| [831] | 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | //
|
|---|
| [850] | 27 | // $Id: G4IntersectingCone.cc,v 1.12 2008/04/28 08:59:47 gcosmo Exp $
|
|---|
| [1337] | 28 | // GEANT4 tag $Name: geant4-09-04-beta-01 $
|
|---|
| [831] | 29 | //
|
|---|
| 30 | //
|
|---|
| 31 | // --------------------------------------------------------------------
|
|---|
| 32 | // GEANT 4 class source file
|
|---|
| 33 | //
|
|---|
| 34 | //
|
|---|
| 35 | // G4IntersectingCone.cc
|
|---|
| 36 | //
|
|---|
| 37 | // Implementation of a utility class which calculates the intersection
|
|---|
| 38 | // of an arbitrary line with a fixed cone
|
|---|
| 39 | // --------------------------------------------------------------------
|
|---|
| 40 |
|
|---|
| 41 | #include "G4IntersectingCone.hh"
|
|---|
| 42 | #include "G4GeometryTolerance.hh"
|
|---|
| 43 |
|
|---|
| 44 | //
|
|---|
| 45 | // Constructor
|
|---|
| 46 | //
|
|---|
| 47 | G4IntersectingCone::G4IntersectingCone( const G4double r[2],
|
|---|
| 48 | const G4double z[2] )
|
|---|
| 49 | {
|
|---|
| 50 |
|
|---|
| 51 |
|
|---|
| 52 | half_kCarTolerance = 0.5 * G4GeometryTolerance::GetInstance()
|
|---|
| 53 | ->GetSurfaceTolerance();
|
|---|
| 54 | //
|
|---|
| 55 | // What type of cone are we?
|
|---|
| 56 | //
|
|---|
| 57 | type1 = (std::fabs(z[1]-z[0]) > std::fabs(r[1]-r[0]));
|
|---|
| 58 |
|
|---|
| 59 | if (type1)
|
|---|
| 60 | {
|
|---|
| 61 | B = (r[1]-r[0])/(z[1]-z[0]); // tube like
|
|---|
| 62 | A = 0.5*( r[1]+r[0] - B*(z[1]+z[0]) );
|
|---|
| 63 | }
|
|---|
| 64 | else
|
|---|
| 65 | {
|
|---|
| 66 | B = (z[1]-z[0])/(r[1]-r[0]); // disk like
|
|---|
| 67 | A = 0.5*( z[1]+z[0] - B*(r[1]+r[0]) );
|
|---|
| 68 | }
|
|---|
| 69 | //
|
|---|
| 70 | // Calculate extent
|
|---|
| 71 | //
|
|---|
| 72 | if (r[0] < r[1])
|
|---|
| 73 | {
|
|---|
| 74 | rLo = r[0]-half_kCarTolerance; rHi = r[1]+half_kCarTolerance;
|
|---|
| 75 | }
|
|---|
| 76 | else
|
|---|
| 77 | {
|
|---|
| 78 | rLo = r[1]-half_kCarTolerance; rHi = r[0]+half_kCarTolerance;
|
|---|
| 79 | }
|
|---|
| 80 |
|
|---|
| 81 | if (z[0] < z[1])
|
|---|
| 82 | {
|
|---|
| 83 | zLo = z[0]-half_kCarTolerance; zHi = z[1]+half_kCarTolerance;
|
|---|
| 84 | }
|
|---|
| 85 | else
|
|---|
| 86 | {
|
|---|
| 87 | zLo = z[1]-half_kCarTolerance; zHi = z[0]+half_kCarTolerance;
|
|---|
| 88 | }
|
|---|
| 89 | }
|
|---|
| 90 |
|
|---|
| 91 |
|
|---|
| 92 | //
|
|---|
| 93 | // Fake default constructor - sets only member data and allocates memory
|
|---|
| 94 | // for usage restricted to object persistency.
|
|---|
| 95 | //
|
|---|
| 96 | G4IntersectingCone::G4IntersectingCone( __void__& )
|
|---|
| 97 | {
|
|---|
| 98 | }
|
|---|
| 99 |
|
|---|
| 100 |
|
|---|
| 101 | //
|
|---|
| 102 | // Destructor
|
|---|
| 103 | //
|
|---|
| 104 | G4IntersectingCone::~G4IntersectingCone()
|
|---|
| 105 | {
|
|---|
| 106 | }
|
|---|
| 107 |
|
|---|
| 108 |
|
|---|
| 109 | //
|
|---|
| 110 | // HitOn
|
|---|
| 111 | //
|
|---|
| 112 | // Check r or z extent, as appropriate, to see if the point is possibly
|
|---|
| 113 | // on the cone.
|
|---|
| 114 | //
|
|---|
| 115 | G4bool G4IntersectingCone::HitOn( const G4double r,
|
|---|
| 116 | const G4double z )
|
|---|
| 117 | {
|
|---|
| 118 | //
|
|---|
| 119 | // Be careful! The inequalities cannot be "<=" and ">=" here without
|
|---|
| 120 | // punching a tiny hole in our shape!
|
|---|
| 121 | //
|
|---|
| 122 | if (type1)
|
|---|
| 123 | {
|
|---|
| 124 | if (z < zLo || z > zHi) return false;
|
|---|
| 125 | }
|
|---|
| 126 | else
|
|---|
| 127 | {
|
|---|
| 128 | if (r < rLo || r > rHi) return false;
|
|---|
| 129 | }
|
|---|
| 130 |
|
|---|
| 131 | return true;
|
|---|
| 132 | }
|
|---|
| 133 |
|
|---|
| 134 |
|
|---|
| 135 | //
|
|---|
| 136 | // LineHitsCone
|
|---|
| 137 | //
|
|---|
| 138 | // Calculate the intersection of a line with our conical surface, ignoring
|
|---|
| 139 | // any phi division
|
|---|
| 140 | //
|
|---|
| 141 | G4int G4IntersectingCone::LineHitsCone( const G4ThreeVector &p,
|
|---|
| 142 | const G4ThreeVector &v,
|
|---|
| 143 | G4double *s1, G4double *s2 )
|
|---|
| 144 | {
|
|---|
| 145 | if (type1)
|
|---|
| 146 | {
|
|---|
| 147 | return LineHitsCone1( p, v, s1, s2 );
|
|---|
| 148 | }
|
|---|
| 149 | else
|
|---|
| 150 | {
|
|---|
| 151 | return LineHitsCone2( p, v, s1, s2 );
|
|---|
| 152 | }
|
|---|
| 153 | }
|
|---|
| 154 |
|
|---|
| 155 |
|
|---|
| 156 | //
|
|---|
| 157 | // LineHitsCone1
|
|---|
| 158 | //
|
|---|
| 159 | // Calculate the intersections of a line with a conical surface. Only
|
|---|
| 160 | // suitable if zPlane[0] != zPlane[1].
|
|---|
| 161 | //
|
|---|
| 162 | // Equation of a line:
|
|---|
| 163 | //
|
|---|
| 164 | // x = x0 + s*tx y = y0 + s*ty z = z0 + s*tz
|
|---|
| 165 | //
|
|---|
| 166 | // Equation of a conical surface:
|
|---|
| 167 | //
|
|---|
| 168 | // x**2 + y**2 = (A + B*z)**2
|
|---|
| 169 | //
|
|---|
| 170 | // Solution is quadratic:
|
|---|
| 171 | //
|
|---|
| 172 | // a*s**2 + b*s + c = 0
|
|---|
| 173 | //
|
|---|
| 174 | // where:
|
|---|
| 175 | //
|
|---|
| 176 | // a = x0**2 + y0**2 - (A + B*z0)**2
|
|---|
| 177 | //
|
|---|
| 178 | // b = 2*( x0*tx + y0*ty - (A*B - B*B*z0)*tz)
|
|---|
| 179 | //
|
|---|
| 180 | // c = tx**2 + ty**2 - (B*tz)**2
|
|---|
| 181 | //
|
|---|
| 182 | // Notice, that if a < 0, this indicates that the two solutions (assuming
|
|---|
| 183 | // they exist) are in opposite cones (that is, given z0 = -A/B, one z < z0
|
|---|
| 184 | // and the other z > z0). For our shapes, the invalid solution is one
|
|---|
| 185 | // which produces A + Bz < 0, or the one where Bz is smallest (most negative).
|
|---|
| 186 | // Since Bz = B*s*tz, if B*tz > 0, we want the largest s, otherwise,
|
|---|
| 187 | // the smaller.
|
|---|
| 188 | //
|
|---|
| 189 | // If there are two solutions on one side of the cone, we want to make
|
|---|
| 190 | // sure that they are on the "correct" side, that is A + B*z0 + s*B*tz >= 0.
|
|---|
| 191 | //
|
|---|
| 192 | // If a = 0, we have a linear problem: s = c/b, which again gives one solution.
|
|---|
| 193 | // This should be rare.
|
|---|
| 194 | //
|
|---|
| 195 | // For b*b - 4*a*c = 0, we also have one solution, which is almost always
|
|---|
| 196 | // a line just grazing the surface of a the cone, which we want to ignore.
|
|---|
| 197 | // However, there are two other, very rare, possibilities:
|
|---|
| 198 | // a line intersecting the z axis and either:
|
|---|
| 199 | // 1. At the same angle std::atan(B) to just miss one side of the cone, or
|
|---|
| 200 | // 2. Intersecting the cone apex (0,0,-A/B)
|
|---|
| 201 | // We *don't* want to miss these! How do we identify them? Well, since
|
|---|
| 202 | // this case is rare, we can at least swallow a little more CPU than we would
|
|---|
| 203 | // normally be comfortable with. Intersection with the z axis means
|
|---|
| 204 | // x0*ty - y0*tx = 0. Case (1) means a==0, and we've already dealt with that
|
|---|
| 205 | // above. Case (2) means a < 0.
|
|---|
| 206 | //
|
|---|
| 207 | // Now: x0*tx + y0*ty = 0 in terms of roundoff error. We can write:
|
|---|
| 208 | // Delta = x0*tx + y0*ty
|
|---|
| 209 | // b = 2*( Delta - (A*B + B*B*z0)*tz )
|
|---|
| 210 | // For:
|
|---|
| 211 | // b*b - 4*a*c = epsilon
|
|---|
| 212 | // where epsilon is small, then:
|
|---|
| 213 | // Delta = epsilon/2/B
|
|---|
| 214 | //
|
|---|
| 215 | G4int G4IntersectingCone::LineHitsCone1( const G4ThreeVector &p,
|
|---|
| 216 | const G4ThreeVector &v,
|
|---|
| 217 | G4double *s1, G4double *s2 )
|
|---|
| 218 | {
|
|---|
| 219 | G4double x0 = p.x(), y0 = p.y(), z0 = p.z();
|
|---|
| 220 | G4double tx = v.x(), ty = v.y(), tz = v.z();
|
|---|
| 221 |
|
|---|
| 222 | G4double a = tx*tx + ty*ty - sqr(B*tz);
|
|---|
| 223 | G4double b = 2*( x0*tx + y0*ty - (A*B + B*B*z0)*tz);
|
|---|
| 224 | G4double c = x0*x0 + y0*y0 - sqr(A + B*z0);
|
|---|
| 225 |
|
|---|
| 226 | G4double radical = b*b - 4*a*c;
|
|---|
| 227 |
|
|---|
| 228 | if (radical < -1E-6*std::fabs(b)) { return 0; } // No solution
|
|---|
| 229 |
|
|---|
| 230 | if (radical < 1E-6*std::fabs(b))
|
|---|
| 231 | {
|
|---|
| 232 | //
|
|---|
| 233 | // The radical is roughly zero: check for special, very rare, cases
|
|---|
| 234 | //
|
|---|
| 235 | if (std::fabs(a) > 1/kInfinity)
|
|---|
| 236 | {
|
|---|
| 237 | if(B==0.) { return 0; }
|
|---|
| 238 | if ( std::fabs(x0*ty - y0*tx) < std::fabs(1E-6/B) )
|
|---|
| 239 | {
|
|---|
| 240 | *s1 = -0.5*b/a;
|
|---|
| 241 | return 1;
|
|---|
| 242 | }
|
|---|
| 243 | return 0;
|
|---|
| 244 | }
|
|---|
| 245 | }
|
|---|
| 246 | else
|
|---|
| 247 | {
|
|---|
| 248 | radical = std::sqrt(radical);
|
|---|
| 249 | }
|
|---|
| 250 |
|
|---|
| 251 | if (a > 1/kInfinity)
|
|---|
| 252 | {
|
|---|
| 253 | G4double sa, sb, q = -0.5*( b + (b < 0 ? -radical : +radical) );
|
|---|
| 254 | sa = q/a;
|
|---|
| 255 | sb = c/q;
|
|---|
| 256 | if (sa < sb) { *s1 = sa; *s2 = sb; } else { *s1 = sb; *s2 = sa; }
|
|---|
| 257 | if (A + B*(z0+(*s1)*tz) < 0) { return 0; }
|
|---|
| 258 | return 2;
|
|---|
| 259 | }
|
|---|
| 260 | else if (a < -1/kInfinity)
|
|---|
| 261 | {
|
|---|
| 262 | G4double sa, sb, q = -0.5*( b + (b < 0 ? -radical : +radical) );
|
|---|
| 263 | sa = q/a;
|
|---|
| 264 | sb = c/q;
|
|---|
| 265 | *s1 = (B*tz > 0)^(sa > sb) ? sb : sa;
|
|---|
| 266 | return 1;
|
|---|
| 267 | }
|
|---|
| 268 | else if (std::fabs(b) < 1/kInfinity)
|
|---|
| 269 | {
|
|---|
| 270 | return 0;
|
|---|
| 271 | }
|
|---|
| 272 | else
|
|---|
| 273 | {
|
|---|
| 274 | *s1 = -c/b;
|
|---|
| 275 | if (A + B*(z0+(*s1)*tz) < 0) { return 0; }
|
|---|
| 276 | return 1;
|
|---|
| 277 | }
|
|---|
| 278 | }
|
|---|
| 279 |
|
|---|
| 280 |
|
|---|
| 281 | //
|
|---|
| 282 | // LineHitsCone2
|
|---|
| 283 | //
|
|---|
| 284 | // See comments under LineHitsCone1. In this routine, case2, we have:
|
|---|
| 285 | //
|
|---|
| 286 | // Z = A + B*R
|
|---|
| 287 | //
|
|---|
| 288 | // The solution is still quadratic:
|
|---|
| 289 | //
|
|---|
| 290 | // a = tz**2 - B*B*(tx**2 + ty**2)
|
|---|
| 291 | //
|
|---|
| 292 | // b = 2*( (z0-A)*tz - B*B*(x0*tx+y0*ty) )
|
|---|
| 293 | //
|
|---|
| 294 | // c = ( (z0-A)**2 - B*B*(x0**2 + y0**2) )
|
|---|
| 295 | //
|
|---|
| 296 | // The rest is much the same, except some details.
|
|---|
| 297 | //
|
|---|
| 298 | // a > 0 now means we intersect only once in the correct hemisphere.
|
|---|
| 299 | //
|
|---|
| 300 | // a > 0 ? We only want solution which produces R > 0.
|
|---|
| 301 | // since R = (z0+s*tz-A)/B, for tz/B > 0, this is the largest s
|
|---|
| 302 | // for tz/B < 0, this is the smallest s
|
|---|
| 303 | // thus, same as in case 1 ( since sign(tz/B) = sign(tz*B) )
|
|---|
| 304 | //
|
|---|
| 305 | G4int G4IntersectingCone::LineHitsCone2( const G4ThreeVector &p,
|
|---|
| 306 | const G4ThreeVector &v,
|
|---|
| 307 | G4double *s1, G4double *s2 )
|
|---|
| 308 | {
|
|---|
| 309 | G4double x0 = p.x(), y0 = p.y(), z0 = p.z();
|
|---|
| 310 | G4double tx = v.x(), ty = v.y(), tz = v.z();
|
|---|
| 311 |
|
|---|
| 312 |
|
|---|
| 313 | // Special case which might not be so rare: B = 0 (precisely)
|
|---|
| 314 | //
|
|---|
| 315 | if (B==0)
|
|---|
| 316 | {
|
|---|
| 317 | if (std::fabs(tz) < 1/kInfinity) { return 0; }
|
|---|
| 318 |
|
|---|
| 319 | *s1 = (A-z0)/tz;
|
|---|
| 320 | return 1;
|
|---|
| 321 | }
|
|---|
| 322 |
|
|---|
| 323 | G4double B2 = B*B;
|
|---|
| 324 |
|
|---|
| 325 | G4double a = tz*tz - B2*(tx*tx + ty*ty);
|
|---|
| 326 | G4double b = 2*( (z0-A)*tz - B2*(x0*tx + y0*ty) );
|
|---|
| 327 | G4double c = sqr(z0-A) - B2*( x0*x0 + y0*y0 );
|
|---|
| 328 |
|
|---|
| 329 | G4double radical = b*b - 4*a*c;
|
|---|
| 330 |
|
|---|
| 331 | if (radical < -1E-6*std::fabs(b)) { return 0; } // No solution
|
|---|
| 332 |
|
|---|
| 333 | if (radical < 1E-6*std::fabs(b))
|
|---|
| 334 | {
|
|---|
| 335 | //
|
|---|
| 336 | // The radical is roughly zero: check for special, very rare, cases
|
|---|
| 337 | //
|
|---|
| 338 | if (std::fabs(a) > 1/kInfinity)
|
|---|
| 339 | {
|
|---|
| 340 | if ( std::fabs(x0*ty - y0*tx) < std::fabs(1E-6/B) )
|
|---|
| 341 | {
|
|---|
| 342 | *s1 = -0.5*b/a;
|
|---|
| 343 | return 1;
|
|---|
| 344 | }
|
|---|
| 345 | return 0;
|
|---|
| 346 | }
|
|---|
| 347 | }
|
|---|
| 348 | else
|
|---|
| 349 | {
|
|---|
| 350 | radical = std::sqrt(radical);
|
|---|
| 351 | }
|
|---|
| 352 |
|
|---|
| 353 | if (a < -1/kInfinity)
|
|---|
| 354 | {
|
|---|
| 355 | G4double sa, sb, q = -0.5*( b + (b < 0 ? -radical : +radical) );
|
|---|
| 356 | sa = q/a;
|
|---|
| 357 | sb = c/q;
|
|---|
| 358 | if (sa < sb) { *s1 = sa; *s2 = sb; } else { *s1 = sb; *s2 = sa; }
|
|---|
| 359 | if ((z0 + (*s1)*tz - A)/B < 0) { return 0; }
|
|---|
| 360 | return 2;
|
|---|
| 361 | }
|
|---|
| 362 | else if (a > 1/kInfinity)
|
|---|
| 363 | {
|
|---|
| 364 | G4double sa, sb, q = -0.5*( b + (b < 0 ? -radical : +radical) );
|
|---|
| 365 | sa = q/a;
|
|---|
| 366 | sb = c/q;
|
|---|
| 367 | *s1 = (tz*B > 0)^(sa > sb) ? sb : sa;
|
|---|
| 368 | return 1;
|
|---|
| 369 | }
|
|---|
| 370 | else if (std::fabs(b) < 1/kInfinity)
|
|---|
| 371 | {
|
|---|
| 372 | return 0;
|
|---|
| 373 | }
|
|---|
| 374 | else
|
|---|
| 375 | {
|
|---|
| 376 | *s1 = -c/b;
|
|---|
| 377 | if ((z0 + (*s1)*tz - A)/B < 0) { return 0; }
|
|---|
| 378 | return 1;
|
|---|
| 379 | }
|
|---|
| 380 | }
|
|---|