norm2;
|
|---|
| 992 |
|
|---|
| 993 | if (n > 0)
|
|---|
| 994 | {
|
|---|
| 995 | //
|
|---|
| 996 | // We hit somewhere. Are we on the surface?
|
|---|
| 997 | //
|
|---|
| 998 | G4double dr2 = r2 - HypeOuterRadius2(pz);
|
|---|
| 999 | if (std::fabs(dr2) < endOuterRadius*kCarTolerance)
|
|---|
| 1000 | {
|
|---|
| 1001 | G4ThreeVector normHere( p.x(), p.y(), -p.z()*tanOuterStereo2 );
|
|---|
| 1002 | //
|
|---|
| 1003 | // Sure. But are we going the right way?
|
|---|
| 1004 | //
|
|---|
| 1005 | if (normHere.dot(v) > 0)
|
|---|
| 1006 | {
|
|---|
| 1007 | if (calcNorm) { *norm = normHere.unit(); *validNorm = false; }
|
|---|
| 1008 | return 0;
|
|---|
| 1009 | }
|
|---|
| 1010 | }
|
|---|
| 1011 |
|
|---|
| 1012 | //
|
|---|
| 1013 | // Nope. Check closest positive intercept.
|
|---|
| 1014 | //
|
|---|
| 1015 | G4int i;
|
|---|
| 1016 | for( i=0; i<n; i++ )
|
|---|
| 1017 | {
|
|---|
| 1018 | if (s[i] > sBest) break;
|
|---|
| 1019 | if (s[i] > 0)
|
|---|
| 1020 | {
|
|---|
| 1021 | //
|
|---|
| 1022 | // Make sure normal is correct (that this
|
|---|
| 1023 | // solution is an outgoing solution)
|
|---|
| 1024 | //
|
|---|
| 1025 | G4ThreeVector pi(p+s[i]*v);
|
|---|
| 1026 | norm1 = G4ThreeVector( pi.x(), pi.y(), -pi.z()*tanOuterStereo2 );
|
|---|
| 1027 | if (norm1.dot(v) > 0)
|
|---|
| 1028 | {
|
|---|
| 1029 | sBest = s[i];
|
|---|
| 1030 | nBest = &norm1;
|
|---|
| 1031 | vBest = false;
|
|---|
| 1032 | break;
|
|---|
| 1033 | }
|
|---|
| 1034 | }
|
|---|
| 1035 | }
|
|---|
| 1036 | }
|
|---|
| 1037 |
|
|---|
| 1038 | if (InnerSurfaceExists())
|
|---|
| 1039 | {
|
|---|
| 1040 | //
|
|---|
| 1041 | // Check inner surface
|
|---|
| 1042 | //
|
|---|
| 1043 | n = IntersectHype( p, v, innerRadius2, tanInnerStereo2, s );
|
|---|
| 1044 | if (n > 0)
|
|---|
| 1045 | {
|
|---|
| 1046 | //
|
|---|
| 1047 | // On surface?
|
|---|
| 1048 | //
|
|---|
| 1049 | G4double dr2 = r2 - HypeInnerRadius2(pz);
|
|---|
| 1050 | if (std::fabs(dr2) < endInnerRadius*kCarTolerance)
|
|---|
| 1051 | {
|
|---|
| 1052 | G4ThreeVector normHere( -p.x(), -p.y(), p.z()*tanInnerStereo2 );
|
|---|
| 1053 | if (normHere.dot(v) > 0)
|
|---|
| 1054 | {
|
|---|
| 1055 | if (calcNorm)
|
|---|
| 1056 | {
|
|---|
| 1057 | *norm = normHere.unit();
|
|---|
| 1058 | *validNorm = false;
|
|---|
| 1059 | }
|
|---|
| 1060 | return 0;
|
|---|
| 1061 | }
|
|---|
| 1062 | }
|
|---|
| 1063 |
|
|---|
| 1064 | //
|
|---|
| 1065 | // Check closest positive
|
|---|
| 1066 | //
|
|---|
| 1067 | G4int i;
|
|---|
| 1068 | for( i=0; i<n; i++ )
|
|---|
| 1069 | {
|
|---|
| 1070 | if (s[i] > sBest) break;
|
|---|
| 1071 | if (s[i] > 0)
|
|---|
| 1072 | {
|
|---|
| 1073 | G4ThreeVector pi(p+s[i]*v);
|
|---|
| 1074 | norm2 = G4ThreeVector( -pi.x(), -pi.y(), pi.z()*tanInnerStereo2 );
|
|---|
| 1075 | if (norm2.dot(v) > 0)
|
|---|
| 1076 | {
|
|---|
| 1077 | sBest = s[i];
|
|---|
| 1078 | nBest = &norm2;
|
|---|
| 1079 | vBest = false;
|
|---|
| 1080 | break;
|
|---|
| 1081 | }
|
|---|
| 1082 | }
|
|---|
| 1083 | }
|
|---|
| 1084 | }
|
|---|
| 1085 | }
|
|---|
| 1086 |
|
|---|
| 1087 | //
|
|---|
| 1088 | // Done!
|
|---|
| 1089 | //
|
|---|
| 1090 | if (calcNorm)
|
|---|
| 1091 | {
|
|---|
| 1092 | *validNorm = vBest;
|
|---|
| 1093 |
|
|---|
| 1094 | if (nBest == &norm1 || nBest == &norm2)
|
|---|
| 1095 | *norm = nBest->unit();
|
|---|
| 1096 | else
|
|---|
| 1097 | *norm = *nBest;
|
|---|
| 1098 | }
|
|---|
| 1099 |
|
|---|
| 1100 | return sBest;
|
|---|
| 1101 | }
|
|---|
| 1102 |
|
|---|
| 1103 |
|
|---|
| 1104 | //
|
|---|
| 1105 | // Calculate distance (<=actual) to closest surface of shape from inside
|
|---|
| 1106 | //
|
|---|
| 1107 | // May be an underestimate
|
|---|
| 1108 | //
|
|---|
| 1109 | G4double G4Hype::DistanceToOut(const G4ThreeVector& p) const
|
|---|
| 1110 | {
|
|---|
| 1111 | //
|
|---|
| 1112 | // Try each surface and remember the closest
|
|---|
| 1113 | //
|
|---|
| 1114 | G4double absZ(std::fabs(p.z()));
|
|---|
| 1115 | G4double r(p.perp());
|
|---|
| 1116 |
|
|---|
| 1117 | G4double sBest = halfLenZ - absZ;
|
|---|
| 1118 |
|
|---|
| 1119 | G4double tryOuter = ApproxDistInside( r, absZ, outerRadius, tanOuterStereo2 );
|
|---|
| 1120 | if (tryOuter < sBest)
|
|---|
| 1121 | sBest = tryOuter;
|
|---|
| 1122 |
|
|---|
| 1123 | if (InnerSurfaceExists())
|
|---|
| 1124 | {
|
|---|
| 1125 | G4double tryInner = ApproxDistOutside( r,absZ,innerRadius,tanInnerStereo );
|
|---|
| 1126 | if (tryInner < sBest) sBest = tryInner;
|
|---|
| 1127 | }
|
|---|
| 1128 |
|
|---|
| 1129 | return sBest < 0.5*kCarTolerance ? 0 : sBest;
|
|---|
| 1130 | }
|
|---|
| 1131 |
|
|---|
| 1132 |
|
|---|
| 1133 | //
|
|---|
| 1134 | // IntersectHype (static)
|
|---|
| 1135 | //
|
|---|
| 1136 | // Decide if and where a line intersects with a hyperbolic
|
|---|
| 1137 | // surface (of infinite extent)
|
|---|
| 1138 | //
|
|---|
| 1139 | // Arguments:
|
|---|
| 1140 | // p - (in) Point on trajectory
|
|---|
| 1141 | // v - (in) Vector along trajectory
|
|---|
| 1142 | // r2 - (in) Square of radius at z = 0
|
|---|
| 1143 | // tan2phi - (in) std::tan(phi)**2
|
|---|
| 1144 | // s - (out) Up to two points of intersection, where the
|
|---|
| 1145 | // intersection point is p + s*v, and if there are
|
|---|
| 1146 | // two intersections, s[0] < s[1]. May be negative.
|
|---|
| 1147 | // Returns:
|
|---|
| 1148 | // The number of intersections. If 0, the trajectory misses.
|
|---|
| 1149 | //
|
|---|
| 1150 | //
|
|---|
| 1151 | // Equation of a line:
|
|---|
| 1152 | //
|
|---|
| 1153 | // x = x0 + s*tx y = y0 + s*ty z = z0 + s*tz
|
|---|
| 1154 | //
|
|---|
| 1155 | // Equation of a hyperbolic surface:
|
|---|
| 1156 | //
|
|---|
| 1157 | // x**2 + y**2 = r**2 + (z*tanPhi)**2
|
|---|
| 1158 | //
|
|---|
| 1159 | // Solution is quadratic:
|
|---|
| 1160 | //
|
|---|
| 1161 | // a*s**2 + b*s + c = 0
|
|---|
| 1162 | //
|
|---|
| 1163 | // where:
|
|---|
| 1164 | //
|
|---|
| 1165 | // a = tx**2 + ty**2 - (tz*tanPhi)**2
|
|---|
| 1166 | //
|
|---|
| 1167 | // b = 2*( x0*tx + y0*ty - z0*tz*tanPhi**2 )
|
|---|
| 1168 | //
|
|---|
| 1169 | // c = x0**2 + y0**2 - r**2 - (z0*tanPhi)**2
|
|---|
| 1170 | //
|
|---|
| 1171 | //
|
|---|
| 1172 | G4int G4Hype::IntersectHype( const G4ThreeVector &p, const G4ThreeVector &v,
|
|---|
| 1173 | G4double r2, G4double tan2Phi, G4double s[2] )
|
|---|
| 1174 | {
|
|---|
| 1175 | G4double x0 = p.x(), y0 = p.y(), z0 = p.z();
|
|---|
| 1176 | G4double tx = v.x(), ty = v.y(), tz = v.z();
|
|---|
| 1177 |
|
|---|
| 1178 | G4double a = tx*tx + ty*ty - tz*tz*tan2Phi;
|
|---|
| 1179 | G4double b = 2*( x0*tx + y0*ty - z0*tz*tan2Phi );
|
|---|
| 1180 | G4double c = x0*x0 + y0*y0 - r2 - z0*z0*tan2Phi;
|
|---|
| 1181 |
|
|---|
| 1182 | if (std::fabs(a) < DBL_MIN)
|
|---|
| 1183 | {
|
|---|
| 1184 | //
|
|---|
| 1185 | // The trajectory is parallel to the asympotic limit of
|
|---|
| 1186 | // the surface: single solution
|
|---|
| 1187 | //
|
|---|
| 1188 | if (std::fabs(b) < DBL_MIN) return 0; // Unless we travel through exact center
|
|---|
| 1189 |
|
|---|
| 1190 | s[0] = c/b;
|
|---|
| 1191 | return 1;
|
|---|
| 1192 | }
|
|---|
| 1193 |
|
|---|
| 1194 |
|
|---|
| 1195 | G4double radical = b*b - 4*a*c;
|
|---|
| 1196 |
|
|---|
| 1197 | if (radical < -DBL_MIN) return 0; // No solution
|
|---|
| 1198 |
|
|---|
| 1199 | if (radical < DBL_MIN)
|
|---|
| 1200 | {
|
|---|
| 1201 | //
|
|---|
| 1202 | // Grazes surface
|
|---|
| 1203 | //
|
|---|
| 1204 | s[0] = -b/a/2.0;
|
|---|
| 1205 | return 1;
|
|---|
| 1206 | }
|
|---|
| 1207 |
|
|---|
| 1208 | radical = std::sqrt(radical);
|
|---|
| 1209 |
|
|---|
| 1210 | G4double q = -0.5*( b + (b < 0 ? -radical : +radical) );
|
|---|
| 1211 | G4double sa = q/a;
|
|---|
| 1212 | G4double sb = c/q;
|
|---|
| 1213 | if (sa < sb) { s[0] = sa; s[1] = sb; } else { s[0] = sb; s[1] = sa; }
|
|---|
| 1214 | return 2;
|
|---|
| 1215 | }
|
|---|
| 1216 |
|
|---|
| 1217 |
|
|---|
| 1218 | //
|
|---|
| 1219 | // ApproxDistOutside (static)
|
|---|
| 1220 | //
|
|---|
| 1221 | // Find the approximate distance of a point outside
|
|---|
| 1222 | // (greater radius) of a hyperbolic surface. The distance
|
|---|
| 1223 | // must be an underestimate. It will also be nice (although
|
|---|
| 1224 | // not necesary) that the estimate is always finite no
|
|---|
| 1225 | // matter how close the point is.
|
|---|
| 1226 | //
|
|---|
| 1227 | // Our hyperbola approaches the asymptotic limit at z = +/- infinity
|
|---|
| 1228 | // to the lines r = z*tanPhi. We call these lines the
|
|---|
| 1229 | // asymptotic limit line.
|
|---|
| 1230 | //
|
|---|
| 1231 | // We need the distance of the 2d point p(r,z) to the
|
|---|
| 1232 | // hyperbola r**2 = r0**2 + (z*tanPhi)**2. Find two
|
|---|
| 1233 | // points that bracket the true normal and use the
|
|---|
| 1234 | // distance to the line that connects these two points.
|
|---|
| 1235 | // The first such point is z=p.z. The second point is
|
|---|
| 1236 | // the z position on the asymptotic limit line that
|
|---|
| 1237 | // contains the normal on the line through the point p.
|
|---|
| 1238 | //
|
|---|
| 1239 | G4double G4Hype::ApproxDistOutside( G4double pr, G4double pz,
|
|---|
| 1240 | G4double r0, G4double tanPhi )
|
|---|
| 1241 | {
|
|---|
| 1242 | if (tanPhi < DBL_MIN) return pr-r0;
|
|---|
| 1243 |
|
|---|
| 1244 | G4double tan2Phi = tanPhi*tanPhi;
|
|---|
| 1245 |
|
|---|
| 1246 | //
|
|---|
| 1247 | // First point
|
|---|
| 1248 | //
|
|---|
| 1249 | G4double z1 = pz;
|
|---|
| 1250 | G4double r1 = std::sqrt( r0*r0 + z1*z1*tan2Phi );
|
|---|
| 1251 |
|
|---|
| 1252 | //
|
|---|
| 1253 | // Second point
|
|---|
| 1254 | //
|
|---|
| 1255 | G4double z2 = (pr*tanPhi + pz)/(1 + tan2Phi);
|
|---|
| 1256 | G4double r2 = std::sqrt( r0*r0 + z2*z2*tan2Phi );
|
|---|
| 1257 |
|
|---|
| 1258 | //
|
|---|
| 1259 | // Line between them
|
|---|
| 1260 | //
|
|---|
| 1261 | G4double dr = r2-r1;
|
|---|
| 1262 | G4double dz = z2-z1;
|
|---|
| 1263 |
|
|---|
| 1264 | G4double len = std::sqrt(dr*dr + dz*dz);
|
|---|
| 1265 | if (len < DBL_MIN)
|
|---|
| 1266 | {
|
|---|
| 1267 | //
|
|---|
| 1268 | // The two points are the same?? I guess we
|
|---|
| 1269 | // must have really bracketed the normal
|
|---|
| 1270 | //
|
|---|
| 1271 | dr = pr-r1;
|
|---|
| 1272 | dz = pz-z1;
|
|---|
| 1273 | return std::sqrt( dr*dr + dz*dz );
|
|---|
| 1274 | }
|
|---|
| 1275 |
|
|---|
| 1276 | //
|
|---|
| 1277 | // Distance
|
|---|
| 1278 | //
|
|---|
| 1279 | return std::fabs((pr-r1)*dz - (pz-z1)*dr)/len;
|
|---|
| 1280 | }
|
|---|
| 1281 |
|
|---|
| 1282 | //
|
|---|
| 1283 | // ApproxDistInside (static)
|
|---|
| 1284 | //
|
|---|
| 1285 | // Find the approximate distance of a point inside
|
|---|
| 1286 | // of a hyperbolic surface. The distance
|
|---|
| 1287 | // must be an underestimate. It will also be nice (although
|
|---|
| 1288 | // not necesary) that the estimate is always finite no
|
|---|
| 1289 | // matter how close the point is.
|
|---|
| 1290 | //
|
|---|
| 1291 | // This estimate uses the distance to a line tangent to
|
|---|
| 1292 | // the hyperbolic function. The point of tangent is chosen
|
|---|
| 1293 | // by the z position point
|
|---|
| 1294 | //
|
|---|
| 1295 | // Assumes pr and pz are positive
|
|---|
| 1296 | //
|
|---|
| 1297 | G4double G4Hype::ApproxDistInside( G4double pr, G4double pz,
|
|---|
| 1298 | G4double r0, G4double tan2Phi )
|
|---|
| 1299 | {
|
|---|
| 1300 | if (tan2Phi < DBL_MIN) return r0 - pr;
|
|---|
| 1301 |
|
|---|
| 1302 | //
|
|---|
| 1303 | // Corresponding position and normal on hyperbolic
|
|---|
| 1304 | //
|
|---|
| 1305 | G4double rh = std::sqrt( r0*r0 + pz*pz*tan2Phi );
|
|---|
| 1306 |
|
|---|
| 1307 | G4double dr = -rh;
|
|---|
| 1308 | G4double dz = pz*tan2Phi;
|
|---|
| 1309 | G4double len = std::sqrt(dr*dr + dz*dz);
|
|---|
| 1310 |
|
|---|
| 1311 | //
|
|---|
| 1312 | // Answer
|
|---|
| 1313 | //
|
|---|
| 1314 | return std::fabs((pr-rh)*dr)/len;
|
|---|
| 1315 | }
|
|---|
| 1316 |
|
|---|
| 1317 |
|
|---|
| 1318 | //
|
|---|
| 1319 | // GetEntityType
|
|---|
| 1320 | //
|
|---|
| 1321 | G4GeometryType G4Hype::GetEntityType() const
|
|---|
| 1322 | {
|
|---|
| 1323 | return G4String("G4Hype");
|
|---|
| 1324 | }
|
|---|
| 1325 |
|
|---|
| 1326 |
|
|---|
| 1327 | //
|
|---|
| 1328 | // GetCubicVolume
|
|---|
| 1329 | //
|
|---|
| 1330 | G4double G4Hype::GetCubicVolume()
|
|---|
| 1331 | {
|
|---|
| 1332 | if(fCubicVolume != 0.) {;}
|
|---|
| 1333 | else { fCubicVolume = G4VSolid::GetCubicVolume(); }
|
|---|
| 1334 | return fCubicVolume;
|
|---|
| 1335 | }
|
|---|
| 1336 |
|
|---|
| 1337 |
|
|---|
| 1338 | //
|
|---|
| 1339 | // GetSurfaceArea
|
|---|
| 1340 | //
|
|---|
| 1341 | G4double G4Hype::GetSurfaceArea()
|
|---|
| 1342 | {
|
|---|
| 1343 | if(fSurfaceArea != 0.) {;}
|
|---|
| 1344 | else { fSurfaceArea = G4VSolid::GetSurfaceArea(); }
|
|---|
| 1345 | return fSurfaceArea;
|
|---|
| 1346 | }
|
|---|
| 1347 |
|
|---|
| 1348 |
|
|---|
| 1349 | //
|
|---|
| 1350 | // Stream object contents to an output stream
|
|---|
| 1351 | //
|
|---|
| 1352 | std::ostream& G4Hype::StreamInfo(std::ostream& os) const
|
|---|
| 1353 | {
|
|---|
| 1354 | os << "-----------------------------------------------------------\n"
|
|---|
| 1355 | << " *** Dump for solid - " << GetName() << " ***\n"
|
|---|
| 1356 | << " ===================================================\n"
|
|---|
| 1357 | << " Solid type: G4Hype\n"
|
|---|
| 1358 | << " Parameters: \n"
|
|---|
| 1359 | << " half length Z: " << halfLenZ/mm << " mm \n"
|
|---|
| 1360 | << " inner radius : " << innerRadius/mm << " mm \n"
|
|---|
| 1361 | << " outer radius : " << outerRadius/mm << " mm \n"
|
|---|
| 1362 | << " inner stereo angle : " << innerStereo/degree << " degrees \n"
|
|---|
| 1363 | << " outer stereo angle : " << outerStereo/degree << " degrees \n"
|
|---|
| 1364 | << "-----------------------------------------------------------\n";
|
|---|
| 1365 |
|
|---|
| 1366 | return os;
|
|---|
| 1367 | }
|
|---|
| 1368 |
|
|---|
| 1369 |
|
|---|
| 1370 |
|
|---|
| 1371 | //
|
|---|
| 1372 | // GetPointOnSurface
|
|---|
| 1373 | //
|
|---|
| 1374 | G4ThreeVector G4Hype::GetPointOnSurface() const
|
|---|
| 1375 | {
|
|---|
| 1376 | G4double xRand, yRand, zRand, r2 , aOne, aTwo, aThree, chose, sinhu;
|
|---|
| 1377 | G4double phi, cosphi, sinphi, rBar2Out, rBar2In, alpha, t, rOut, rIn2, rOut2;
|
|---|
| 1378 |
|
|---|
| 1379 | // we use the formula of the area of a surface of revolution to compute
|
|---|
| 1380 | // the areas, using the equation of the hyperbola:
|
|---|
| 1381 | // x^2 + y^2 = (z*tanphi)^2 + r^2
|
|---|
| 1382 |
|
|---|
| 1383 | rBar2Out = outerRadius2;
|
|---|
| 1384 | alpha = 2.*pi*rBar2Out*std::cos(outerStereo)/tanOuterStereo;
|
|---|
| 1385 | t = halfLenZ*tanOuterStereo/(outerRadius*std::cos(outerStereo));
|
|---|
| 1386 | t = std::log(t+std::sqrt(sqr(t)+1));
|
|---|
| 1387 | aOne = std::fabs(2.*alpha*(std::sinh(2.*t)/4.+t/2.));
|
|---|
| 1388 |
|
|---|
| 1389 |
|
|---|
| 1390 | rBar2In = innerRadius2;
|
|---|
| 1391 | alpha = 2.*pi*rBar2In*std::cos(innerStereo)/tanInnerStereo;
|
|---|
| 1392 | t = halfLenZ*tanInnerStereo/(innerRadius*std::cos(innerStereo));
|
|---|
| 1393 | t = std::log(t+std::sqrt(sqr(t)+1));
|
|---|
| 1394 | aTwo = std::fabs(2.*alpha*(std::sinh(2.*t)/4.+t/2.));
|
|---|
| 1395 |
|
|---|
| 1396 | aThree = pi*((outerRadius2+sqr(halfLenZ*tanOuterStereo)
|
|---|
| 1397 | -(innerRadius2+sqr(halfLenZ*tanInnerStereo))));
|
|---|
| 1398 |
|
|---|
| 1399 | if(outerStereo == 0.) {aOne = std::fabs(2.*pi*outerRadius*2.*halfLenZ);}
|
|---|
| 1400 | if(innerStereo == 0.) {aTwo = std::fabs(2.*pi*innerRadius*2.*halfLenZ);}
|
|---|
| 1401 |
|
|---|
| 1402 | phi = RandFlat::shoot(0.,2.*pi);
|
|---|
| 1403 | cosphi = std::cos(phi);
|
|---|
| 1404 | sinphi = std::sin(phi);
|
|---|
| 1405 | sinhu = RandFlat::shoot(-1.*halfLenZ*tanOuterStereo/outerRadius,
|
|---|
| 1406 | halfLenZ*tanOuterStereo/outerRadius);
|
|---|
| 1407 |
|
|---|
| 1408 | chose = RandFlat::shoot(0.,aOne+aTwo+2.*aThree);
|
|---|
| 1409 | if(chose>=0. && chose < aOne)
|
|---|
| 1410 | {
|
|---|
| 1411 | if(outerStereo != 0.)
|
|---|
| 1412 | {
|
|---|
| 1413 | zRand = outerRadius*sinhu/tanOuterStereo;
|
|---|
| 1414 | xRand = std::sqrt(sqr(sinhu)+1)*outerRadius*cosphi;
|
|---|
| 1415 | yRand = std::sqrt(sqr(sinhu)+1)*outerRadius*sinphi;
|
|---|
| 1416 | return G4ThreeVector (xRand, yRand, zRand);
|
|---|
| 1417 | }
|
|---|
| 1418 | else
|
|---|
| 1419 | {
|
|---|
| 1420 | return G4ThreeVector(outerRadius*cosphi,outerRadius*sinphi,
|
|---|
| 1421 | RandFlat::shoot(-halfLenZ,halfLenZ));
|
|---|
| 1422 | }
|
|---|
| 1423 | }
|
|---|
| 1424 | else if(chose>=aOne && chose<aOne+aTwo)
|
|---|
| 1425 | {
|
|---|
| 1426 | if(innerStereo != 0.)
|
|---|
| 1427 | {
|
|---|
| 1428 | sinhu = RandFlat::shoot(-1.*halfLenZ*tanInnerStereo/innerRadius,
|
|---|
| 1429 | halfLenZ*tanInnerStereo/innerRadius);
|
|---|
| 1430 | zRand = innerRadius*sinhu/tanInnerStereo;
|
|---|
| 1431 | xRand = std::sqrt(sqr(sinhu)+1)*innerRadius*cosphi;
|
|---|
| 1432 | yRand = std::sqrt(sqr(sinhu)+1)*innerRadius*sinphi;
|
|---|
| 1433 | return G4ThreeVector (xRand, yRand, zRand);
|
|---|
| 1434 | }
|
|---|
| 1435 | else
|
|---|
| 1436 | {
|
|---|
| 1437 | return G4ThreeVector(innerRadius*cosphi,innerRadius*sinphi,
|
|---|
| 1438 | RandFlat::shoot(-1.*halfLenZ,halfLenZ));
|
|---|
| 1439 | }
|
|---|
| 1440 | }
|
|---|
| 1441 | else if(chose>=aOne+aTwo && chose<aOne+aTwo+aThree)
|
|---|
| 1442 | {
|
|---|
| 1443 | rIn2 = innerRadius2+tanInnerStereo2*halfLenZ*halfLenZ;
|
|---|
| 1444 | rOut2 = outerRadius2+tanOuterStereo2*halfLenZ*halfLenZ;
|
|---|
| 1445 | rOut = std::sqrt(rOut2) ;
|
|---|
| 1446 |
|
|---|
| 1447 | do {
|
|---|
| 1448 | xRand = RandFlat::shoot(-rOut,rOut) ;
|
|---|
| 1449 | yRand = RandFlat::shoot(-rOut,rOut) ;
|
|---|
| 1450 | r2 = xRand*xRand + yRand*yRand ;
|
|---|
| 1451 | } while ( ! ( r2 >= rIn2 && r2 <= rOut2 ) ) ;
|
|---|
| 1452 |
|
|---|
| 1453 | zRand = halfLenZ;
|
|---|
| 1454 | return G4ThreeVector (xRand, yRand, zRand);
|
|---|
| 1455 | }
|
|---|
| 1456 | else
|
|---|
| 1457 | {
|
|---|
| 1458 | rIn2 = innerRadius2+tanInnerStereo2*halfLenZ*halfLenZ;
|
|---|
| 1459 | rOut2 = outerRadius2+tanOuterStereo2*halfLenZ*halfLenZ;
|
|---|
| 1460 | rOut = std::sqrt(rOut2) ;
|
|---|
| 1461 |
|
|---|
| 1462 | do {
|
|---|
| 1463 | xRand = RandFlat::shoot(-rOut,rOut) ;
|
|---|
| 1464 | yRand = RandFlat::shoot(-rOut,rOut) ;
|
|---|
| 1465 | r2 = xRand*xRand + yRand*yRand ;
|
|---|
| 1466 | } while ( ! ( r2 >= rIn2 && r2 <= rOut2 ) ) ;
|
|---|
| 1467 |
|
|---|
| 1468 | zRand = -1.*halfLenZ;
|
|---|
| 1469 | return G4ThreeVector (xRand, yRand, zRand);
|
|---|
| 1470 | }
|
|---|
| 1471 | }
|
|---|
| 1472 |
|
|---|
| 1473 |
|
|---|
| 1474 | //
|
|---|
| 1475 | // DescribeYourselfTo
|
|---|
| 1476 | //
|
|---|
| 1477 | void G4Hype::DescribeYourselfTo (G4VGraphicsScene& scene) const
|
|---|
| 1478 | {
|
|---|
| 1479 | scene.AddSolid (*this);
|
|---|
| 1480 | }
|
|---|
| 1481 |
|
|---|
| 1482 |
|
|---|
| 1483 | //
|
|---|
| 1484 | // GetExtent
|
|---|
| 1485 | //
|
|---|
| 1486 | G4VisExtent G4Hype::GetExtent() const
|
|---|
| 1487 | {
|
|---|
| 1488 | // Define the sides of the box into which the G4Tubs instance would fit.
|
|---|
| 1489 | //
|
|---|
| 1490 | return G4VisExtent( -endOuterRadius, endOuterRadius,
|
|---|
| 1491 | -endOuterRadius, endOuterRadius,
|
|---|
| 1492 | -halfLenZ, halfLenZ );
|
|---|
| 1493 | }
|
|---|
| 1494 |
|
|---|
| 1495 |
|
|---|
| 1496 | //
|
|---|
| 1497 | // CreatePolyhedron
|
|---|
| 1498 | //
|
|---|
| 1499 | G4Polyhedron* G4Hype::CreatePolyhedron() const
|
|---|
| 1500 | {
|
|---|
| 1501 | return new G4PolyhedronHype(innerRadius, outerRadius,
|
|---|
| 1502 | tanInnerStereo2, tanOuterStereo2, halfLenZ);
|
|---|
| 1503 | }
|
|---|
| 1504 |
|
|---|
| 1505 |
|
|---|
| 1506 | //
|
|---|
| 1507 | // GetPolyhedron
|
|---|
| 1508 | //
|
|---|
| 1509 | G4Polyhedron* G4Hype::GetPolyhedron () const
|
|---|
| 1510 | {
|
|---|
| 1511 | if (!fpPolyhedron ||
|
|---|
| 1512 | fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() !=
|
|---|
| 1513 | fpPolyhedron->GetNumberOfRotationSteps())
|
|---|
| 1514 | {
|
|---|
| 1515 | delete fpPolyhedron;
|
|---|
| 1516 | fpPolyhedron = CreatePolyhedron();
|
|---|
| 1517 | }
|
|---|
| 1518 | return fpPolyhedron;
|
|---|
| 1519 | }
|
|---|
| 1520 |
|
|---|
| 1521 |
|
|---|
| 1522 | //
|
|---|
| 1523 | // CreateNURBS
|
|---|
| 1524 | //
|
|---|
| 1525 | G4NURBS* G4Hype::CreateNURBS() const
|
|---|
| 1526 | {
|
|---|
| 1527 | // Tube for now!!!
|
|---|
| 1528 | //
|
|---|
| 1529 | return new G4NURBStube(endInnerRadius, endOuterRadius, halfLenZ);
|
|---|
| 1530 | }
|
|---|
| 1531 |
|
|---|
| 1532 |
|
|---|
| 1533 | //
|
|---|
| 1534 | // asinh
|
|---|
| 1535 | //
|
|---|
| 1536 | G4double G4Hype::asinh(G4double arg)
|
|---|
| 1537 | {
|
|---|
| 1538 | return std::log(arg+std::sqrt(sqr(arg)+1));
|
|---|
| 1539 | }
|
|---|