| 1 | //
|
|---|
| 2 | // ********************************************************************
|
|---|
| 3 | // * License and Disclaimer *
|
|---|
| 4 | // * *
|
|---|
| 5 | // * The Geant4 software is copyright of the Copyright Holders of *
|
|---|
| 6 | // * the Geant4 Collaboration. It is provided under the terms and *
|
|---|
| 7 | // * conditions of the Geant4 Software License, included in the file *
|
|---|
| 8 | // * LICENSE and available at http://cern.ch/geant4/license . These *
|
|---|
| 9 | // * include a list of copyright holders. *
|
|---|
| 10 | // * *
|
|---|
| 11 | // * Neither the authors of this software system, nor their employing *
|
|---|
| 12 | // * institutes,nor the agencies providing financial support for this *
|
|---|
| 13 | // * work make any representation or warranty, express or implied, *
|
|---|
| 14 | // * regarding this software system or assume any liability for its *
|
|---|
| 15 | // * use. Please see the license in the file LICENSE and URL above *
|
|---|
| 16 | // * for the full disclaimer and the limitation of liability. *
|
|---|
| 17 | // * *
|
|---|
| 18 | // * This code implementation is the result of the scientific and *
|
|---|
| 19 | // * technical work of the GEANT4 collaboration. *
|
|---|
| 20 | // * By using, copying, modifying or distributing the software (or *
|
|---|
| 21 | // * any work based on the software) you agree to acknowledge its *
|
|---|
| 22 | // * use in resulting scientific publications, and indicate your *
|
|---|
| 23 | // * acceptance of all terms of the Geant4 Software license. *
|
|---|
| 24 | // ********************************************************************
|
|---|
| 25 | //
|
|---|
| 26 | // $Id: G4Paraboloid.cc,v 1.9 2009/02/27 15:10:46 tnikitin Exp $
|
|---|
| 27 | // GEANT4 tag $Name: geant4-09-04-beta-01 $
|
|---|
| 28 | //
|
|---|
| 29 | // class G4Paraboloid
|
|---|
| 30 | //
|
|---|
| 31 | // Implementation for G4Paraboloid class
|
|---|
| 32 | //
|
|---|
| 33 | // Author : Lukas Lindroos (CERN), July 2007
|
|---|
| 34 | // Revised: Tatiana Nikitina (CERN)
|
|---|
| 35 | // --------------------------------------------------------------------
|
|---|
| 36 |
|
|---|
| 37 | #include "globals.hh"
|
|---|
| 38 |
|
|---|
| 39 | #include "G4Paraboloid.hh"
|
|---|
| 40 |
|
|---|
| 41 | #include "G4VoxelLimits.hh"
|
|---|
| 42 | #include "G4AffineTransform.hh"
|
|---|
| 43 |
|
|---|
| 44 | #include "meshdefs.hh"
|
|---|
| 45 |
|
|---|
| 46 | #include "Randomize.hh"
|
|---|
| 47 |
|
|---|
| 48 | #include "G4VGraphicsScene.hh"
|
|---|
| 49 | #include "G4Polyhedron.hh"
|
|---|
| 50 | #include "G4NURBS.hh"
|
|---|
| 51 | #include "G4NURBSbox.hh"
|
|---|
| 52 | #include "G4VisExtent.hh"
|
|---|
| 53 |
|
|---|
| 54 | using namespace CLHEP;
|
|---|
| 55 |
|
|---|
| 56 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 57 | //
|
|---|
| 58 | // constructor - check parameters
|
|---|
| 59 |
|
|---|
| 60 | G4Paraboloid::G4Paraboloid(const G4String& pName,
|
|---|
| 61 | G4double pDz,
|
|---|
| 62 | G4double pR1,
|
|---|
| 63 | G4double pR2)
|
|---|
| 64 | : G4VSolid(pName),fpPolyhedron(0), fCubicVolume(0.)
|
|---|
| 65 |
|
|---|
| 66 | {
|
|---|
| 67 | if(pDz > 0. && pR2 > pR1 && pR1 >= 0.)
|
|---|
| 68 | {
|
|---|
| 69 | r1 = pR1;
|
|---|
| 70 | r2 = pR2;
|
|---|
| 71 | dz = pDz;
|
|---|
| 72 | }
|
|---|
| 73 | else
|
|---|
| 74 | {
|
|---|
| 75 | G4cerr << "Error - G4Paraboloid::G4Paraboloid(): " << GetName() << G4endl
|
|---|
| 76 | << "Z half-length must be larger than zero or R1>=R2 " << G4endl;
|
|---|
| 77 | G4Exception("G4Paraboloid::G4Paraboloid()", "InvalidSetup",
|
|---|
| 78 | FatalException,
|
|---|
| 79 | "Invalid dimensions. Negative Input Values or R1>=R2.");
|
|---|
| 80 | }
|
|---|
| 81 |
|
|---|
| 82 | // r1^2 = k1 * (-dz) + k2
|
|---|
| 83 | // r2^2 = k1 * ( dz) + k2
|
|---|
| 84 | // => r1^2 + r2^2 = k2 + k2 => k2 = (r2^2 + r1^2) / 2
|
|---|
| 85 | // and r2^2 - r1^2 = k1 * dz - k1 * (-dz) => k1 = (r2^2 - r1^2) / 2 / dz
|
|---|
| 86 |
|
|---|
| 87 | k1 = (r2 * r2 - r1 * r1) / 2 / dz;
|
|---|
| 88 | k2 = (r2 * r2 + r1 * r1) / 2;
|
|---|
| 89 |
|
|---|
| 90 | fSurfaceArea = 0.;
|
|---|
| 91 | }
|
|---|
| 92 |
|
|---|
| 93 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 94 | //
|
|---|
| 95 | // Fake default constructor - sets only member data and allocates memory
|
|---|
| 96 | // for usage restricted to object persistency.
|
|---|
| 97 | //
|
|---|
| 98 | G4Paraboloid::G4Paraboloid( __void__& a )
|
|---|
| 99 | : G4VSolid(a), fpPolyhedron(0), fCubicVolume(0.)
|
|---|
| 100 | {
|
|---|
| 101 | fSurfaceArea = 0.;
|
|---|
| 102 | }
|
|---|
| 103 |
|
|---|
| 104 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 105 | //
|
|---|
| 106 | // Destructor
|
|---|
| 107 |
|
|---|
| 108 | G4Paraboloid::~G4Paraboloid()
|
|---|
| 109 | {
|
|---|
| 110 | }
|
|---|
| 111 |
|
|---|
| 112 | /////////////////////////////////////////////////////////////////////////
|
|---|
| 113 | //
|
|---|
| 114 | // Dispatch to parameterisation for replication mechanism dimension
|
|---|
| 115 | // computation & modification.
|
|---|
| 116 |
|
|---|
| 117 | //void ComputeDimensions( G4VPVParamerisation p,
|
|---|
| 118 | // const G4Int n,
|
|---|
| 119 | // const G4VPhysicalVolume* pRep )
|
|---|
| 120 | //{
|
|---|
| 121 | // p->ComputeDimensions(*this,n,pRep) ;
|
|---|
| 122 | //}
|
|---|
| 123 |
|
|---|
| 124 |
|
|---|
| 125 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 126 | //
|
|---|
| 127 | // Calculate extent under transform and specified limit
|
|---|
| 128 |
|
|---|
| 129 | G4bool
|
|---|
| 130 | G4Paraboloid::CalculateExtent(const EAxis pAxis,
|
|---|
| 131 | const G4VoxelLimits& pVoxelLimit,
|
|---|
| 132 | const G4AffineTransform& pTransform,
|
|---|
| 133 | G4double& pMin, G4double& pMax) const
|
|---|
| 134 | {
|
|---|
| 135 | G4double xMin = -r2 + pTransform.NetTranslation().x(),
|
|---|
| 136 | xMax = r2 + pTransform.NetTranslation().x(),
|
|---|
| 137 | yMin = -r2 + pTransform.NetTranslation().y(),
|
|---|
| 138 | yMax = r2 + pTransform.NetTranslation().y(),
|
|---|
| 139 | zMin = -dz + pTransform.NetTranslation().z(),
|
|---|
| 140 | zMax = dz + pTransform.NetTranslation().z();
|
|---|
| 141 |
|
|---|
| 142 | if(!pTransform.IsRotated()
|
|---|
| 143 | || pTransform.NetRotation()(G4ThreeVector(0, 0, 1)) == G4ThreeVector(0, 0, 1))
|
|---|
| 144 | {
|
|---|
| 145 | if(pVoxelLimit.IsXLimited())
|
|---|
| 146 | {
|
|---|
| 147 | if(pVoxelLimit.GetMaxXExtent() < xMin - 0.5 * kCarTolerance
|
|---|
| 148 | || pVoxelLimit.GetMinXExtent() > xMax + 0.5 * kCarTolerance)
|
|---|
| 149 | {
|
|---|
| 150 | return false;
|
|---|
| 151 | }
|
|---|
| 152 | else
|
|---|
| 153 | {
|
|---|
| 154 | if(pVoxelLimit.GetMinXExtent() > xMin)
|
|---|
| 155 | {
|
|---|
| 156 | xMin = pVoxelLimit.GetMinXExtent();
|
|---|
| 157 | }
|
|---|
| 158 | if(pVoxelLimit.GetMaxXExtent() < xMax)
|
|---|
| 159 | {
|
|---|
| 160 | xMax = pVoxelLimit.GetMaxXExtent();
|
|---|
| 161 | }
|
|---|
| 162 | }
|
|---|
| 163 | }
|
|---|
| 164 | if(pVoxelLimit.IsYLimited())
|
|---|
| 165 | {
|
|---|
| 166 | if(pVoxelLimit.GetMaxYExtent() < yMin - 0.5 * kCarTolerance
|
|---|
| 167 | || pVoxelLimit.GetMinYExtent() > yMax + 0.5 * kCarTolerance)
|
|---|
| 168 | {
|
|---|
| 169 | return false;
|
|---|
| 170 | }
|
|---|
| 171 | else
|
|---|
| 172 | {
|
|---|
| 173 | if(pVoxelLimit.GetMinYExtent() > yMin)
|
|---|
| 174 | {
|
|---|
| 175 | yMin = pVoxelLimit.GetMinYExtent();
|
|---|
| 176 | }
|
|---|
| 177 | if(pVoxelLimit.GetMaxYExtent() < yMax)
|
|---|
| 178 | {
|
|---|
| 179 | yMax = pVoxelLimit.GetMaxYExtent();
|
|---|
| 180 | }
|
|---|
| 181 | }
|
|---|
| 182 | }
|
|---|
| 183 | if(pVoxelLimit.IsZLimited())
|
|---|
| 184 | {
|
|---|
| 185 | if(pVoxelLimit.GetMaxZExtent() < zMin - 0.5 * kCarTolerance
|
|---|
| 186 | || pVoxelLimit.GetMinZExtent() > zMax + 0.5 * kCarTolerance)
|
|---|
| 187 | {
|
|---|
| 188 | return false;
|
|---|
| 189 | }
|
|---|
| 190 | else
|
|---|
| 191 | {
|
|---|
| 192 | if(pVoxelLimit.GetMinZExtent() > zMin)
|
|---|
| 193 | {
|
|---|
| 194 | zMin = pVoxelLimit.GetMinZExtent();
|
|---|
| 195 | }
|
|---|
| 196 | if(pVoxelLimit.GetMaxZExtent() < zMax)
|
|---|
| 197 | {
|
|---|
| 198 | zMax = pVoxelLimit.GetMaxZExtent();
|
|---|
| 199 | }
|
|---|
| 200 | }
|
|---|
| 201 | }
|
|---|
| 202 | switch(pAxis)
|
|---|
| 203 | {
|
|---|
| 204 | case kXAxis:
|
|---|
| 205 | pMin = xMin;
|
|---|
| 206 | pMax = xMax;
|
|---|
| 207 | break;
|
|---|
| 208 | case kYAxis:
|
|---|
| 209 | pMin = yMin;
|
|---|
| 210 | pMax = yMax;
|
|---|
| 211 | break;
|
|---|
| 212 | case kZAxis:
|
|---|
| 213 | pMin = zMin;
|
|---|
| 214 | pMax = zMax;
|
|---|
| 215 | break;
|
|---|
| 216 | default:
|
|---|
| 217 | pMin = 0;
|
|---|
| 218 | pMax = 0;
|
|---|
| 219 | return false;
|
|---|
| 220 | }
|
|---|
| 221 | }
|
|---|
| 222 | else
|
|---|
| 223 | {
|
|---|
| 224 | G4bool existsAfterClip=true;
|
|---|
| 225 |
|
|---|
| 226 | // Calculate rotated vertex coordinates
|
|---|
| 227 |
|
|---|
| 228 | G4int noPolygonVertices=0;
|
|---|
| 229 | G4ThreeVectorList* vertices
|
|---|
| 230 | = CreateRotatedVertices(pTransform,noPolygonVertices);
|
|---|
| 231 |
|
|---|
| 232 | if(pAxis == kXAxis || pAxis == kYAxis || pAxis == kZAxis)
|
|---|
| 233 | {
|
|---|
| 234 | pMin = kInfinity;
|
|---|
| 235 | pMax = -kInfinity;
|
|---|
| 236 |
|
|---|
| 237 | for(G4ThreeVectorList::iterator it = vertices->begin();
|
|---|
| 238 | it < vertices->end(); it++)
|
|---|
| 239 | {
|
|---|
| 240 | if(pMin > (*it)[pAxis]) pMin = (*it)[pAxis];
|
|---|
| 241 | if((*it)[pAxis] < pVoxelLimit.GetMinExtent(pAxis))
|
|---|
| 242 | {
|
|---|
| 243 | pMin = pVoxelLimit.GetMinExtent(pAxis);
|
|---|
| 244 | }
|
|---|
| 245 | if(pMax < (*it)[pAxis])
|
|---|
| 246 | {
|
|---|
| 247 | pMax = (*it)[pAxis];
|
|---|
| 248 | }
|
|---|
| 249 | if((*it)[pAxis] > pVoxelLimit.GetMaxExtent(pAxis))
|
|---|
| 250 | {
|
|---|
| 251 | pMax = pVoxelLimit.GetMaxExtent(pAxis);
|
|---|
| 252 | }
|
|---|
| 253 | }
|
|---|
| 254 |
|
|---|
| 255 | if(pMin > pVoxelLimit.GetMaxExtent(pAxis)
|
|---|
| 256 | || pMax < pVoxelLimit.GetMinExtent(pAxis)) { existsAfterClip = false; }
|
|---|
| 257 | }
|
|---|
| 258 | else
|
|---|
| 259 | {
|
|---|
| 260 | pMin = 0;
|
|---|
| 261 | pMax = 0;
|
|---|
| 262 | existsAfterClip = false;
|
|---|
| 263 | }
|
|---|
| 264 | delete vertices;
|
|---|
| 265 | return existsAfterClip;
|
|---|
| 266 | }
|
|---|
| 267 | return true;
|
|---|
| 268 | }
|
|---|
| 269 |
|
|---|
| 270 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 271 | //
|
|---|
| 272 | // Return whether point inside/outside/on surface
|
|---|
| 273 |
|
|---|
| 274 | EInside G4Paraboloid::Inside(const G4ThreeVector& p) const
|
|---|
| 275 | {
|
|---|
| 276 | // First check is the point is above or below the solid.
|
|---|
| 277 | //
|
|---|
| 278 | if(std::fabs(p.z()) > dz + 0.5 * kCarTolerance) { return kOutside; }
|
|---|
| 279 |
|
|---|
| 280 | G4double rho2 = p.perp2(),
|
|---|
| 281 | rhoSurfTimesTol2 = (k1 * p.z() + k2) * sqr(kCarTolerance),
|
|---|
| 282 | A = rho2 - ((k1 *p.z() + k2) + 0.25 * kCarTolerance * kCarTolerance);
|
|---|
| 283 |
|
|---|
| 284 | if(A < 0 && sqr(A) > rhoSurfTimesTol2)
|
|---|
| 285 | {
|
|---|
| 286 | // Actually checking rho < radius of paraboloid at z = p.z().
|
|---|
| 287 | // We're either inside or in lower/upper cutoff area.
|
|---|
| 288 |
|
|---|
| 289 | if(std::fabs(p.z()) > dz - 0.5 * kCarTolerance)
|
|---|
| 290 | {
|
|---|
| 291 | // We're in the upper/lower cutoff area, sides have a paraboloid shape
|
|---|
| 292 | // maybe further checks should be made to make these nicer
|
|---|
| 293 |
|
|---|
| 294 | return kSurface;
|
|---|
| 295 | }
|
|---|
| 296 | else
|
|---|
| 297 | {
|
|---|
| 298 | return kInside;
|
|---|
| 299 | }
|
|---|
| 300 | }
|
|---|
| 301 | else if(A <= 0 || sqr(A) < rhoSurfTimesTol2)
|
|---|
| 302 | {
|
|---|
| 303 | // We're in the parabolic surface.
|
|---|
| 304 |
|
|---|
| 305 | return kSurface;
|
|---|
| 306 | }
|
|---|
| 307 | else
|
|---|
| 308 | {
|
|---|
| 309 | return kOutside;
|
|---|
| 310 | }
|
|---|
| 311 | }
|
|---|
| 312 |
|
|---|
| 313 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 314 | //
|
|---|
| 315 |
|
|---|
| 316 | G4ThreeVector G4Paraboloid::SurfaceNormal( const G4ThreeVector& p) const
|
|---|
| 317 | {
|
|---|
| 318 | G4ThreeVector n(0, 0, 0);
|
|---|
| 319 | if(std::fabs(p.z()) > dz + 0.5 * kCarTolerance)
|
|---|
| 320 | {
|
|---|
| 321 | // If above or below just return normal vector for the cutoff plane.
|
|---|
| 322 |
|
|---|
| 323 | n = G4ThreeVector(0, 0, p.z()/std::fabs(p.z()));
|
|---|
| 324 | }
|
|---|
| 325 | else if(std::fabs(p.z()) > dz - 0.5 * kCarTolerance)
|
|---|
| 326 | {
|
|---|
| 327 | // This means we're somewhere in the plane z = dz or z = -dz.
|
|---|
| 328 | // (As far as the program is concerned anyway.
|
|---|
| 329 |
|
|---|
| 330 | if(p.z() < 0) // Are we in upper or lower plane?
|
|---|
| 331 | {
|
|---|
| 332 | if(p.perp2() > sqr(r1 + 0.5 * kCarTolerance))
|
|---|
| 333 | {
|
|---|
| 334 | n = G4ThreeVector(p.x(), p.y(), -k1 / 2).unit();
|
|---|
| 335 | }
|
|---|
| 336 | else if(r1 < 0.5 * kCarTolerance
|
|---|
| 337 | || p.perp2() > sqr(r1 - 0.5 * kCarTolerance))
|
|---|
| 338 | {
|
|---|
| 339 | n = G4ThreeVector(p.x(), p.y(), 0.).unit()
|
|---|
| 340 | + G4ThreeVector(0., 0., -1.).unit();
|
|---|
| 341 | n = n.unit();
|
|---|
| 342 | }
|
|---|
| 343 | else
|
|---|
| 344 | {
|
|---|
| 345 | n = G4ThreeVector(0., 0., -1.);
|
|---|
| 346 | }
|
|---|
| 347 | }
|
|---|
| 348 | else
|
|---|
| 349 | {
|
|---|
| 350 | if(p.perp2() > sqr(r2 + 0.5 * kCarTolerance))
|
|---|
| 351 | {
|
|---|
| 352 | n = G4ThreeVector(p.x(), p.y(), 0.).unit();
|
|---|
| 353 | }
|
|---|
| 354 | else if(r2 < 0.5 * kCarTolerance
|
|---|
| 355 | || p.perp2() > sqr(r2 - 0.5 * kCarTolerance))
|
|---|
| 356 | {
|
|---|
| 357 | n = G4ThreeVector(p.x(), p.y(), 0.).unit()
|
|---|
| 358 | + G4ThreeVector(0., 0., 1.).unit();
|
|---|
| 359 | n = n.unit();
|
|---|
| 360 | }
|
|---|
| 361 | else
|
|---|
| 362 | {
|
|---|
| 363 | n = G4ThreeVector(0., 0., 1.);
|
|---|
| 364 | }
|
|---|
| 365 | }
|
|---|
| 366 | }
|
|---|
| 367 | else
|
|---|
| 368 | {
|
|---|
| 369 | G4double rho2 = p.perp2();
|
|---|
| 370 | G4double rhoSurfTimesTol2 = (k1 * p.z() + k2) * sqr(kCarTolerance);
|
|---|
| 371 | G4double A = rho2 - ((k1 *p.z() + k2)
|
|---|
| 372 | + 0.25 * kCarTolerance * kCarTolerance);
|
|---|
| 373 |
|
|---|
| 374 | if(A < 0 && sqr(A) > rhoSurfTimesTol2)
|
|---|
| 375 | {
|
|---|
| 376 | // Actually checking rho < radius of paraboloid at z = p.z().
|
|---|
| 377 | // We're inside.
|
|---|
| 378 |
|
|---|
| 379 | if(p.mag2() != 0) { n = p.unit(); }
|
|---|
| 380 | }
|
|---|
| 381 | else if(A <= 0 || sqr(A) < rhoSurfTimesTol2)
|
|---|
| 382 | {
|
|---|
| 383 | // We're in the parabolic surface.
|
|---|
| 384 |
|
|---|
| 385 | n = G4ThreeVector(p.x(), p.y(), - k1 / 2).unit();
|
|---|
| 386 | }
|
|---|
| 387 | else
|
|---|
| 388 | {
|
|---|
| 389 | n = G4ThreeVector(p.x(), p.y(), - k1 / 2).unit();
|
|---|
| 390 | }
|
|---|
| 391 | }
|
|---|
| 392 |
|
|---|
| 393 | if(n.mag2() == 0)
|
|---|
| 394 | {
|
|---|
| 395 | G4cerr << "WARNING - G4Paraboloid::SurfaceNormal(p)" << G4endl
|
|---|
| 396 | << " p = " << 1 / mm * p << " mm" << G4endl;
|
|---|
| 397 | G4Exception("G4Paraboloid::SurfaceNormal(p)", "Notification",
|
|---|
| 398 | JustWarning, "No normal defined for this point p.");
|
|---|
| 399 | }
|
|---|
| 400 | return n;
|
|---|
| 401 | }
|
|---|
| 402 |
|
|---|
| 403 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 404 | //
|
|---|
| 405 | // Calculate distance to shape from outside, along normalised vector
|
|---|
| 406 | // - return kInfinity if no intersection
|
|---|
| 407 | //
|
|---|
| 408 |
|
|---|
| 409 | G4double G4Paraboloid::DistanceToIn( const G4ThreeVector& p,
|
|---|
| 410 | const G4ThreeVector& v ) const
|
|---|
| 411 | {
|
|---|
| 412 | G4double rho2 = p.perp2(), paraRho2 = std::fabs(k1 * p.z() + k2);
|
|---|
| 413 | G4double tol2 = kCarTolerance*kCarTolerance;
|
|---|
| 414 | G4double tolh = 0.5*kCarTolerance;
|
|---|
| 415 |
|
|---|
| 416 | if(r2 && p.z() > - tolh + dz)
|
|---|
| 417 | {
|
|---|
| 418 | // If the points is above check for intersection with upper edge.
|
|---|
| 419 |
|
|---|
| 420 | if(v.z() < 0)
|
|---|
| 421 | {
|
|---|
| 422 | G4double intersection = (dz - p.z()) / v.z(); // With plane z = dz.
|
|---|
| 423 | if(sqr(p.x() + v.x()*intersection)
|
|---|
| 424 | + sqr(p.y() + v.y()*intersection) < sqr(r2 + 0.5 * kCarTolerance))
|
|---|
| 425 | {
|
|---|
| 426 | if(p.z() < tolh + dz)
|
|---|
| 427 | { return 0; }
|
|---|
| 428 | else
|
|---|
| 429 | { return intersection; }
|
|---|
| 430 | }
|
|---|
| 431 | }
|
|---|
| 432 | else // Direction away, no possibility of intersection
|
|---|
| 433 | {
|
|---|
| 434 | return kInfinity;
|
|---|
| 435 | }
|
|---|
| 436 | }
|
|---|
| 437 | else if(r1 && p.z() < tolh - dz)
|
|---|
| 438 | {
|
|---|
| 439 | // If the points is belove check for intersection with lower edge.
|
|---|
| 440 |
|
|---|
| 441 | if(v.z() > 0)
|
|---|
| 442 | {
|
|---|
| 443 | G4double intersection = (-dz - p.z()) / v.z(); // With plane z = -dz.
|
|---|
| 444 | if(sqr(p.x() + v.x()*intersection)
|
|---|
| 445 | + sqr(p.y() + v.y()*intersection) < sqr(r1 + 0.5 * kCarTolerance))
|
|---|
| 446 | {
|
|---|
| 447 | if(p.z() > -tolh - dz)
|
|---|
| 448 | {
|
|---|
| 449 | return 0;
|
|---|
| 450 | }
|
|---|
| 451 | else
|
|---|
| 452 | {
|
|---|
| 453 | return intersection;
|
|---|
| 454 | }
|
|---|
| 455 | }
|
|---|
| 456 | }
|
|---|
| 457 | else // Direction away, no possibility of intersection
|
|---|
| 458 | {
|
|---|
| 459 | return kInfinity;
|
|---|
| 460 | }
|
|---|
| 461 | }
|
|---|
| 462 |
|
|---|
| 463 | G4double A = k1 / 2 * v.z() - p.x() * v.x() - p.y() * v.y(),
|
|---|
| 464 | vRho2 = v.perp2(), intersection,
|
|---|
| 465 | B = (k1 * p.z() + k2 - rho2) * vRho2;
|
|---|
| 466 |
|
|---|
| 467 | if ( ( (rho2 > paraRho2) && (sqr(rho2-paraRho2-0.25*tol2) > tol2*paraRho2) )
|
|---|
| 468 | || (p.z() < - dz+kCarTolerance)
|
|---|
| 469 | || (p.z() > dz-kCarTolerance) ) // Make sure it's safely outside.
|
|---|
| 470 | {
|
|---|
| 471 | // Is there a problem with squaring rho twice?
|
|---|
| 472 |
|
|---|
| 473 | if(!vRho2) // Needs to be treated seperately.
|
|---|
| 474 | {
|
|---|
| 475 | intersection = ((rho2 - k2)/k1 - p.z())/v.z();
|
|---|
| 476 | if(intersection < 0) { return kInfinity; }
|
|---|
| 477 | else if(std::fabs(p.z() + v.z() * intersection) <= dz)
|
|---|
| 478 | {
|
|---|
| 479 | return intersection;
|
|---|
| 480 | }
|
|---|
| 481 | else
|
|---|
| 482 | {
|
|---|
| 483 | return kInfinity;
|
|---|
| 484 | }
|
|---|
| 485 | }
|
|---|
| 486 | else if(A*A + B < 0) // No real intersections.
|
|---|
| 487 | {
|
|---|
| 488 | return kInfinity;
|
|---|
| 489 | }
|
|---|
| 490 | else
|
|---|
| 491 | {
|
|---|
| 492 | intersection = (A - std::sqrt(B + sqr(A))) / vRho2;
|
|---|
| 493 | if(intersection < 0)
|
|---|
| 494 | {
|
|---|
| 495 | return kInfinity;
|
|---|
| 496 | }
|
|---|
| 497 | else if(std::fabs(p.z() + intersection * v.z()) < dz + tolh)
|
|---|
| 498 | {
|
|---|
| 499 | return intersection;
|
|---|
| 500 | }
|
|---|
| 501 | else
|
|---|
| 502 | {
|
|---|
| 503 | return kInfinity;
|
|---|
| 504 | }
|
|---|
| 505 | }
|
|---|
| 506 | }
|
|---|
| 507 | else if(sqr(rho2 - paraRho2 - .25 * tol2) <= tol2 * paraRho2)
|
|---|
| 508 | {
|
|---|
| 509 | // If this is true we're somewhere in the border.
|
|---|
| 510 |
|
|---|
| 511 | G4ThreeVector normal(p.x(), p.y(), -k1/2);
|
|---|
| 512 | if(normal.dot(v) <= 0)
|
|---|
| 513 | { return 0; }
|
|---|
| 514 | else
|
|---|
| 515 | { return kInfinity; }
|
|---|
| 516 | }
|
|---|
| 517 | else
|
|---|
| 518 | {
|
|---|
| 519 | G4cerr << "WARNING - G4Paraboloid::DistanceToIn(p,v)" << G4endl
|
|---|
| 520 | << " p = " << p * (1/mm) << " mm" << G4endl
|
|---|
| 521 | << " v = " << v * (1/mm) << " mm" << G4endl;
|
|---|
| 522 | if(Inside(p) == kInside)
|
|---|
| 523 | {
|
|---|
| 524 | G4Exception("G4Paraboloid::DistanceToIn(p,v)", "Notification",
|
|---|
| 525 | JustWarning, "Point p is inside!");
|
|---|
| 526 | }
|
|---|
| 527 | else
|
|---|
| 528 | {
|
|---|
| 529 | G4Exception("G4Paraboloid::DistanceToIn(p,v)", "Notification",
|
|---|
| 530 | JustWarning, "There's a bug in this function (apa)!");
|
|---|
| 531 | }
|
|---|
| 532 | return 0;
|
|---|
| 533 | }
|
|---|
| 534 | }
|
|---|
| 535 |
|
|---|
| 536 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 537 | //
|
|---|
| 538 | // Calculate distance (<= actual) to closest surface of shape from outside
|
|---|
| 539 | // - Return 0 if point inside
|
|---|
| 540 |
|
|---|
| 541 | G4double G4Paraboloid::DistanceToIn(const G4ThreeVector& p) const
|
|---|
| 542 | {
|
|---|
| 543 | G4double safe = 0;
|
|---|
| 544 | if(std::fabs(p.z()) > dz + 0.5 * kCarTolerance)
|
|---|
| 545 | {
|
|---|
| 546 | // If we're below or above the paraboloid treat it as a cylinder with
|
|---|
| 547 | // radius r2.
|
|---|
| 548 |
|
|---|
| 549 | if(p.perp2() > sqr(r2 + 0.5 * kCarTolerance))
|
|---|
| 550 | {
|
|---|
| 551 | // This algorithm is exact for now but contains 2 sqrt calculations.
|
|---|
| 552 | // Might be better to replace with approximated version
|
|---|
| 553 |
|
|---|
| 554 | G4double dRho = p.perp() - r2;
|
|---|
| 555 | safe = std::sqrt(sqr(dRho) + sqr(std::fabs(p.z()) - dz));
|
|---|
| 556 | }
|
|---|
| 557 | else
|
|---|
| 558 | {
|
|---|
| 559 | safe = std::fabs(p.z()) - dz;
|
|---|
| 560 | }
|
|---|
| 561 | }
|
|---|
| 562 | else
|
|---|
| 563 | {
|
|---|
| 564 | G4double paraRho = std::sqrt(k1 * p.z() + k2);
|
|---|
| 565 | G4double rho = p.perp();
|
|---|
| 566 |
|
|---|
| 567 | if(rho > paraRho + 0.5 * kCarTolerance)
|
|---|
| 568 | {
|
|---|
| 569 | // Should check the value of paraRho here,
|
|---|
| 570 | // for small values the following algorithm is bad.
|
|---|
| 571 |
|
|---|
| 572 | safe = k1 / 2 * (-paraRho + rho) / rho;
|
|---|
| 573 | if(safe < 0) { safe = 0; }
|
|---|
| 574 | }
|
|---|
| 575 | }
|
|---|
| 576 | return safe;
|
|---|
| 577 | }
|
|---|
| 578 |
|
|---|
| 579 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 580 | //
|
|---|
| 581 | // Calculate distance to surface of shape from 'inside'
|
|---|
| 582 |
|
|---|
| 583 | G4double G4Paraboloid::DistanceToOut(const G4ThreeVector& p,
|
|---|
| 584 | const G4ThreeVector& v,
|
|---|
| 585 | const G4bool calcNorm,
|
|---|
| 586 | G4bool *validNorm,
|
|---|
| 587 | G4ThreeVector *n ) const
|
|---|
| 588 | {
|
|---|
| 589 | G4double rho2 = p.perp2(), paraRho2 = std::fabs(k1 * p.z() + k2);
|
|---|
| 590 | G4double vRho2 = v.perp2(), intersection;
|
|---|
| 591 | G4double tol2 = kCarTolerance*kCarTolerance;
|
|---|
| 592 | G4double tolh = 0.5*kCarTolerance;
|
|---|
| 593 |
|
|---|
| 594 | if(calcNorm) { *validNorm = false; }
|
|---|
| 595 |
|
|---|
| 596 | // We have that the particle p follows the line x = p + s * v
|
|---|
| 597 | // meaning x = p.x() + s * v.x(), y = p.y() + s * v.y() and
|
|---|
| 598 | // z = p.z() + s * v.z()
|
|---|
| 599 | // The equation for all points on the surface (surface expanded for
|
|---|
| 600 | // to include all z) x^2 + y^2 = k1 * z + k2 => .. =>
|
|---|
| 601 | // => s = (A +- std::sqrt(A^2 + B)) / vRho2
|
|---|
| 602 | // where:
|
|---|
| 603 | //
|
|---|
| 604 | G4double A = k1 / 2 * v.z() - p.x() * v.x() - p.y() * v.y();
|
|---|
| 605 | //
|
|---|
| 606 | // and:
|
|---|
| 607 | //
|
|---|
| 608 | G4double B = (-rho2 + paraRho2) * vRho2;
|
|---|
| 609 |
|
|---|
| 610 | if ( rho2 < paraRho2 && sqr(rho2 - paraRho2 - 0.25 * tol2) > tol2 * paraRho2
|
|---|
| 611 | && std::fabs(p.z()) < dz - kCarTolerance)
|
|---|
| 612 | {
|
|---|
| 613 | // Make sure it's safely inside.
|
|---|
| 614 |
|
|---|
| 615 | if(v.z() > 0)
|
|---|
| 616 | {
|
|---|
| 617 | // It's heading upwards, check where it colides with the plane z = dz.
|
|---|
| 618 | // When it does, is that in the surface of the paraboloid.
|
|---|
| 619 | // z = p.z() + variable * v.z() for all points the particle can go.
|
|---|
| 620 | // => variable = (z - p.z()) / v.z() so intersection must be:
|
|---|
| 621 |
|
|---|
| 622 | intersection = (dz - p.z()) / v.z();
|
|---|
| 623 | G4ThreeVector ip = p + intersection * v; // Point of intersection.
|
|---|
| 624 |
|
|---|
| 625 | if(ip.perp2() < sqr(r2 + kCarTolerance))
|
|---|
| 626 | {
|
|---|
| 627 | if(calcNorm)
|
|---|
| 628 | {
|
|---|
| 629 | *n = G4ThreeVector(0, 0, 1);
|
|---|
| 630 | if(r2 < tolh || ip.perp2() > sqr(r2 - tolh))
|
|---|
| 631 | {
|
|---|
| 632 | *n += G4ThreeVector(ip.x(), ip.y(), - k1 / 2).unit();
|
|---|
| 633 | *n = n->unit();
|
|---|
| 634 | }
|
|---|
| 635 | *validNorm = true;
|
|---|
| 636 | }
|
|---|
| 637 | return intersection;
|
|---|
| 638 | }
|
|---|
| 639 | }
|
|---|
| 640 | else if(v.z() < 0)
|
|---|
| 641 | {
|
|---|
| 642 | // It's heading downwards, check were it colides with the plane z = -dz.
|
|---|
| 643 | // When it does, is that in the surface of the paraboloid.
|
|---|
| 644 | // z = p.z() + variable * v.z() for all points the particle can go.
|
|---|
| 645 | // => variable = (z - p.z()) / v.z() so intersection must be:
|
|---|
| 646 |
|
|---|
| 647 | intersection = (-dz - p.z()) / v.z();
|
|---|
| 648 | G4ThreeVector ip = p + intersection * v; // Point of intersection.
|
|---|
| 649 |
|
|---|
| 650 | if(ip.perp2() < sqr(r1 + tolh))
|
|---|
| 651 | {
|
|---|
| 652 | if(calcNorm)
|
|---|
| 653 | {
|
|---|
| 654 | *n = G4ThreeVector(0, 0, -1);
|
|---|
| 655 | if(r1 < tolh || ip.perp2() > sqr(r1 - tolh))
|
|---|
| 656 | {
|
|---|
| 657 | *n += G4ThreeVector(ip.x(), ip.y(), - k1 / 2).unit();
|
|---|
| 658 | *n = n->unit();
|
|---|
| 659 | }
|
|---|
| 660 | *validNorm = true;
|
|---|
| 661 | }
|
|---|
| 662 | return intersection;
|
|---|
| 663 | }
|
|---|
| 664 | }
|
|---|
| 665 |
|
|---|
| 666 | // Now check for collisions with paraboloid surface.
|
|---|
| 667 |
|
|---|
| 668 | if(vRho2 == 0) // Needs to be treated seperately.
|
|---|
| 669 | {
|
|---|
| 670 | intersection = ((rho2 - k2)/k1 - p.z())/v.z();
|
|---|
| 671 | if(calcNorm)
|
|---|
| 672 | {
|
|---|
| 673 | G4ThreeVector intersectionP = p + v * intersection;
|
|---|
| 674 | *n = G4ThreeVector(intersectionP.x(), intersectionP.y(), -k1/2);
|
|---|
| 675 | *n = n->unit();
|
|---|
| 676 |
|
|---|
| 677 | *validNorm = true;
|
|---|
| 678 | }
|
|---|
| 679 | return intersection;
|
|---|
| 680 | }
|
|---|
| 681 | else if( ((A <= 0) && (B >= sqr(A) * (sqr(vRho2) - 1))) || (A >= 0))
|
|---|
| 682 | {
|
|---|
| 683 | // intersection = (A + std::sqrt(B + sqr(A))) / vRho2;
|
|---|
| 684 | // The above calculation has a precision problem:
|
|---|
| 685 | // known problem of solving quadratic equation with small A
|
|---|
| 686 |
|
|---|
| 687 | A = A/vRho2;
|
|---|
| 688 | B = (k1 * p.z() + k2 - rho2)/vRho2;
|
|---|
| 689 | intersection = B/(-A + std::sqrt(B + sqr(A)));
|
|---|
| 690 | if(calcNorm)
|
|---|
| 691 | {
|
|---|
| 692 | G4ThreeVector intersectionP = p + v * intersection;
|
|---|
| 693 | *n = G4ThreeVector(intersectionP.x(), intersectionP.y(), -k1/2);
|
|---|
| 694 | *n = n->unit();
|
|---|
| 695 | *validNorm = true;
|
|---|
| 696 | }
|
|---|
| 697 | return intersection;
|
|---|
| 698 | }
|
|---|
| 699 | G4cerr << "WARNING - G4Paraboloid::DistanceToOut(p,v,...)" << G4endl
|
|---|
| 700 | << " p = " << p << G4endl
|
|---|
| 701 | << " v = " << v << G4endl;
|
|---|
| 702 | G4Exception("G4Paraboloid::DistanceToOut(p,v,...)", "Notification",
|
|---|
| 703 | JustWarning,
|
|---|
| 704 | "There is no intersection between given line and solid!");
|
|---|
| 705 |
|
|---|
| 706 | return kInfinity;
|
|---|
| 707 | }
|
|---|
| 708 | else if ( (rho2 < paraRho2 + kCarTolerance
|
|---|
| 709 | || sqr(rho2 - paraRho2 - 0.25 * tol2) < tol2 * paraRho2 )
|
|---|
| 710 | && std::fabs(p.z()) < dz + tolh)
|
|---|
| 711 | {
|
|---|
| 712 | // If this is true we're somewhere in the border.
|
|---|
| 713 |
|
|---|
| 714 | G4ThreeVector normal = G4ThreeVector (p.x(), p.y(), -k1/2);
|
|---|
| 715 |
|
|---|
| 716 | if(std::fabs(p.z()) > dz - tolh)
|
|---|
| 717 | {
|
|---|
| 718 | // We're in the lower or upper edge
|
|---|
| 719 | //
|
|---|
| 720 | if( ((v.z() > 0) && (p.z() > 0)) || ((v.z() < 0) && (p.z() < 0)) )
|
|---|
| 721 | { // If we're heading out of the object that is treated here
|
|---|
| 722 | if(calcNorm)
|
|---|
| 723 | {
|
|---|
| 724 | *validNorm = true;
|
|---|
| 725 | if(p.z() > 0)
|
|---|
| 726 | { *n = G4ThreeVector(0, 0, 1); }
|
|---|
| 727 | else
|
|---|
| 728 | { *n = G4ThreeVector(0, 0, -1); }
|
|---|
| 729 | }
|
|---|
| 730 | return 0;
|
|---|
| 731 | }
|
|---|
| 732 |
|
|---|
| 733 | if(v.z() == 0)
|
|---|
| 734 | {
|
|---|
| 735 | // Case where we're moving inside the surface needs to be
|
|---|
| 736 | // treated separately.
|
|---|
| 737 | // Distance until it goes out through a side is returned.
|
|---|
| 738 |
|
|---|
| 739 | G4double r = (p.z() > 0)? r2 : r1;
|
|---|
| 740 | G4double pDotV = p.dot(v);
|
|---|
| 741 | G4double A = vRho2 * ( sqr(r) - sqr(p.x()) - sqr(p.y()));
|
|---|
| 742 | intersection = (-pDotV + std::sqrt(A + sqr(pDotV))) / vRho2;
|
|---|
| 743 |
|
|---|
| 744 | if(calcNorm)
|
|---|
| 745 | {
|
|---|
| 746 | *validNorm = true;
|
|---|
| 747 |
|
|---|
| 748 | *n = (G4ThreeVector(0, 0, p.z()/std::fabs(p.z()))
|
|---|
| 749 | + G4ThreeVector(p.x() + v.x() * intersection, p.y() + v.y()
|
|---|
| 750 | * intersection, -k1/2).unit()).unit();
|
|---|
| 751 | }
|
|---|
| 752 | return intersection;
|
|---|
| 753 | }
|
|---|
| 754 | }
|
|---|
| 755 | //
|
|---|
| 756 | // Problem in the Logic :: Following condition for point on upper surface
|
|---|
| 757 | // and Vz<0 will return 0 (Problem #1015), but
|
|---|
| 758 | // it has to return intersection with parabolic
|
|---|
| 759 | // surface or with lower plane surface (z = -dz)
|
|---|
| 760 | // The logic has to be :: If not found intersection until now,
|
|---|
| 761 | // do not exit but continue to search for possible intersection.
|
|---|
| 762 | // Only for point situated on both borders (Z and parabolic)
|
|---|
| 763 | // this condition has to be taken into account and done later
|
|---|
| 764 | //
|
|---|
| 765 | //
|
|---|
| 766 | // else if(normal.dot(v) >= 0)
|
|---|
| 767 | // {
|
|---|
| 768 | // if(calcNorm)
|
|---|
| 769 | // {
|
|---|
| 770 | // *validNorm = true;
|
|---|
| 771 | // *n = normal.unit();
|
|---|
| 772 | // }
|
|---|
| 773 | // return 0;
|
|---|
| 774 | // }
|
|---|
| 775 |
|
|---|
| 776 | if(v.z() > 0)
|
|---|
| 777 | {
|
|---|
| 778 | // Check for collision with upper edge.
|
|---|
| 779 |
|
|---|
| 780 | intersection = (dz - p.z()) / v.z();
|
|---|
| 781 | G4ThreeVector ip = p + intersection * v;
|
|---|
| 782 |
|
|---|
| 783 | if(ip.perp2() < sqr(r2 - tolh))
|
|---|
| 784 | {
|
|---|
| 785 | if(calcNorm)
|
|---|
| 786 | {
|
|---|
| 787 | *validNorm = true;
|
|---|
| 788 | *n = G4ThreeVector(0, 0, 1);
|
|---|
| 789 | }
|
|---|
| 790 | return intersection;
|
|---|
| 791 | }
|
|---|
| 792 | else if(ip.perp2() < sqr(r2 + tolh))
|
|---|
| 793 | {
|
|---|
| 794 | if(calcNorm)
|
|---|
| 795 | {
|
|---|
| 796 | *validNorm = true;
|
|---|
| 797 | *n = G4ThreeVector(0, 0, 1)
|
|---|
| 798 | + G4ThreeVector(ip.x(), ip.y(), - k1 / 2).unit();
|
|---|
| 799 | *n = n->unit();
|
|---|
| 800 | }
|
|---|
| 801 | return intersection;
|
|---|
| 802 | }
|
|---|
| 803 | }
|
|---|
| 804 | if( v.z() < 0)
|
|---|
| 805 | {
|
|---|
| 806 | // Check for collision with lower edge.
|
|---|
| 807 |
|
|---|
| 808 | intersection = (-dz - p.z()) / v.z();
|
|---|
| 809 | G4ThreeVector ip = p + intersection * v;
|
|---|
| 810 |
|
|---|
| 811 | if(ip.perp2() < sqr(r1 - tolh))
|
|---|
| 812 | {
|
|---|
| 813 | if(calcNorm)
|
|---|
| 814 | {
|
|---|
| 815 | *validNorm = true;
|
|---|
| 816 | *n = G4ThreeVector(0, 0, -1);
|
|---|
| 817 | }
|
|---|
| 818 | return intersection;
|
|---|
| 819 | }
|
|---|
| 820 | else if(ip.perp2() < sqr(r1 + tolh))
|
|---|
| 821 | {
|
|---|
| 822 | if(calcNorm)
|
|---|
| 823 | {
|
|---|
| 824 | *validNorm = true;
|
|---|
| 825 | *n = G4ThreeVector(0, 0, -1)
|
|---|
| 826 | + G4ThreeVector(ip.x(), ip.y(), - k1 / 2).unit();
|
|---|
| 827 | *n = n->unit();
|
|---|
| 828 | }
|
|---|
| 829 | return intersection;
|
|---|
| 830 | }
|
|---|
| 831 | }
|
|---|
| 832 |
|
|---|
| 833 | // Note: comparison with zero below would not be correct !
|
|---|
| 834 | //
|
|---|
| 835 | if(std::fabs(vRho2) > tol2) // precision error in the calculation of
|
|---|
| 836 | { // intersection = (A+std::sqrt(B+sqr(A)))/vRho2
|
|---|
| 837 | A = A/vRho2;
|
|---|
| 838 | B = (k1 * p.z() + k2 - rho2);
|
|---|
| 839 | if(std::fabs(B)>kCarTolerance)
|
|---|
| 840 | {
|
|---|
| 841 | B = (B)/vRho2;
|
|---|
| 842 | intersection = B/(-A + std::sqrt(B + sqr(A)));
|
|---|
| 843 | }
|
|---|
| 844 | else // Point is On both borders: Z and parabolic
|
|---|
| 845 | { // solution depends on normal.dot(v) sign
|
|---|
| 846 | if(normal.dot(v) >= 0)
|
|---|
| 847 | {
|
|---|
| 848 | if(calcNorm)
|
|---|
| 849 | {
|
|---|
| 850 | *validNorm = true;
|
|---|
| 851 | *n = normal.unit();
|
|---|
| 852 | }
|
|---|
| 853 | return 0;
|
|---|
| 854 | }
|
|---|
| 855 | intersection = 2.*A;
|
|---|
| 856 | }
|
|---|
| 857 | }
|
|---|
| 858 | else
|
|---|
| 859 | {
|
|---|
| 860 | intersection = ((rho2 - k2) / k1 - p.z()) / v.z();
|
|---|
| 861 | }
|
|---|
| 862 |
|
|---|
| 863 | if(calcNorm)
|
|---|
| 864 | {
|
|---|
| 865 | *validNorm = true;
|
|---|
| 866 | *n = G4ThreeVector(p.x() + intersection * v.x(), p.y()
|
|---|
| 867 | + intersection * v.y(), - k1 / 2);
|
|---|
| 868 | *n = n->unit();
|
|---|
| 869 | }
|
|---|
| 870 | return intersection;
|
|---|
| 871 | }
|
|---|
| 872 | else
|
|---|
| 873 | {
|
|---|
| 874 | #ifdef G4SPECSDEBUG
|
|---|
| 875 | if(kOutside == Inside(p))
|
|---|
| 876 | {
|
|---|
| 877 | G4Exception("G4Paraboloid::DistanceToOut(p,v,...)", "Notification",
|
|---|
| 878 | JustWarning, "Point p is outside!");
|
|---|
| 879 | }
|
|---|
| 880 | else
|
|---|
| 881 | G4Exception("G4Paraboloid::DistanceToOut(p,v,...)", "Notification",
|
|---|
| 882 | JustWarning, "There's an error in this functions code.");
|
|---|
| 883 | #endif
|
|---|
| 884 | return kInfinity;
|
|---|
| 885 | }
|
|---|
| 886 | return 0;
|
|---|
| 887 | }
|
|---|
| 888 |
|
|---|
| 889 | ///////////////////////////////////////////////////////////////////////////////
|
|---|
| 890 | //
|
|---|
| 891 | // Calculate distance (<=actual) to closest surface of shape from inside
|
|---|
| 892 |
|
|---|
| 893 | G4double G4Paraboloid::DistanceToOut(const G4ThreeVector& p) const
|
|---|
| 894 | {
|
|---|
| 895 | G4double safe=0.0,rho,safeR,safeZ ;
|
|---|
| 896 | G4double tanRMax,secRMax,pRMax ;
|
|---|
| 897 |
|
|---|
| 898 | #ifdef G4SPECSDEBUG
|
|---|
| 899 | if( Inside(p) == kOutside )
|
|---|
| 900 | {
|
|---|
| 901 | G4cout.precision(16) ;
|
|---|
| 902 | G4cout << G4endl ;
|
|---|
| 903 | DumpInfo();
|
|---|
| 904 | G4cout << "Position:" << G4endl << G4endl ;
|
|---|
| 905 | G4cout << "p.x() = " << p.x()/mm << " mm" << G4endl ;
|
|---|
| 906 | G4cout << "p.y() = " << p.y()/mm << " mm" << G4endl ;
|
|---|
| 907 | G4cout << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl ;
|
|---|
| 908 | G4Exception("G4Paraboloid::DistanceToOut(p)", "Notification", JustWarning,
|
|---|
| 909 | "Point p is outside !?" );
|
|---|
| 910 | }
|
|---|
| 911 | #endif
|
|---|
| 912 |
|
|---|
| 913 | rho = p.perp();
|
|---|
| 914 | safeZ = dz - std::fabs(p.z()) ;
|
|---|
| 915 |
|
|---|
| 916 | tanRMax = (r2 - r1)*0.5/dz ;
|
|---|
| 917 | secRMax = std::sqrt(1.0 + tanRMax*tanRMax) ;
|
|---|
| 918 | pRMax = tanRMax*p.z() + (r1+r2)*0.5 ;
|
|---|
| 919 | safeR = (pRMax - rho)/secRMax ;
|
|---|
| 920 |
|
|---|
| 921 | if (safeZ < safeR) { safe = safeZ; }
|
|---|
| 922 | else { safe = safeR; }
|
|---|
| 923 | if ( safe < 0.5 * kCarTolerance ) { safe = 0; }
|
|---|
| 924 | return safe ;
|
|---|
| 925 | }
|
|---|
| 926 |
|
|---|
| 927 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 928 | //
|
|---|
| 929 | // G4EntityType
|
|---|
| 930 |
|
|---|
| 931 | G4GeometryType G4Paraboloid::GetEntityType() const
|
|---|
| 932 | {
|
|---|
| 933 | return G4String("G4Paraboloid");
|
|---|
| 934 | }
|
|---|
| 935 |
|
|---|
| 936 | //////////////////////////////////////////////////////////////////////////
|
|---|
| 937 | //
|
|---|
| 938 | // Stream object contents to an output stream
|
|---|
| 939 |
|
|---|
| 940 | std::ostream& G4Paraboloid::StreamInfo( std::ostream& os ) const
|
|---|
| 941 | {
|
|---|
| 942 | os << "-----------------------------------------------------------\n"
|
|---|
| 943 | << " *** Dump for solid - " << GetName() << " ***\n"
|
|---|
| 944 | << " ===================================================\n"
|
|---|
| 945 | << " Solid type: G4Paraboloid\n"
|
|---|
| 946 | << " Parameters: \n"
|
|---|
| 947 | << " z half-axis: " << dz/mm << " mm \n"
|
|---|
| 948 | << " radius at -dz: " << r1/mm << " mm \n"
|
|---|
| 949 | << " radius at dz: " << r2/mm << " mm \n"
|
|---|
| 950 | << "-----------------------------------------------------------\n";
|
|---|
| 951 |
|
|---|
| 952 | return os;
|
|---|
| 953 | }
|
|---|
| 954 |
|
|---|
| 955 | ////////////////////////////////////////////////////////////////////
|
|---|
| 956 | //
|
|---|
| 957 | // GetPointOnSurface
|
|---|
| 958 |
|
|---|
| 959 | G4ThreeVector G4Paraboloid::GetPointOnSurface() const
|
|---|
| 960 | {
|
|---|
| 961 | G4double A = (fSurfaceArea == 0)? CalculateSurfaceArea(): fSurfaceArea;
|
|---|
| 962 | G4double z = RandFlat::shoot(0.,1.);
|
|---|
| 963 | G4double phi = RandFlat::shoot(0., twopi);
|
|---|
| 964 | if(pi*(sqr(r1) + sqr(r2))/A >= z)
|
|---|
| 965 | {
|
|---|
| 966 | G4double rho;
|
|---|
| 967 | if(pi * sqr(r1) / A > z)
|
|---|
| 968 | {
|
|---|
| 969 | rho = RandFlat::shoot(0., 1.);
|
|---|
| 970 | rho = std::sqrt(rho);
|
|---|
| 971 | rho *= r1;
|
|---|
| 972 | return G4ThreeVector(rho * std::cos(phi), rho * std::sin(phi), -dz);
|
|---|
| 973 | }
|
|---|
| 974 | else
|
|---|
| 975 | {
|
|---|
| 976 | rho = RandFlat::shoot(0., 1);
|
|---|
| 977 | rho = std::sqrt(rho);
|
|---|
| 978 | rho *= r2;
|
|---|
| 979 | return G4ThreeVector(rho * std::cos(phi), rho * std::sin(phi), dz);
|
|---|
| 980 | }
|
|---|
| 981 | }
|
|---|
| 982 | else
|
|---|
| 983 | {
|
|---|
| 984 | z = RandFlat::shoot(0., 1.)*2*dz - dz;
|
|---|
| 985 | return G4ThreeVector(std::sqrt(z*k1 + k2)*std::cos(phi),
|
|---|
| 986 | std::sqrt(z*k1 + k2)*std::sin(phi), z);
|
|---|
| 987 | }
|
|---|
| 988 | }
|
|---|
| 989 |
|
|---|
| 990 | G4ThreeVectorList*
|
|---|
| 991 | G4Paraboloid::CreateRotatedVertices(const G4AffineTransform& pTransform,
|
|---|
| 992 | G4int& noPolygonVertices) const
|
|---|
| 993 | {
|
|---|
| 994 | G4ThreeVectorList *vertices;
|
|---|
| 995 | G4ThreeVector vertex;
|
|---|
| 996 | G4double meshAnglePhi, cosMeshAnglePhiPer2,
|
|---|
| 997 | crossAnglePhi, coscrossAnglePhi, sincrossAnglePhi, sAnglePhi,
|
|---|
| 998 | sRho, dRho, rho, lastRho = 0., swapRho;
|
|---|
| 999 | G4double rx, ry, rz, k3, k4, zm;
|
|---|
| 1000 | G4int crossSectionPhi, noPhiCrossSections, noRhoSections;
|
|---|
| 1001 |
|
|---|
| 1002 | // Phi cross sections
|
|---|
| 1003 | //
|
|---|
| 1004 | noPhiCrossSections = G4int(twopi/kMeshAngleDefault)+1;
|
|---|
| 1005 |
|
|---|
| 1006 | if (noPhiCrossSections<kMinMeshSections)
|
|---|
| 1007 | {
|
|---|
| 1008 | noPhiCrossSections=kMinMeshSections;
|
|---|
| 1009 | }
|
|---|
| 1010 | else if (noPhiCrossSections>kMaxMeshSections)
|
|---|
| 1011 | {
|
|---|
| 1012 | noPhiCrossSections=kMaxMeshSections;
|
|---|
| 1013 | }
|
|---|
| 1014 | meshAnglePhi=twopi/(noPhiCrossSections-1);
|
|---|
| 1015 |
|
|---|
| 1016 | sAnglePhi = -meshAnglePhi*0.5*0;
|
|---|
| 1017 | cosMeshAnglePhiPer2 = std::cos(meshAnglePhi / 2.);
|
|---|
| 1018 |
|
|---|
| 1019 | noRhoSections = G4int(pi/2/kMeshAngleDefault) + 1;
|
|---|
| 1020 |
|
|---|
| 1021 | // There is no obvious value for noRhoSections, at the moment the parabola is
|
|---|
| 1022 | // viewed as a quarter circle mean this formula for it.
|
|---|
| 1023 |
|
|---|
| 1024 | // An alternetive would be to calculate max deviation from parabola and
|
|---|
| 1025 | // keep adding new vertices there until it was under a decided constant.
|
|---|
| 1026 |
|
|---|
| 1027 | // maxDeviation on a line between points (rho1, z1) and (rho2, z2) is given
|
|---|
| 1028 | // by rhoMax = sqrt(k1 * z + k2) - z * (rho2 - rho1)
|
|---|
| 1029 | // / (z2 - z1) - (rho1 * z2 - rho2 * z1) / (z2 - z1)
|
|---|
| 1030 | // where z is k1 / 2 * (rho1 + rho2) - k2 / k1
|
|---|
| 1031 |
|
|---|
| 1032 | sRho = r1;
|
|---|
| 1033 | dRho = (r2 - r1) / double(noRhoSections - 1);
|
|---|
| 1034 |
|
|---|
| 1035 | vertices=new G4ThreeVectorList();
|
|---|
| 1036 |
|
|---|
| 1037 | if (vertices)
|
|---|
| 1038 | {
|
|---|
| 1039 | for (crossSectionPhi=0; crossSectionPhi<noPhiCrossSections;
|
|---|
| 1040 | crossSectionPhi++)
|
|---|
| 1041 | {
|
|---|
| 1042 | crossAnglePhi=sAnglePhi+crossSectionPhi*meshAnglePhi;
|
|---|
| 1043 | coscrossAnglePhi=std::cos(crossAnglePhi);
|
|---|
| 1044 | sincrossAnglePhi=std::sin(crossAnglePhi);
|
|---|
| 1045 | lastRho = 0;
|
|---|
| 1046 | for (int iRho=0; iRho < noRhoSections;
|
|---|
| 1047 | iRho++)
|
|---|
| 1048 | {
|
|---|
| 1049 | // Compute coordinates of cross section at section crossSectionPhi
|
|---|
| 1050 | //
|
|---|
| 1051 | if(iRho == noRhoSections - 1)
|
|---|
| 1052 | {
|
|---|
| 1053 | rho = r2;
|
|---|
| 1054 | }
|
|---|
| 1055 | else
|
|---|
| 1056 | {
|
|---|
| 1057 | rho = iRho * dRho + sRho;
|
|---|
| 1058 |
|
|---|
| 1059 | // This part is to ensure that the vertices
|
|---|
| 1060 | // will form a volume larger than the paraboloid
|
|---|
| 1061 |
|
|---|
| 1062 | k3 = k1 / (2*rho + dRho);
|
|---|
| 1063 | k4 = rho - k3 * (sqr(rho) - k2) / k1;
|
|---|
| 1064 | zm = (sqr(k1 / (2 * k3)) - k2) / k1;
|
|---|
| 1065 | rho += std::sqrt(k1 * zm + k2) - zm * k3 - k4;
|
|---|
| 1066 | }
|
|---|
| 1067 |
|
|---|
| 1068 | rho += (1 / cosMeshAnglePhiPer2 - 1) * (iRho * dRho + sRho);
|
|---|
| 1069 |
|
|---|
| 1070 | if(rho < lastRho)
|
|---|
| 1071 | {
|
|---|
| 1072 | swapRho = lastRho;
|
|---|
| 1073 | lastRho = rho + dRho;
|
|---|
| 1074 | rho = swapRho;
|
|---|
| 1075 | }
|
|---|
| 1076 | else
|
|---|
| 1077 | {
|
|---|
| 1078 | lastRho = rho + dRho;
|
|---|
| 1079 | }
|
|---|
| 1080 |
|
|---|
| 1081 | rx = coscrossAnglePhi*rho;
|
|---|
| 1082 | ry = sincrossAnglePhi*rho;
|
|---|
| 1083 | rz = (sqr(iRho * dRho + sRho) - k2) / k1;
|
|---|
| 1084 | vertex = G4ThreeVector(rx,ry,rz);
|
|---|
| 1085 | vertices->push_back(pTransform.TransformPoint(vertex));
|
|---|
| 1086 | }
|
|---|
| 1087 | } // Phi
|
|---|
| 1088 | noPolygonVertices = noRhoSections ;
|
|---|
| 1089 | }
|
|---|
| 1090 | else
|
|---|
| 1091 | {
|
|---|
| 1092 | DumpInfo();
|
|---|
| 1093 | G4Exception("G4Paraboloid::CreateRotatedVertices()",
|
|---|
| 1094 | "FatalError", FatalException,
|
|---|
| 1095 | "Error in allocation of vertices. Out of memory !");
|
|---|
| 1096 | }
|
|---|
| 1097 | return vertices;
|
|---|
| 1098 | }
|
|---|
| 1099 |
|
|---|
| 1100 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 1101 | //
|
|---|
| 1102 | // Methods for visualisation
|
|---|
| 1103 |
|
|---|
| 1104 | void G4Paraboloid::DescribeYourselfTo (G4VGraphicsScene& scene) const
|
|---|
| 1105 | {
|
|---|
| 1106 | scene.AddSolid(*this);
|
|---|
| 1107 | }
|
|---|
| 1108 |
|
|---|
| 1109 | G4NURBS* G4Paraboloid::CreateNURBS () const
|
|---|
| 1110 | {
|
|---|
| 1111 | // Box for now!!!
|
|---|
| 1112 | //
|
|---|
| 1113 | return new G4NURBSbox(r1, r1, dz);
|
|---|
| 1114 | }
|
|---|
| 1115 |
|
|---|
| 1116 | G4Polyhedron* G4Paraboloid::CreatePolyhedron () const
|
|---|
| 1117 | {
|
|---|
| 1118 | return new G4PolyhedronParaboloid(r1, r2, dz, 0., twopi);
|
|---|
| 1119 | }
|
|---|
| 1120 |
|
|---|
| 1121 |
|
|---|
| 1122 | G4Polyhedron* G4Paraboloid::GetPolyhedron () const
|
|---|
| 1123 | {
|
|---|
| 1124 | if (!fpPolyhedron ||
|
|---|
| 1125 | fpPolyhedron->GetNumberOfRotationStepsAtTimeOfCreation() !=
|
|---|
| 1126 | fpPolyhedron->GetNumberOfRotationSteps())
|
|---|
| 1127 | {
|
|---|
| 1128 | delete fpPolyhedron;
|
|---|
| 1129 | fpPolyhedron = CreatePolyhedron();
|
|---|
| 1130 | }
|
|---|
| 1131 | return fpPolyhedron;
|
|---|
| 1132 | }
|
|---|